
Journal of Instrumentation
     

OPEN ACCESS

EUDAQ2—A flexible data acquisition software framework for common
test beams
To cite this article: Y. Liu et al 2019 JINST 14 P10033

 

View the article online for updates and enhancements.

This content was downloaded from IP address 128.141.192.28 on 30/10/2019 at 08:28

https://doi.org/10.1088/1748-0221/14/10/P10033
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssujtMw_mGn7tO3fW03DXoLpRJMZR_MRcc_QYFm9sL4Ut6FtSG6tbPgTwmfTrsmyvtz2Ax25gX8JIT2H_whsaTi6kh94ecZkzJgF3lMcm37M0Glqf5todGnTbiDxvAargff-1Nssnxi1RGxhYsdBj2kWkTMN2Z_lBpC_6dehPOMxtpCtyDe7HOPrmBVtzVfJZdnfsojCgIZV8TEEn7m1bWcW3X173kIeoPOQ9g80QBqzRo0xzvT&sig=Cg0ArKJSzJh4W3NbLmrZ&adurl=http://iopscience.org/books


2
0
1
9
 
J
I
N
S
T
 
1
4
 
P
1
0
0
3
3

Published by IOP Publishing for Sissa Medialab
Received: July 30, 2019

Accepted: October 14, 2019
Published: October 23, 2019

EUDAQ2 — A flexible data acquisition software framework
for common test beams

Y. Liu,a,1 M.S. Amjad,b P. Baesso,c D. Cussans,c J. Dreyling-Eschweiler,a R. Ete,a I. Gregor,a

L. Huth,a A. Irles,d H. Jansen,a K. Krueger,a J. Kvasnicka,e,a R. Peschke,a, f E. Rossi,a

A. Rummler,g F. Sefkow,a M. Stanitzki,a M. Wingb,a and M. Wua

aDeutsches Elektronen-Synchrotron,
Notkestr. 85, 22607 Hamburg, Germany

bDepartment of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, United Kingdom

cUniversity of Bristol,
Tyndall Avenue, Bristol BS8 1TL,United Kingdom

dLaboratoire de l’Accélerateur Linéaire (LAL), CNRS/IN2P3 et Université de Paris-Sud XI,
Centre Scientifique d’Orsay, Bâtiment 200, BP 34, F-91898 Orsay, CEDEX, France

eInstitute of Physics of the Czech Academy of Sciences,
Na Slovance 2, 18221 Prague 8, Czech Republic

fDepartment of Physics and Astronomy, University of Hawai’i at Mānoa,
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Abstract: The data acquisition software framework, EUDAQ, was originally developed to read
out data from the EUDET-type pixel telescopes. This was successfully used in many test beam
campaigns inwhich an external position and time referencewere required. The software has recently
undergone a significant upgrade, EUDAQ2, which is a generic, modern and modular system for
use by many different detector types, ranging from tracking detectors to calorimeters. EUDAQ2
is suited as an overarching software that links individual detector readout systems and simplifies
the integration of multiple detectors. The framework itself supports several triggering and event
building modes. This flexibility makes test beams with multiple detectors significantly easier and
more efficient, asEUDAQ2 can adapt to the characteristics of each detector prototype during testing.
The system has been thoroughly tested during multiple test beams involving different detector
prototypes. EUDAQ2 has now been released and is freely available under an open-source license.
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1 Introduction

The next generation of particle physics experiments requires detectors with an outstanding perfor-
mance to be designed, built and tested. The challenges involve spatial resolutions to the micron
level, picosecond timing resolution and more on-detector intelligence. At the same time, the mate-
rial budget needs to be further reduced compared to present systems, which requires novel solutions
for the readout, powering and cooling of the detectors. As a part of any successful R&D program a
set of test beams for each new detector are required to demonstrate its capabilities and performance.

