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Abstract

The structure of scattering amplitudes in supergravity theories continues to be of interest.
Recently, the amplitude for 2 → 2 scattering in N = 8 supergravity was presented at three-
loop order for the first time. The result can be written in terms of an exponentiated one-loop
contribution, modulo a remainder function which is free of infrared singularities, but contains
leading terms in the high energy Regge limit. We explain the origin of these terms from a well-
known, unitarity-restoring exponentiation of the high-energy gravitational S-matrix in impact-
parameter space. Furthermore, we predict the existence of similar terms in the remainder
function at all higher loop orders. Our results provide a non-trivial cross-check of the recent
three-loop calculation, and a necessary consistency constraint for any future calculation at higher
loops.
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1 Introduction

Scattering amplitudes in gauge and gravity theories continue to be intensively studied, due to a
wide variety of both formal and phenomenological applications. Our focus in this paper is N = 8
supergravity in four spacetime dimensions, which is of interest for a number of reasons. Firstly,
it may prove to be an ultraviolet finite theory of perturbative quantum gravity [1–5], and in any
case has a special status as its amplitudes arise in the low energy limit from type II superstring
theory [6]. Secondly, calculations in maximally supersymmetric theories can be simpler than in
less symmetric scenarios, making such theories the ideal frontier for developing new calculational
techniques. Thirdly, there are a number of conjectures regarding the structure of amplitudes in
maximally supersymmetric theories, which higher-order computations are able to shed light on.

One of the simplest amplitudes in terms of external multiplicity is that of four-graviton scatter-
ing, results for which have been previously calculated at one-loop [6–9] and two-loop [10–13] order.
In the maximally supersymmetric theory, the tree-level result factors out, such that the amplitude
may be written in the form

iM4 = iM(0)
4

(
1 +

∞∑
L=1

M
(L)
4

)
, (1.1)

where M(0) is the tree-level contribution, and M (L) an implicitly defined correction factor at L-
loop order. The latter is infrared divergent, such that M (L) has a leading 1/εL pole in d = 4− 2ε
spacetime dimensions. Additional structure arises, however, from the fact that infrared divergences
in gravity theories are known to exponentiate [11, 14–19], where the logarithm of the soft (IR-
divergent) part of the amplitude terminates at one-loop order, in marked contrast to (non-Abelian)
gauge theories [20–29]. This motivates the following ansatz for the all-order amplitude:

iM4 = iM(0)
4 exp[M

(1)
4 ]F4, (1.2)

where M
(1)
4 is the full one-loop correction factor, including also its infrared singular part, and F4 is

an infrared finite remainder function, commencing at two-loop order. Indeed, results for the latter
have been presented at two-loop order for a variety of supergravity theories in ref. [11–13], and
their implications discussed further in refs. [19, 30].

Recently, the four-graviton scattering amplitude in N = 8 supergravity has been obtained at
an impressive three-loop order [31]. The authors compared their results with the form of eq. (1.2),
confirming that the three-loop remainder function is infrared finite. This itself provided a highly
non-trivial cross-check of their results. However, as in previous studies [13,19,30], they also exam-
ined the behaviour of the remainder function in the high energy Regge limit. This corresponds to
highly forward high energy scattering, such that the centre of mass energy is much greater than
the momentum transfer. The authors of ref. [31] noted in particular the curious property that
the remainder function, although infrared finite, contains leading contributions in the high energy
limit, suggesting that their structure can be explained using known results regarding high energy
and / or soft limits. Indeed this is the case, as we will show in this paper.

High energy scattering in gauge and gravity theories has been studied for many decades. For
example, generic scattering behaviour in the Regge limit formed a crucial ingredient in the S-
matrix programme of strong interactions, which predated the discovery of QCD (see e.g. [32] for a
review). Obtaining similar behaviour in perturbative quantum field theory has been pursued over
many decades, with relevant work in (super-)gravity including [33–42]. Recently, methods from
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gauge theory have been used to analyse gravitational physics, including clarifying the relationships
between both theories in certain kinematic limits [15, 17, 19, 43–49]. Of particular relevance here
is the outcome of the studies, started in the late 1980’s [50–64], of high-energy (transplanckian)
gravitational scattering in the Regge-asymptotics regime7 in both string and field theories (see [67]
for a recent review). Indeed, in order to explain the three-loop findings of ref. [31], we will use a
very well-established property of gravitational scattering in the leading Regge limit, namely that
the S-matrix has a certain exponential structure in transverse position (i.e. impact parameter)
space, in terms of the so-called eikonal phase. This may be expanded in the gravitational coupling
constant, before being Fourier transformed to momentum-transfer space order-by-order in pertur-
bation theory. Given that a product in position space8 is not a product (but rather a convolution)
in momentum space, the exponentiated eikonal phase in the former does not directly lead to an ex-
ponential form in momentum space. The upshot of this is that by making the ansatz of eq. (1.2) in
momentum space, a mismatch occurs, giving leading Regge contributions in the remainder function.

