

Measurement of associated production of a heavy boson (Z/W/Higgs) with two top quarks

<u>Jannik Geisen</u>

on behalf of the $\ensuremath{\mathsf{A}}\xspace{\mathsf{TLAS}}$ collaboration

II. Physikalisches Institut, Georg-August-Universität Göttingen 16th of July at QCD@LHC 2019

GEFÖRDERT VOM

Bundesministeriur für Bildung und Forschung

Contents

Most recent $A_{\rm TLAS}$ results

I will present cross-section measurements at $\sqrt{s}=13~{\rm TeV}$ and comparisons to MC predictions of:

- 1. $t\overline{t}Z \& t\overline{t}W$
 - same-sign/opposite-sign dileptons (e,µ)
 - trilepton channel
 - tetralepton channel
- 2. *t*t*H*
 - $t\bar{t}H(H \rightarrow b\bar{b})$
 - $t\bar{t}H(multi-leptons \equiv ML)$
 - $t\bar{t}H(H \rightarrow \gamma\gamma)$
 - $t\bar{t}H(H \rightarrow ZZ^* \rightarrow 4I)$
 - Combination

$t\overline{t}Z$ and $t\overline{t}W$

Phys. Rev. D 99, 072009 (2019)

Why do we search for $t\overline{t}Z$ and $t\overline{t}W$?

- Rare processes with small cross-section \rightarrow important for SM validation
- Direct probe of neutral current weak couplings at t-Z vertex
 - Sensitive to third component of weak isospin
 - Couplings may be modified in certain BSM scenarios
 - Deviations from SM can be parametrised in model-independent way (EFT)
 - No deviations \rightarrow XS can be used to set constraints on couplings
- Background in searches such as:
 - Final states containing multiple leptons and b-quarks
 - tīH
 - \Rightarrow Important to measure its potential contribution as precisely as possible

- MG5_aMC@NLO+Pythia8 predicts at NLO (+QCD & EW corr.): $\sigma_{t\bar{t}z} = 0.88$ pb (±12%); $\sigma_{t\bar{t}W} = 0.60$ pb (±12%)
- Search performed in multiple channels
 - Depending on lepton number, flavour, sign $(t\bar{t}W^+$ more likely than $t\bar{t}W^-)$
- Main backgrounds: Z+jets, $t\bar{t}$, non-prompt/mis-id leptons, WZ, ZZ

Process	$t\bar{t}$ decay	Boson decay	Channel
$t\bar{t}W$	$\begin{array}{c} (\ell^{\pm}\nu b)(q\bar{q}b)\\ (\ell^{\pm}\nu b)(\ell^{\mp}\nu b) \end{array}$	$\ell^{\pm}\nu \\ \ell^{\pm}\nu$	SS dilepton Trilepton
$t\bar{t}Z$	$\begin{array}{c} (q\bar{q}b)(q\bar{q}b)\\ (\ell^{\pm}\nu b)(q\bar{q}b)\\ (\ell^{\pm}\nu b)(\ell^{\mp}\nu b) \end{array}$	$ \begin{array}{c} \ell^+ \ell^- \\ \ell^+ \ell^- \\ \ell^+ \ell^- \end{array} $	OS dilepton Trilepton Tetralepton

- Regions further split based on number of jets & *b*-jets
- *b*-tagging discr. at 77% W.P.

- MVA to distinguish prompt leptons from had. decays in HF jet (ttW)
 - Use info from tracks around lep.
- MVA to discriminate electrons with misidentified charge (SS dilepton)
 - e^{\pm} track & cluster properties
- Depending on region, apply cuts: $H_T, E_T^{\text{miss}}, p_T^{\text{lep}^1}, p_T^{\text{lep}^2}, |m_{II} - m_Z|$