In order to facilitate these detector test beams, high resolution pixel beam telescopes, the
so-called EUDET-type pixel beam telescopes [1] (section 4.1) have been developed as a common
infrastructure available to any R&D group. The accompanying data acquisition software, EU-
DAQ [2], was originally developed to read out the data from the EUDET-type pixel telescopes and
was therefore closely connected to its data acquisition (DAQ) architecture. During a decade of usage
many user groups have integrated their DAQ system into EUDAQ and have successfully combined
their data with the telescope data, based on common trigger IDs. Together with the EUTelescope
software package, a common pixel telescope data analysis framework, the EUDET-type pixel beam
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telescopes offer the whole infrastructure for detector development from the initial measurements
to the final results. Furthermore the availability of these telescopes at the test beam facilities at
CERN, DESY, ELSA(Bonn) and SLAC provided users the possibility to move their setup between
test beams and use the same interface to the telescopes.

The recent development of EUDAQ2 provides a more flexible DAQ software framework
for operating detector prototypes at test beams worldwide. The emerging need for running several
detectors together with a telescope as a so-called system test is extending the use caseway beyond the
original conception of EUDAQ. Being a major upgrade to EUDAQ, EUDAQ2 has been completely
rewritten using modern C++ and was designed to become even more versatile and usable for an
extended range of detectors. The modular and cross-platform data acquisition framework serves as
a flexible and simple-to-use data taking software for the EUDET-type pixel beam telescopes while
allowing for the easy integration of many other detectors. EUDAQ2 is freely available [3] and
distributed under the LGPLv3 [4] open-source license.

2 EUDAQ2 architecture

EUDAQ2, like its predecessor EUDAQ, is implemented in C++, taking advantage of many of the
powerful features provided by the C++11 standard [5]. Compatibility across operating systems
and compilers is one of the EUDAQ2 design principles, hence it only uses standard C++ language
features and POSIX [6] system routines. Therefore, EUDAQ2 can run natively on Linux, MacOS
and Windows. To build an EUDAQ2 system, different compilers such as GCC, LLVM/Clang and
MSVisual C++ are supported. The build and installation processes are configured usingCMake [7].
EUDAQ2 is a distributed DAQ framework with its communication protocol running on a custom
TCP/IP stack.

Figure 1 shows a schematic overview on the EUDAQ2 framework: each component of EU-
DAQ2 can run anywhere on the network on separate machines, entirely operating-system inde-
pendent, and connect to each other using the EUDAQ2 data taking setup at run-time. Within the
EUDAQ2 framework, each detector hardware is being controlled and read out by an individual
EUDAQ2 instance. At the same time, the data streams from different detectors can be merged using
well-defined synchronization mechanisms and stored to disk.

2.1 Distributed run-time roles

A typical EUDAQ2 setup is split into several run-time instances with different roles, each commu-
nicating via the network. Table 1 gives an overview of the roles of each EUDAQ2 instance.

The Run Control is at the core of each EUDAQ2 system. Every EUDAQ2 system requires
exactly one running instance of the Run Control. All other EUDAQ2 participating instances
must be made aware of the network location of the Run Control and announce themselves to the
Run Control at startup. The Run Control reads and parses the initialization/configuration files
and distributes the corresponding settings to each connected EUDAQ2 instance according to the
instance’s run-time name. It also serves as user interface via an optional graphical interface. The
Run Control is responsible for the start and stop the data taking.

A Producer controls underlying detector hardware which participates in the EUDAQ2 data
taking. Each detector hardware needs to have a dedicated Producer. Normally, there are several
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Figure 1. A schematic view of the EUDAQ2 architecture.

Table 1. EUDAQ2 roles.