We will explicitly verify the form of the two- and three-loop remainder functions in the (leading)
Regge limit. Furthermore, we will use our findings to predict additional terms at higher loops, before
forming a conjecture for the leading Regge behaviour of the remainder function at arbitrary order
in perturbation theory. Our results provide a cross-check of the three-loop calculation in ref. [31],
whilst also setting consistency constraints on any future higher-loop calculations.

The structure of our paper is as follows. In section 2, we review previous results about fixed order
results for supergravity amplitudes, and also the exponentiation of the position space amplitude
in terms of the eikonal phase. In section 3, we verify the form of the remainder function up to
three-loop order in the leading Regge limit. In section 4, we extend our analysis to arbitrary orders
in perturbation theory. Finally, in section 5 we discuss our results and conclude.

2 Review of previous results

2.1 The remainder function up to three-loop order

As discussed above, the remainder function F4 of eq. (1.2) is defined after subtracting the one-loop
contribution from the logarithm of the 4-graviton scattering amplitude. It thus begins at two-loop
order, and we may then consider the perturbative expansion

F4 = 1 +

∞∑
L=2

F (L)
4 , (2.1)

where F (L)
4 is the L-loop contribution, including coupling factors other than those associated with

the tree-level amplitude. Explicit results for the two-loop contribution (in a variety of supergravity
theories) have been presented in ref. [11–13]. To present results, we label 4-momenta as shown in
figure 1, from which we may define the Mandelstam invariants

s = (p1 + p2)
2, t = (p1 − p3)2, u = (p1 − p4)2. (2.2)

7A different high-energy regime, at fixed scattering angle, was also considered at about the same time within
string theory [65,66].

8In the following we will often refer to transverse space (momentum) as, simply, space (momentum), but it is
important to stress that longitudinal momentum (energy) are never converted into the corresponding space (time)
variables. This distinction is also important [50, 51] to recover classical General Relativity expectations from the
eikonal approximation when the eikonal phase is parametrically large.
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Figure 1: Labelling of 4-momenta for the four-graviton scattering process.

Note that all 4-momenta in figure 1 are physical (e.g. rather than all outgoing), so that we are
dealing with the physical scattering region

s ≥ 0, t, u ≤ 0. (2.3)

Furthermore, momentum conservation implies s+t+u = 0, so that only two Mandelstam invariants
are independent. The Regge limit may then be formally defined as s� −t. Alternatively, defining
the dimensionless ratio

x =
−t
s
, (2.4)

the Regge limit corresponds simply to x → 0. Until recently, only the O(ε0) contribution of the
two-loop remainder function was known, whose leading behaviour in the Regge limit may be written
as [19]

F (2)
4 = x

(αGs
2

)2{
− 2π2 log2 x− 4π2 log x+ π4 + 4π2 (2.5)

+ iπ

[
4

3
log3 x+ 4 log2 x+ 8

(
1 +

π2

3

)
(1− log x) + 16ζ3

]}
+O(x2) +O(ε),

where we introduced the parameter

αG ≡
GN
π

(4π)ε
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
=
GN
π

+O(ε). (2.6)

Given that F (2)
4 is O(x), it vanishes in the strict Regge limit. However, the results of ref. [31] have

now demonstrated that this is not true at higher orders in the dimensional regularisation parameter
ε, nor at higher-loop level. In fact, the result in eq. (6.5) of ref. [31] is9

F (2)
4 = α2

Gs
2π2

[
3ζ3ε+

(
π4

20
− 6ζ3 log(−t)

)
ε2 +O(x) +O(ε3)

]
,

F (3)
4 = −2

3
iα3
Gs

3π3ζ3 +O(x) +O(ε). (2.7)

These contributions are non-vanishing as x → 0; we will explain their origin in the following
sections.