Channel	Backgrounds	Estimation strategy
OS dilepton	Z+jets	Z+0 heavy flavour (HF) from MC,
Use BDT to discriminate		Z+1(+2) HF from fit to data in CR;
signal from background	$t\overline{t}$	dedicated CR (select $e\mu$)
Trilepton	WZ, ZZ	CR to estimate norm. in data;
four signal regions (SR)	tZ, tWZ	estimated from MC;
incl. off-shell Z^*/γ^*	Z+jets with fake lep	estimated from MC
Tetralepton	Fake leptons	estimated in MC, corrected
select 2 OS lep pairs,		by SF determined from two CR;
at least 1 same flavour (SF)	ZZ	CR to estimate norm. in data

Channel	Backgrounds	Estimation strategy
SS dilepton	Fake leptons	CR + matrix method
Split regions based on charge	Charge-flip	dedicated CR
(<i>W</i> preferably positive,	(significant in <i>ee</i> regions)	and validation region
background charge symmetric)		
Trilepton	Fake leptons	CR + matrix method
Veto on Z mass	other SM processes	estimated from MC
for OSSF lepton pair	with 3 prompt leptons	
regions split by total charge		

$t\overline{t}Z \& t\overline{t}W$ Fit method and BDT

- Simultaneous profile-likelihood fit to all SR and CR
 - OS dilepton: fit BDT distribution
 - Other channels: fit event yields
- Alternative fit configurations:
 - $t\bar{t}Z$: 1) OS dilepton alone; 2) trilepton alone; 3) tetralepton alone
 - ttW channels alone

 \Rightarrow Individual fit results compatible with combined result within 1σ

 $t\overline{t}Z \& t\overline{t}W$ Results

Fit configuration	$\mu_{t\bar{t}Z}$	$\mu_{t\bar{t}W}$
Combined	1.08 ± 0.14	1.44 ± 0.32
2ℓ -OS	0.73 ± 0.28	_
$3\ell \ t\bar{t}Z$	1.08 ± 0.18	_
$2\ell\text{-}\mathrm{SS}$ and $3\ell\ t\bar{t}W$	—	1.41 ± 0.33
4ℓ	1.21 ± 0.29	_

- Use SM prediction to translate μ values:
 - $\sigma_{t\overline{t}z}=$ 0.95 \pm 0.08 (stat) \pm 0.10 (syst) pb = 0.95 \pm 0.13 pb
 - $\sigma_{t\bar{t}w}^{tl2} = 0.87 \pm 0.13 \text{ (stat)} \pm 0.14 \text{ (syst) pb} = 0.87 \pm 0.19 \text{ pb}$
- Results compatible with SM expectation
 - $t\bar{t}Z$ well over 5σ significance; $t\bar{t}W$ <u>4.3 σ obs.</u> (3.4 σ exp.) \rightarrow evidence

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.9%	4.5%
Simulated sample statistics	2.0%	5.3%
Data-driven background statistics	2.5%	6.3%
JES/JER	1.9%	4.1%
Flavor tagging	4.2%	3.7%
Other object-related	3.7%	2.5%
Data-driven background normalization	3.2%	3.9%
Modeling of backgrounds from simulation	5.3%	2.6%
Background cross sections	2.3%	4.9%
Fake leptons and charge misID	1.8%	5.7%
$t\bar{t}Z$ modeling	4.9%	0.7%
$t\bar{t}W$ modeling	0.3%	8.5%
Total systematic	10%	16%
Statistical	8.4%	15%
Total	13%	22%

- Systematics implemented as NP constrained by Gaussian PDFs
- Most NP found not sign. constrained/pulled by fit

- Most significant systematics:
 - Fake leptons, esp. in $t\overline{t}W$ from using the matrix method
 - Charge-flip probability through *ee* events with $m_{ll} \approx m_Z$
- Normalisation correction factors for *WZ*, *ZZ*, *Z*+1HF, *Z*+2HF compatible with 1
- Syst. & stat. uncertainties for both processes roughly in same order
 - Most dominant in *ttZ*: bkgd modelling; signal modelling
 - Most dominant in ttW: signal modelling; limited statistics in data CR & MC samples; fake lepton & charge-flip bkgd