EUDAQ2 Role Description

Run Control Central controller for full EUDAQ2
system

Producer Controls an individual detector, and
sends detector data to EUDAQ2

Data Collector Collects and merges data from individ-
ual Producers, then stores the data to
disk file

LogCollector Collects log messages from the entire
EUDAQ2 system

Monitor Online monitoring of data quality
Offline Tools Fast offline data conversion and data

analysis

Producers running in parallel, as the data taking during a test beam consists of several detectors.
The Producers feed the detector data into the distributed EUDAQ2 framework. A Producer

also responds to Run Control commands and manages the detector hardware accordingly. The
Producer is the only part where the user is required to make a dedicated and hardware-specific
implementation, technically by employing the C++ polymorphism mechanism. A Producer may
support both an “internal” and “external” loop for interacting with the hardware and retrieving
data, when it is available. For the “internal” loop, the Producer provides a loop/thread internally,
manages the START and STOP commands and handles the error exceptions. This is the simplest
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way for users to integrate their hardware into EUDAQ2. This might not be suitable for certain
DAQ systems, which provide their own read-out loop and state-machine. Therefore another mode,
the “external” loop mode, where EUDAQ2 is not managing the readout but merely receives data,
whenever it is made available, is provided.

The Data Collectors collects the data from the individual detectors via their Producers and
write data to disk. A Producer can be configured to send data to one or several Data Collector
instances, depending on the user needs during data taking. A Data Collector can be configured to
receive data from one or several Producers, hence supporting very flexible ways of event-building
when using different detectors. The synchronization of the data from different Producers can
be done either using straight-to-disk, skipping event validation and synchronization, sync-with-
arrival-order, sync-with-trigger and sync-with-timestamp, all of them fully supported by EUDAQ2.
Basic sanity checks such as testing the consistency of event numbers or TriggerIDs are imple-
mented by default. The API of the Data Collector allows straightforward inclusion of additional
synchronization methods if required by a user, see section 3.2.

The LogCollector gathers logging information from allEUDAQ2 instances and displays them
centrally in one unified logging window. A single log file is stored along with the corresponding
data file for later reference. This simplifies the tracking of problems encountered during data-taking.
Only a single instance of the LogCollector is allowed in any EUDAQ2 setup. If a setup does
not provide a LogCollector instance during the run, the log messages just go to the local screen
where an EUDAQ2 instance runs.

The Monitor analyses the incoming data stream and generates a set of histograms, ensuring
data quality online. Hardware failures of setup issues can be tracked down efficiently utilizing the
Monitor. A legacy OnlineMonitor from EUDAQ is shipped to maintain compatibility and to
simplify migration to EUDAQ2. The Monitor is able to run offline with disk data as well, which
allows for quick data quality verification.

Data decoding can be performed either online or offline. Independently, the DataConverter
is the only point where specific decoding routines need to be implemented. The DataConverter
to be called for a specific event is derived from the event type. A corresponding DataConverter
can be retrieved and called by the Monitor and other offline analysis tools.

2.2 State & command model

AnyEUDAQ2 instance has tomaintain a run-time state. To change between the individualEUDAQ2
states, a set of EUDAQ2 commands is available, which is shown in table 2. The finite state machine
including allowed transitions is shown in figure 2.

Each EUDAQ2 instance reports the state UNINIT to the Run Control at startup. An issued
INIT command by the Run Control triggers the initialization of an instance, which changes the
state to UNCONF, if no errors occur. A subsequent successful execution of the CONFIG command
leads to a reported CONF state. If all instances are in a CONF state, the Run Control is able to
START the readout, changing the EUDAQ2 state to RUNNING. The STOP command stops the data
taking and the EUDAQ2 instance keeps waiting for a new run as soon as another START command
arrives. In case a new configuration file needs to be used and distributed to the Producers, a
CONFIG command needs to be executed between the STOP and the next START . In case of an
unexpected error, the state ERROR is reported. The only way to recover from an ERROR state is to

– 4 –



2
0
1
9
 
J
I
N
S
T
 
1
4
 
P
1
0
0
3
3

Table 2. The EUDAQ2 commands to trigger a change between EUDAQ2 States.