9The ε2 contribution to F (2)
4 is not explicitly written in (6.5) of [31], but can be deduced from the ancillary files

attached to the arxiv version of [31]. The apparent sign discrepancy between F (3) and eq. (6.5) results from our
choosing s > 0 whereas they have s < 0.
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...

Figure 2: A representative (crossed) ladder graph, where all particles are gravitons. The sum of all
such diagrams in the leading Regge limit builds up the exponentiated amplitude of eq. (2.8).

2.2 Impact-parameter exponentiation and the eikonal phase

The Regge limit of forward scattering consists of highly energetic particles that barely glance off
each other. As such, any exchanged radiation must be soft (i.e. have an asymptotically small 4-
momentum), and the emitting particles are then said to be in the eikonal approximation. One may
then show [50, 51] that the dominant behaviour at arbitrary loop orders is given by the (crossed)
horizontal ladder graphs of figure 2, in which all particles are gravitons. Furthermore, this situation
does not depend on the amount of supersymmetry: in the leading Regge limit, the amplitude is
dominated by the exchanged particle of highest spin, namely the graviton. It is then possible to
sum such graphs to all perturbative orders by working at fixed impact parameter x⊥, a (d − 2)-
dimensional vector transverse to the incoming particle direction and which, at the leading eikonal
level, can be thought as the transverse distance of closest approach between the two incoming hard
gravitons. One may then write the complete eikonal amplitude as (see e.g. [68])

iMeik. = 2s

∫
dd−2x⊥e

−iq⊥·x⊥
(
eiχ(x⊥) − 1

)
, (2.8)

where the quantity iχ(x⊥) is known as the eikonal phase, and is given in d = 4 − 2ε dimensions
by10 [50, 51]

iχ(x⊥) = −iGNsΓ(1− ε)
(πx2

⊥)ε

ε
. (2.9)

In eq. (2.8), q⊥ is the (d − 2)-dimensional momentum transfer that is Fourier-conjugate to x⊥.
In terms of the above Mandelstam invariants, one has t ' −|q⊥|2 in the leading Regge limit. The
exponentiation of the amplitude in terms of a large eikonal phase has the important consequence
of restoring partial-wave unitarity, which is violated as s → ∞ at each loop order due to graviton
exchange [50,51]. Equation (2.8) has a well-defined physical interpretation [50–52], in which iχ rep-
resents the phase shift experienced by one of the incoming particles in the field set up by the other,
thus forming a link between old-fashioned quantum mechanical scattering theory and perturbative
QFT approaches (see e.g. ref. [69] for an excellent review). Importantly, the exponentiation occurs
in position space. To obtain the momentum-space amplitude at a given order in perturbation the-
ory, one must Taylor expand the exponential in the Newton constant GN , before carrying out the
Fourier transform:

iMeik. = 2s

∞∑
n=1

1

n!

∫
dd−2x⊥e

−iq⊥·x⊥ [iχ(x⊥)]n. (2.10)

10This result holds at finite ε and its validity is unrelated to the problem of infrared singularities originating in the
ε→ 0 limit discussed in this paper.
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In each term, the product of phase factors [iχ(x⊥)]n becomes a convolution in momentum space,
which may itself be given a direct physical interpretation. First, one may express the position-space
eikonal phase as an inverse Fourier transform:

iχ(x⊥) = −4πiGNs

∫
dd−2k⊥
(2π)d−2

eik⊥·x⊥

(−k2
⊥ + iε)

, (2.11)

where iε denotes the usual Feynman prescription. This allows us to rewrite eq. (2.10) as

iMeik. = 2s
∞∑
n=1

(−4πiGNs)
n

n!

∫
dd−2x⊥e

−iq⊥·x⊥

(
n∏
i=1

∫
dd−2ki⊥
(2π)d−2

eiki·x⊥

(−k2
i⊥ + iε)

)

= 2s(2π)d−2
∞∑
n=1

(−4πiGNs)
n

n!

n∏
i=1

(∫
dd−2ki⊥
(2π)d−2

1

(−k2
i⊥ + iε)

)
δ(d−2)

(
q⊥ −

n∑
i=1

ki⊥

)
.