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.9%	4.5%
Simulated sample statistics	2.0%	5.3%
Data-driven background statistics	2.5%	6.3%
JES/JER	1.9%	4.1%
Flavor tagging	4.2%	3.7%
Other object-related	3.7%	2.5%
Data-driven background normalization	3.2%	3.9%
Modeling of backgrounds from simulation		2.6%
Background cross sections	2.3%	4.9%
Fake leptons and charge misID	1.8%	5.7%
$t\bar{t}Z$ modeling	4.9%	0.7%
$t\bar{t}W$ modeling	0.3%	8.5%
Total systematic	10%	16%
Statistical	8.4%	15%
Total	13%	22%

- Systematics implemented as NP constrained by Gaussian PDFs
- Most NP found not sign. constrained/pulled by fit

- Most significant systematics:
 - Fake leptons, esp. in $t\overline{t}W$ from using the matrix method
 - Charge-flip probability through *ee* events with $m_{ll} \approx m_Z$
- Normalisation correction factors for *WZ*, *ZZ*, *Z*+1HF, *Z*+2HF compatible with 1
- Syst. & stat. uncertainties for both processes roughly in same order
 - Most dominant in *ttZ*: bkgd modelling; signal modelling
 - Most dominant in ttW: signal modelling; limited statistics in data CR & MC samples; fake lepton & charge-flip bkgd

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.9%	4.5%
Simulated sample statistics	2.0%	5.3%
Data-driven background statistics	2.5%	6.3%
JES/JER	1.9%	4.1%
Flavor tagging	4.2%	3.7%
Other object-related	3.7%	2.5%
Data-driven background normalization	3.2%	3.9%
Modeling of backgrounds from simulation	5.3%	2.6%
Background cross sections	2.3%	4.9%
Fake leptons and charge misID	1.8%	5.7%
$t\bar{t}Z$ modeling	4.9%	0.7%
$t\bar{t}W$ modeling	0.3%	8.5%
Total systematic	10%	16%
Statistical	8.4%	15%
Total	13%	22%

- Systematics implemented as NP constrained by Gaussian PDFs
- Most NP found not sign. constrained/pulled by fit

- Most significant systematics:
 - Fake leptons, esp. in $t\overline{t}W$ from using the matrix method
 - Charge-flip probability through *ee* events with $m_{ll} \approx m_Z$
- Normalisation correction factors for *WZ*, *ZZ*, *Z*+1HF, *Z*+2HF compatible with 1
- Syst. & stat. uncertainties for both processes roughly in same order
 - Most dominant in *ttZ*: bkgd modelling; signal modelling
 - Most dominant in ttW: signal modelling; limited statistics in data CR & MC samples; fake lepton & charge-flip bkgd

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.9%	4.5%
Simulated sample statistics	2.0%	5.3%
Data-driven background statistics	2.5%	6.3%
JES/JER	1.9%	4.1%
Flavor tagging	4.2%	3.7%
Other object-related	3.7%	2.5%
Data-driven background normalization	3.2%	3.9%
Modeling of backgrounds from simulation	5.3%	2.6%
Background cross sections	2.3%	4.9%
Fake leptons and charge misID	1.8%	5.7%
$t\bar{t}Z$ modeling	4.9%	0.7%
$t\bar{t}W$ modeling	0.3%	8.5%
Total systematic	10%	16%
Statistical	8.4%	15%
Total	13%	22%

- Systematics implemented as NP constrained by Gaussian PDFs
- Most NP found not sign. constrained/pulled by fit

- Most significant systematics:
 - Fake leptons, esp. in $t\overline{t}W$ from using the matrix method
 - Charge-flip probability through *ee* events with $m_{ll} \approx m_Z$
- Normalisation correction factors for *WZ*, *ZZ*, *Z*+1HF, *Z*+2HF compatible with 1
- Syst. & stat. uncertainties for both processes roughly in same order
 - Most dominant in *ttZ*: bkgd modelling; signal modelling
 - Most dominant in ttW: signal modelling; limited statistics in data CR & MC samples; fake lepton & charge-flip bkgd