Command State State Command Description
before command after command

INIT UNINIT UNCONF Initialize using the initialization file
CONFIG UNCONF/CONF CONF Configure using the configuration file
START CONF RUNNING Start up a new run
STOP RUNNING CONF Stop the current run
RESET ERROR/CONF/UNCONF UNINIT Reset all running components
TERM all except RUNNING Terminate EUDAQ2

ERROR UNINIT UNCONF RUNNINGCONFRESET INIT CONFIG START

STOP
RESET

ERROR

CONFIG

Figure 2. Finite State Machine of EUDAQ2. States are displayed in blue, commands in black and error
handling in red. For the successful initialization and configuration of EUDAQ2, valid initialization and
configuration files need to be provided.

execute the RESET command which can reset the system toUNINIT state. Errors are handled by an
exception mechanism. The TERM command terminates the complete system, closing all EUDAQ2
instances. It is worth noting that the INIT command can only be executed once while the CONFIG
command can be issued several times.

It is the task of the Run Control instance to issue the commands to alter the states of all
participating instances and check/validate the return codes of all instances. If an error occurs during
the processing of a command by a Producer, e.g. during the configuration of the underlying detector
hardware, an exception can be issued, which is caught and automatically converted to an error state.
The error state is part of the return information collected by Run Control. The LogCollector
receives a detailed error report automatically. Commands pushed from Run Control to each
Producer are processed in the sequence they were received. a request to retrieve the current state
from all the connected EUDAQ2 instances is sent periodically and the state is updated accordingly,
hence providing a heartbeat of the entire system.

The configuration of the EUDAQ2 data acquisition framework is performed via two global
configuration files. One of them is used by the INIT command, and the second for the CONFIG
command. Both configuration files are stored as plain text and are divided into named sections for
the individual run-time instance. Each configuration section, named by combination of role and
run time name of the running destination instance, contains a list of parameter-value pairs which
can be either mandatory or optional.
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Table 3. EUDAQ2 data model.

Variable Provided by User Set by EUDAQ2 automatically

EventType no yes
RunNumber no yes
EventNumber no yes
Timestamp optional no
TriggerNumber optional no
RawDataBlock yes no
Tags optional no
SubEvents optional no

2.3 Data model

Data objects are sent between various EUDAQ2 instances in the same way as State and Commands.
The data objects therefore need the capability to be serialized. When a data object is serialized, all
the crucial data of this data object is fed to a serialized memory section which then can be sent as
a plain binary data stream to another application and reconstructed as a copy of the original data
object. Technically, the EUDAQ2 native data file format is a collection of serialized binary data
streams from data objects

In EUDAQ2, the Serializable class is implemented by the Event class. The Event class stores
data from a detector. The basic EUDAQ2 Event implementation provides a few general variables as
the Event object is not required to be aware of all the details about each individual detector. But it
is mandatory for each Event Object to have a few parameters set properly. Table 3 lists all member
variables of a Serializable Event object and the members which EUDAQ2 sets automatically.

The RawDataBlock contains the corresponding detector data stored in a detector-specific
format, encoded as an array of uint8t. It is the responsibility of each user to provide the necessary
data decoders using a DataConverter. A pair of timestamps defines the start and end time of
the RawDataBlock and a trigger number identifies the trigger sequence defined by the hardware
setup. The timestamps and trigger number are per se optional, but are necessary to be set if they
are to be used to synchronize data from multiple data streams. In this case, the raw measurement
data has to be partly processed and decoded since the timestamps and trigger numbers are part of
the detector raw data. However, to minimize the CPU consumption due to data processing by the
Producer, full decoding of the detector raw data can be postponed to the online monitoring stage or
the offline analysis. It is possible to encapsulate several events inside an Event object, the so-called
SubEvent objects. This can be the case if the detector hardware controls multiple subsystems or
has a cascaded data structure. The SubEvent objects are stored in the parent Event object and are
therefore also Serializable.

2.4 Network communication

The distributed communication is running using only TCP/IP with a custom protocol, based on
the developments for EUDAQ. Replacing the custom protocol with a more modern, performance
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optimized network protocol, allowing for higher data throughput and restoring lost packages has
been investigated, but not yet implemented. This can be achieved with the existing abstraction layer
and can be implemented as an extension library, without influencing any user code, see section 3.2.
We foresee this for one of the future EUDAQ2 releases depending on user needs.