(2.12)

Each term in the second line consists of a momentum space Feynman integral, with n particles
being exchanged, each described by a standard propagator in (d − 2)-dimensions. It is the delta
function that makes this a convolution in momenta rather than a simple product, and it simply
corresponds to the fact that the sum of the exchanged momenta should be equal to q⊥, namely the
total momentum transfer that is conjugate to the impact parameter. As we will see in the following
section, it is precisely the lack of a simple product in momentum space that leads to the presence
of the non-trivial remainder function of eq. (2.7).

3 The three-loop remainder function in the Regge limit

Having seen how to describe the leading Regge limit of the four-graviton amplitude in supergravity
to all orders via the eikonal phase, we now have everything we need to explain the results of ref. [31],
presented here in eq. (2.7). To obtain the L-loop remainder function, we may start with eq. (2.10),
and identify n = L+ 1. Substituting eq. (2.9) then yields

iMeik. = 2s
∞∑
L=0

1

(L+ 1)!

(
−iGNsΓ(1− ε)πε

ε

)L+1 ∫
d2−2εx⊥e

−iq⊥·x⊥
(
x2
⊥
)(L+1)ε

= 2s
4πiGNs

q2
⊥

∞∑
L=0

1

L!

[
− iGNsΓ(1− ε)

ε

(
4π

q2
⊥

)ε]L Γ(1− ε)Γ(1 + Lε)

Γ(1− (L+ 1)ε)
. (3.1)

The second line allows us to identify the Regge limit of the tree-level amplitude from the L = 0
term:

iM(0)
4 =

8πiGNs
2

−t
+O(x). (3.2)

Examining the one-loop term then allows us to construct the correction factor entering eq. (1.2)

M
(1)
4 =

iM(1)
4

iM(0)
4

= − iGNs
ε

Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
4π

−t

)ε
. (3.3)
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Let us now rewrite eq. (3.1) as

iMeik. = iM(0)
4

∞∑
L=0

1

L!

[
− iGNs

ε

Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
4π

−t

)ε]L
×
{

ΓL(1− 2ε)Γ(1 + Lε)

ΓL−1(1− ε)ΓL(1 + ε)Γ(1− (L+ 1)ε)

}
. (3.4)

Were it not for the term in curly brackets, we would find that the full momentum-space amplitude is
simply the tree-level amplitude multiplied by the exponential of the one-loop correction of eq. (3.3).
By comparing eqs. (1.2) and (3.4), we thus find that the remainder function is given by

F4 = exp
[
−M (1)

4

] ∞∑
L=0

[
M

(1)
4

]L
L!

{
ΓL(1− 2ε)Γ(1 + Lε)

ΓL−1(1− ε)ΓL(1 + ε)Γ(1− (L+ 1)ε)

}
+O(x). (3.5)

This is a complete all-orders expression in the leading Regge limit x → 0, which may be system-
atically expanded in GN to obtain the result at a given loop order. Performing such an expansion
(also in the dimensional regularisation parameter ε), one finds

F4 = 1 + α2
Gs

2π2
[
3ζ3ε+

(
π4

20
− 6ζ3 log(−t)

)
ε2 +O(ε3)

]
+ α3

Gs
3π3

[
−2

3
iζ3 +O(ε2)

]
+O(α4

G) +O(x). (3.6)

in agreement with eq. (2.7) and thus precisely confirming the results11 of ref. [31]. We can now
go further than this, however, and predict the structure of the remainder function in the leading
Regge limit at higher orders in perturbation theory.

4 The remainder function to all orders in the Regge limit

In the previous section, we obtained a general expression, eq. (3.5), for the remainder function
F4 in the leading Regge limit, and confirmed the results of a recent three-loop calculation (which
also necessarily included O(ε) at O(G2

N )). However, the all-order nature of eq. (3.5), in both GN
and ε, means that we can expand this further. In doing so, we predict the existence of non-zero
terms in the remainder function at four-loop order and beyond. This potentially provides a highly
non-trivial cross-check of any future calculations in perturbative gravity.