2.5 The graphical user interfaces

EUDAQ2 provides Graphical user interfaces (GUIs) based on the Qt framework [8], which is a
free and open-source widget toolkit to create GUIs for cross-platform applications. The Qt-based
versions of the EUDAQ2 Run Control (see figure 3), LogCollector and a Monitor are available
as part of the EUDAQ2 package together with a command line version.

Figure 3. The Graphical user interface of the EUDAQ2 Run Control.

3 Integration with user code

To keep the pure C++ EUDAQ2 core clearly separated from all user code, which may depend on
non-standard libraries, the EUDAQ2 binary library is split into a core library and optional mod-
ule/extension libraries. Figure 4 shows this relation libraries with respect to the EUDAQ2 core li-
brary. ACMake configure file to support user code integration against theEUDAQ2 core is supplied.

EUDAQ2 is not compatible with EUDAQ, as the API has been changed and several interface
methods have been deprecated. However, the migration to EUDAQ2 is straightforward and requires
only minor changes in the user code, as the exception and error handling has changed. To avoid
accidental misuse of EUDAQ user code in EUDAQ2, all interface functions have been renamed.

3.1 Modular plugins

Modular plugins are used to interact with the user hardware, the DAQ systems, or to adjust the
EUDAQ2 core functionalities to meet certain user requirements. A typical EUDAQ2 modular
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Figure 4. Layout of EUDAQ2, showing the relation between theEUDAQ2 core libraries and the Executables,
Extensions and Plugins.

plugin contains a Producer, a Data Collector and specific hardware code provided by the user.
Optionally a modified Run Control can also be defined as a module. External libraries or specific
dependencies of a module have to be handled by the user by adjusting the module’s CMake file.
A shared library is created for each modular plugin at compile time. This library is loaded at the
startup of EUDAQ2 run-time instances.

EUDAQ2 takes advantage of the Object Oriented Programming (OOP) [9] capabilities of C++
to create objects like Producers and Data Collectors, which inherit from the base classes by
method dispatching. Using factories instead of constructors allows the usage of polymorphism for
the object creation.

There are a few generic EUDAQ2 executables, so-called portals, which provide a generic way
to create a user instance, e.g. a Producer. Examples for such portals are the euCliProducer and
euCliConverter (see figure 4), which are generic utilities. After a EUDAQ2 portal executable has
created an EUDAQ2 instance, the portal executable only interacts with the EUDAQ2 core library,
while all user-specific functionality required by each instance is implemented in modular plugins.
The EUDAQ2 core then takes care of searching and loading all available user plugin modules
located in the specified directories. The communication between the EUDAQ2 core and its plugins
is based on derived OOP classes. Therefore, the EUDAQ2 core can steer any user plugin binary
without having knowledge of the hardware/plugin specific dependencies, both during build and
during runtime. This encapsulation enables simple changes in the prototypes and class hierarchies.

3.2 Extension library

Supporting EUDAQ2 on multiple operation systems requires a compact core package without any
external dependencies. However, this limits the available functionality, which can be an issue in
certain use cases. To increase the flexibility, the core library is verymodular with aminimal coupling
between the major components. This allows for a simple replacement of individual components
using extension libraries. An extension library provides additional optional core features, which
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might then require external dependencies. These extensions provide a convenient way to extend the
functionality of EUDAQ2, without changing the core libraries themselves.

The data for example can only be stored as a raw and uncompressed serial-event object stream
within the standard EUDAQ2 core. Extensions can be used to write out data using different forms:
the LCIO [10, 11] extension library for example allows for writing data as LCIO-formatted data,
which is widely used in the Linear Collider community. Developments of an extension to support
data storage in ROOT TTrees [12, 13] is currently work in progress.

3.3 Python interface

Python has become a very popular programming language in the particle physics community.
Therefore, a Python wrapper based on pybind11 [14], which is a lightweight, header-only library
that exposes C++ types to Python, is provided. Python and C++ have significant differences
in the treatment of variables and memory: while Python passes variables as a reference and
does automatic garbage collection, C++ requires manual memory management by default. With
the introduction of C++11 [5] smart pointers, which provide memory management, have become
available. Using smart pointers to store all the EUDAQ2 objects instead of raw pointers bridges
the gap between Python and C++. However, a small performance penalty has to be paid using
Python due the use of an interpreter and an additional layer, which encapsulates the C++ methods
and converts the interfaces to Python. The Python interface enables a safe transfer of the Event
and Status objects from C++ into Python or vice versa and a Python example is provided as a part
of the EUDAQ2 package.

4 User examples

In most user cases, providing the dedicated and detector-specific user code and building them into
EUDAQ2 as a modular plugin is sufficient. A modular plugin usually involves following parts:

1. Implementation of a set of Producers for each new detector.

2. Implementation of a DataConverter to convert each RawEvent to a StdEvent and to the
LCIO format, if used for later analysis.

3. Optionally, implementation of a Data Collector, if a specific synchronization, other than
trigger-ID or timestamp based methods, is required.

The EUDAQ2manual [15] provides detailed technical information as well as a set of code examples.
EUDAQ2 contains many new features from long-standing requests of the user community that

has used EUDAQ for nearly a decade. Several user groups have become early adopters already
during the development phase of EUDAQ2 and provided very valuable feedback throughout and
are now using EUDAQ2 for their test beam campaigns.

Already today, EUDAQ2 supports many test beam campaigns of detector prototypes at CERN
and DESY. EUDAQ2 is becoming more popular and many users migrate their EUDAQ implemen-
tations to EUDAQ2. Some examples for the usage of EUDAQ2 are given below, showcasing the
wide range of applications, ranging from the EUDET-type and Lycoris beam telescopes to test
beams for HL-LHC and CALICE.
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4.1 EUDET-type beam telescopes

As the origin of the EUDAQ framework, measurements based on EUDET-type beam telescopes
are the most extensive application of EUDAQ2/EUDAQ software. Together with the EUDET-
TLU [16] they compose a common Trigger-DAQ infrastructure provided by several facilities. Over
the last decades, many different user setups have been integrated into EUDAQ in order to use one
of the seven copies of EUDET-type beam telescopes located on five different beam lines [2]. In
parallel, developments to achieve higher trigger rates in the Trigger-DAQ system of common beam
telescopes [17] have started.

EUDET-type telescopes are Mimosa26-based [18, 19], which operate in a rolling shutter
mode with a period of 115.2 µs. A single FPGA receives the data of six individual telescope planes
and creates trigger based double sensors frames. Trigger and rolling shutter are not correlated.
Thus, the next frame also needs to be read out resulting in a busy time of the telescope between
115.2 and 230.4 µs. A telescope event integrates all possible particle hits in the corresponding
double frame read-out, increasing the potential track multiplicity. Using a faster pixel sensor, as for
example a FE-I4 [20] based sensor with a 25 ns read-out time, allows identification of the track in-
voking the trigger by correlating the telescope track and the FE-I4 hit. Together with the global busy
logic of the EUDET-TLU, the maximum rate for tracks with a high time resolution is about 4 kHz.

The development of EUDAQ2 and the implementation of the AIDA-TLU [21] allows for a
new data taking mode which overcomes this trigger rate limit. With the EUDET-TLU, the system
trigger rate has been limited by the slowest device. This issue is overcome with the AIDA mode,
that provides more flexibility by enabling individual configuration for each connected device. By
configuring an individual busy, faster devices can receive triggers while slower devices are still
busy: a FE-I4 DAQ can potentially receive several trigger signal during the read-out time of the
Mimosa26-DAQ.

The time information can be used to assign themultiple trigger information to potential multiple
tracks in a Mimosa26 frame. Applying this to the telescope system a trigger rate of 115 kHz is
possible, or a factor of ∼ 28 of improvement, limited by the time required to read out the trigger
ID. The trigger ID is used to synchronize the event streams in this data taking mode, by assigning
unique numbers to triggers. The AIDA-TLU provides the same data-trigger-busy communication
protocol as the EUDET-TLU to be compatible to existing device-under-test integration setups.