We have expanded eq. (3.5) to 16 orders in GN , finding that all poles in ε vanish. This is to be
expected, given the aforementioned fact that all infrared singularities in gravity are generated by
the exponentiation of the one-loop amplitude [11,14–19]. Turning to the O(ε0) terms of the leading
energy remainder F4 = F4,0 +O(ε) +O(x), we may write the L-loop contribution as

F (L)
4,0 = (iGNs)

Lf (L), (4.1)

11See footnote 9.
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where we find the explicit results

f (2) = 0 f (7) = ζ̄7 f (12) =
1

4!
ζ̄43 + ζ̄9ζ̄3 + ζ̄7ζ̄5

f (3) = ζ̄3 f (8) = ζ̄5ζ̄3 f (13) =
1

2
ζ̄7ζ̄

2
3 +

1

2
ζ̄25 ζ̄3 + ζ̄13

f (4) = 0 f (9) =
1

3!
ζ̄33 + ζ̄9 f (14) =

1

3!
ζ̄5ζ̄

3
3 + ζ̄11ζ̄3 +

1

2
ζ̄27 + ζ̄9ζ̄5 (4.2)

f (5) = ζ̄5 f (10) =
1

2
ζ̄25 + ζ̄7ζ̄3 f (15) =

1

5!
ζ̄53 +

1

2
ζ̄9ζ̄

2
3 + ζ̄7ζ̄5ζ̄3 +

1

3!
ζ̄35 + ζ̄15

f (6) =
1

2
ζ̄23 f (11) =

1

2
ζ̄5ζ̄

2
3 + ζ̄11 f (16) =

1

3!
ζ̄7ζ̄

3
3 +

1

4
ζ̄25 ζ̄

2
3 + ζ̄13ζ̄3 + ζ̄9ζ̄7 + ζ̄11ζ̄5

with ζ̄n = 2ζn/n. Despite the rather formidable nature of eq. (3.5), we see that the results for the
O(ε0) contributions have a simple form. It is apparent that the arguments of the zeta functions in
each term in the sums are such that they form a partition of L into a sum of odd integers greater
than one. The generating function for the number of such partitions is

∞∏
j=1

1

1− z2j+1
= 1+z3+z5+z6+z7+z8+2z9+2z10+2z11+3z12+3z13+4z14+5z15+5z16+O

(
z17
)

(4.3)
so the coefficient of zL on the right-hand side of eq. (4.3) tells us the number of individual terms in
each f (L) of eq. (4.2). We then find that we can summarise all of eq. (4.2) as the compact formula

F (L)
4,0 = (iGNs)

L
∑
pr(L)

∏
j

1

nj !

(
2ζLj

Lj

)nj

, (4.4)

where the sum is over all restricted partitions of L, as mentioned above, the Lj ’s are the distinct
odd integers entering in the partition and nj is the number of times each Lj appears, so we have

L =
∑
j

Ljnj . (4.5)

In fact, one may observe12 that eqs. (4.1), (4.2) and (4.4) may be compactly summarized by

F4,0 = 1 +
∞∑
L=2

F (L)
4,0 = exp

 ∞∑
j=1

(iGNs)
2j+1ζ̄2j+1


=

e−2iGNsγ

Γ2(1 + iGNs)
exp

[
log

(
πiGNs

sin(πiGNs)

)]
= e−2iGNsγ

Γ(1− iGNs)
Γ(1 + iGNs)

. (4.6)

The same result can be obtained from the ε→ 0 limit of (2.8) without expanding the exponential
of χ(x⊥) (see ref. [19] for a similar observation). Denoting the ε0 terms of eqs. (2.9) and (3.3) by

χ0 and M
(1)
4,0 respectively, we may write

χ0 = −GNs
(
log(πx2

⊥) + γ
)
, eM

(1)
4,0 = eiGNsγ

(
4π

q2
⊥

)−iGNs

. (4.7)

12We would like to thank Henrik Johansson for this observation.
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We can then perform the Fourier transform of eq. (2.8) in d = 4 (i.e. restricting to the ε-independent
part)∫

d2x⊥e−iq⊥·x⊥eiχ0(x⊥) =
4πiGNs

q2
⊥

e−iGNsγ

(
4π

q2
⊥

)−iGNs Γ(1− iGNs)
Γ(1 + iGNs)

=
4πiGNs

q2
⊥

eM
(1)
4,0F4,0, (4.8)

and check explicitly that the last step is consistent with the result of eq. (4.6)13. This derivation
can be seen as a proof of the result (4.4) for the ε0 contribution, but we stress in any case that a
complete all-order expression for the remainder function (which is more powerful than a finite-order
ε expansion) has already been given in eq. (3.5).

The next unknown order in the four-graviton amplitude is four loops. It is easily checked from
eq. (3.5) that, as at two loops, the O(ε0) contribution to the remainder function (in the leading
Regge limit) vanishes. However, there is a nonzero contribution beyond this, given by

F (4)
4 = −5(GNs)

4ζ5ε+O(ε2) +O(x). (4.9)

We do not expect this result to be explicitly confirmed in the near future: calculating the O(ε) part
of the four-loop amplitude would presumably be first carried out as part of a five-loop calculation!

An interesting observation is that the above results respect the conjectured uniform transcen-
dentality property of amplitudes in theories with maximal supersymmetry. That is, we can associate
a transcendental weight n with the zeta value ζn, where all rational coefficients are taken to have
weight zero. The sum of weights at O(εm) and L-loop order is then

w = L+m. (4.10)

Beyond the leading order, the Regge limit breaks this uniform transcendentality property, as, for
instance, one approximates ln(−u/s) ∼ x losing the transcendental contribution of the logarithm.
Since the leading eikonal does not depend on the number of supersymmetries, the uniform weight
property for N = 8 supergravity manifest in (4.10) is inherited by the lower supersymmetric cases.
We stress that this property of the leading term is exact to all orders, not just the ε0 order considered
above. For the amplitude itself at a given loop order, there is a dominant pole

∼ 1

εL

coming from the exponentiated IR singularity in the one-loop contribution. All subleading terms in
ε (in the leading Regge limit) come from expanding Euler gamma functions, and the coefficients of
all such expansions have increasing uniform weight as the power of ε increases. Thus, this accounts
precisely for the dependence of eq. (4.10).

5 Discussion

In this paper, we examined the form of the four-graviton scattering amplitude in N = 8 supergrav-
ity, which was recently calculated at three-loop order [31]. It is conventional to define a remainder
function for this amplitude, constituting what is left upon factoring out the tree-level amplitude,

13Note that, for ε → 0, the whole effect of F4,0 boils down to a renormalization of an unobservable (and not
explicitly written) infinite Coulomb phase originating from the leading eikonal resummation.
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and the one-loop correction factor [13]. The three-loop calculation, which includes an evaluation
of the O(ε) part of the two-loop result, revealed the existence of leading terms in the remainder
function in Regge’s high energy limit, at non-negative powers of the dimensional regularisation
parameter ε.

In this paper, we have shown that these contributions follow precisely from the known expo-
nentiation of the four-graviton amplitude in position space, in terms of the so-called eikonal phase.
At a given order in perturbation theory, a product of one-loop amplitudes occurs, which becomes
a convolution in momentum space, whose physical interpretation is that the transverse momentum
transfer (conjugate to the impact parameter) must be democratically shared between the exchanged
gravitons at that order. This in turn means that the amplitude does not straightforwardly exponen-
tiate in momentum space, and we have derived an all-orders expression – in both the gravitational
coupling GN and dimensional regularisation parameter ε – for the remainder function in the Regge
limit. As well as confirming the results of ref. [31], we also predict explicit contributions at higher
loop orders. We obtained a particularly convenient combinatorial form for the O(ε0) contributions,
which we showed can be directly obtained from the leading eikonal expression in d = 4. The higher
loop remainder function respects maximal transcendentality to all orders.

There are a number of possible extensions of our analysis. Firstly, one could look at predicting
the structure of subleading terms in the Regge limit (see e.g. refs. [30, 44, 54, 57, 61–64, 70] for
previous work in this area). Secondly, it would be interesting to extend the analysis discussed
in this paper to higher loops by starting from the integral expressions for the four- and five-loop
amplitudes of refs. [71, 72]. Finally one can study the remainder function in theories with less
than maximal supersymmetry. This is not independent of the exploration of subleading eikonal
contributions. Indeed, the leading Regge behaviour would be expected to be the same for less
supersymmetric gravity theories, given that this kinematic regime is dominated by the exchange
only of leading soft particles of highest spin (i.e. the graviton). Three-loop calculations in non-
maximal supergravity theories do not yet exist, thus our results already provide a highly useful
constraint.
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