The EUDAQ components of the telescope were upgraded and complemented within the
EUDAQ2 framework. These are Producers for the Mimosa26 DAQ and for both TLU types
which define also the choice of the Data Collector. Operating with the EUDET-TLU, the
EudetTluProducer and the EventIDSyncDataCollector are used to synchronize the event
streams by event number knowing that devices are operated in a trigger global busy scheme. Op-
erating with the AIDA-TLU, the AidaTluProducer and the TriggerIDSyncDataCollector

are used to synchronize event streams by trigger number which allows the new data taking mode
as described above. Furthermore a generic DirectSaveDataCollector is provided which can
be called multiple times, to store data from each connected Producer. This is an example of
distributed and decentralized data taking for which the event synchronization happens offline.
Therefore, exemplary executables are provided for synchronizing multiple data streams by event
number or trigger ID offline. Finally, DataConverter modules can convert the TLU, FE-I4 and
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Mimosa26 RawEvent to StdEvent blocks for providing interpretable data to the StdEventMonitor
which is the exported EUDAQ OnlineMonitor. Corresponding DataConverter modules are
available to convert events to the LCIO format [11] in order to perform track reconstruction with
the EUTelescope framework [22] as part of the EUDET-type telescope infrastructure.

4.2 ATLAS ITk strip

The ATLAS Inner Tracker (ITk) is a planned silicon tracker which is foreseen to start operation in
2026. It comprises an inner section consisting of pixel sensors, and an outer section consisting of
strip sensors. The latter will cover an active area of approximately 165m2 with 17888 modules.
Each module is composed by a silicon sensor, front-end electronics and a power board.

Since 2017, five successful test beam campaigns with EUDAQ2 have been conducted. Two
fully irradiated prototype end-cap module and the first double-sided prototype end-cap module
were tested, among other devices [23]. The migration from EUDAQ to EUDAQ2 did not require
extensive modifications to the previous setup.

As in EUDAQ, two separate Producers are used for the ATLAS ITk DAQ: a Producer

transmitting data from the front-end chips, as the hit information, and a Producer providing TTC
(Timing, Trigger and Control) information from the readout FPGA. A dedicated converter to the
LCIO data format is implemented for each stream in order to perform track reconstruction and data
analysis using the EUTelescope reconstruction framework.

4.3 KPiX strip telescope

The KPiX readout system is used by the Lycoris strip telescope [24] at the DESY II Test Beam
Facility. Its native DAQ system consists of an ASIC called KPiX [25], and a FPGA DAQ board.
The KPiX digitizes and serializes the collected data, the FPGA reads out the data from all the
connected KPiX and transmits to the PC. The KPiX chip is designed to be power cycled in between
data acquisition periods, which requires an external acquisition start signal. The chip has an internal
calibration and trigger module, but it can work with a forced external trigger. Both the acquisition
start signal and the external trigger can be sent from the DAQ software.

KPiX has its ownDAQ software, which is the prototype version for the ROGUE [26] framework
developed by SLAC. Given that KPiX DAQ has been designed with multiple threads to control data
taking and software command transmission, the final integration to the EUDAQ2 was implemented
with an intermediate FIFO queue. The KPiX user module consists of one Producer connecting
KPiX via shared KPiX DAQ libraries, one Data Collector linked with KPiX binary data format
libraries, two DataConverter units to interpret a RawEvent to the StdEvent and the LCIO format,
and one Run Control to ensure Stop and Reset functioning for all run modes with KPiX.

Moreover, the KPiX user module contains a customized GUI inherited from the core GUI
for printing more detailed information like the Run Rate, and one analysis executable called
lycorisCliConverter for producing a set of straightforward plots like the ADC distribution
of each channel to a ROOT file from an EUDAQ2 RawEvent.

This usermodule has been used for data taking inmultiple test beam campaigns. Figure 5 shows
the good spatial correlation between two Lycoris strip sensor modules taken with this EUDAQ2
module.
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Figure 5. Spatial correlations of two Lycoris strip sensor modules from example data taken with the
EUDAQ2 KPiX user module at DESY II Test Beam Facility.

4.4 CALICE AHCAL

The CALICE AHCAL is a prototype of a highly granular hadron calorimeter [27] optimized for
the particle flow algorithm [28] at a future e+e−collider [29]. It uses 30 × 30 × 3 mm3 scintillator
tiles, which are individually read out by silicon-photomultiplier photodetectors. The embedded,
low-power readout electronics is based on the SPIROC chip [30] with 36 input channels, specifically
designed for a power-pulsing operation in sparse spills with an active duty cycle of less than 1 %. The
chip is self-triggered and stores for each channel a charge, a hit time and a bunch-crossing ID (BXID).

The AHCAL EUDAQ2 Producer includes an configurable event building method, producing
events in various modes in order to be able to synchronize with other detectors:

Timestamp is recorded in AHCAL DAQ hardware with 25 ns resolution with the possibility to
receive (or provide) the clock from (to) other systems. The timestamp is 48 bits wide and
overflows only after 81 days.

Trigger number can be counted and timestamped from external source in the AHCAL DAQ
hardware via a separate path. In the producer’s event building stage, the trigger timestamp is
then used to pair the trigger with the corresponding self-triggered hits from the ASIC data.
The trigger ID is then used as an event number.

Acquisition cycle and BXID are unique identifiers, that can be used for synchronization with other
acquisition-cycle oriented detectors, especially with front-end chips from the same family.
The event can be build on a cycle level, containing all hits within the acquisition cycle (spill),
or split into separate events by BXID.

EUDAQ2 provides the possibility to run multiple data collectors. This feature was used
extensively during the synchronization studies with the Mimosa beam telescope, where several
instances of a data collector with different event number offsets ran together. The event number
offset was found by observing the spatial correlation in generated files. The events are merged in
EUDAQ by the event (trigger) number.

A data converter from AHCAL EUDAQ2 RawEvent to a StdEvent provides a possibility to
display the AHCAL plane (72 × 72 cm2) as a pixel plane in the EUDAQ2 OnlineMonitor, giving
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an immediate beam footprint feedback, as shown at figure 6. The converter was used to check and
monitor the spatial correlations with the Mimosa telescope at the DESY II Test Beam Facility using
the OnlineMonitor.

The CALICE AHCAL has successfully used EUDAQ2 in many commissioning and test beam
campaigns. A specific AHCAL Run Control automatically loading a new configuration before
restart of a new run was used to perform internal calibration or automated position scans on the
moving platform at the DESY II Test Beam Facility. Delay wire chambers were used at the CERN
test beam for beam particle trajectory reference. Online event number synchronization (based on
the trigger number) was not reliable and timestamps were not using the same time base. The
synchronization was therefore achieved offline. The AHCAL used EUDAQ2 together with the
CMS-HGCAL [31] at the CERN SPS test beam in 2018. The event synchronization was done
offline, based on the trigger numbers and validated with the timestamps.

Figure 6. Hit maps of the AHCAL with 38 layers in the 40 GeV muon beam at the CERN SPS, May 2018.

5 Conclusion

EUDAQ2 is a modular, modern and versatile data acquisition framework that has been developed
as a successor of EUDAQ. A core library is utilized to manage the readout, data collection and
steering. The core only depends on standard C++ functionalities, allowing for platform independent
developments. Hardware specific code, a Producer, is linked to the core and can utilize more
specific external libraries.

EUDAQ2 is shipped together with Producers for a trigger logic unit and the EUDET-type
telescopes, which are provided as common hardware on test beam facilities at DESY, ELSA and
CERN. The EUDAQ2 software, together with a detailed operation manual is available online under
the LGPLv3 open-source licence. Already in the development phase, EUDAQ2 has been used
successfully by several test beam groups. Producers to integrate pixel and strip sensors as well a
highly granular calorimeter prototypes have been implemented. EUDAQ2 is in a unique position
to repeat the success story of the first EUDAQ.
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