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.9%	4.5%
Simulated sample statistics	2.0%	5.3%
Data-driven background statistics	2.5%	6.3%
JES/JER	1.9%	4.1%
Flavor tagging	4.2%	3.7%
Other object-related	3.7%	2.5%
Data-driven background normalization	3.2%	3.9%
Modeling of backgrounds from simulation	5.3%	2.6%
Background cross sections	2.3%	4.9%
Fake leptons and charge misID	1.8%	5.7%
$t\bar{t}Z$ modeling	4.9%	0.7%
$t\bar{t}W$ modeling	0.3%	8.5%
Total systematic	10%	16%
Statistical	8.4%	15%
Total	13%	22%

- Systematics implemented as NP constrained by Gaussian PDFs
- Most NP found not sign. constrained/pulled by fit

- Most significant systematics:
 - Fake leptons, esp. in $t\overline{t}W$ from using the matrix method
 - Charge-flip probability through *ee* events with $m_{ll} \approx m_Z$
- Normalisation correction factors for *WZ*, *ZZ*, *Z*+1HF, *Z*+2HF compatible with 1
- Syst. & stat. uncertainties for both processes roughly in same order
 - Most dominant in *ttZ*: bkgd modelling; signal modelling
 - Most dominant in ttW: signal modelling; limited statistics in data CR & MC samples; fake lepton & charge-flip bkgd

The search for $t\bar{t}H$

Introduction Higgs production at the LHC

- Higgs boson discovery in 2012 by $A_{\rm TLAS}$ & $C_{\rm MS}$
- Is it "the expected" Higgs boson? \rightarrow potential door to BSM
- $t\bar{t}H$: special production process \rightarrow low XS \rightarrow finally observed at LHC

Introduction The top Yukawa coupling

- gg fusion
 - \Rightarrow only indirect measurement
- ttH allows <u>direct</u> measurement

Introduction Top and Higgs decays

- $\sigma^{t\bar{t}H}_{\rm SM}=$ 507 $^{+35}_{-50}$ fb ightarrow only pprox 1% of Higgs produced at the LHC
 - Upside: additional $t\overline{t}$ pair provides more distinct topology, e.g. for $H
 ightarrow b\overline{b}$
- Different top & Higgs decays \rightarrow many different event topologies
 - Four main analyses in ATLAS, studying different Higgs decays:
 - $H \rightarrow b\bar{b}, H \rightarrow ML$ (multi-leptons), $H \rightarrow ZZ^* \rightarrow 4l$ (resonant), $H \rightarrow \gamma\gamma$

$t\bar{t}H(H \rightarrow b\bar{b})$ Phys. Rev. D 97, 072016 (2018)

- Select single lepton and dilepton $t\overline{t}$ decay
- Complex final state \rightarrow 4 or 6 jets including 4 *b*-jets at leading order!
- Largest background: $t\overline{t}$ + jets (light flavour, $c\overline{c}$, $b\overline{b}$ = "irreducible")
 - Inclusive $t\bar{t}$ cross-section pprox 3 orders of magnitude higher than signal
 - Analysis depends on discriminating $t\bar{t}H(H
 ightarrow b\bar{b})$ from $t\bar{t} + b\bar{b}$

$t \overline{t} H(H o b \overline{b})$ Analysis strategy

- Split channel using $N_{\text{jets}} \& N_{b-\text{jets}}$ (different *b*-tagging working points) \Rightarrow Regions enriched in $t\overline{t} + \text{If}/c\overline{c}/b\overline{b}/\text{Higgs}$
- High values of N_{jets} & N_{b−jets}: phase-space closer to signal region (SR)
 ⇒ Other regions are control regions (CR): constrain & estimate background

Single lepton regions with $N_{\text{jets}} \ge 6$ Highest signal purity: select 4 (very) tight *b*-tagged jets \rightarrow "SR1"

$t \overline{t} H(H ightarrow b \overline{b})$ MVA and fit

- Final state reconstructed by BDT
 - Trained on $t\bar{t}H$ events only
 - Aiming to identify bb from Higgs
- Then fed into classification BDT
 - Discriminate $t\overline{t}H(H
 ightarrow b\overline{b})$ vs. $t\overline{t} + b\overline{b}$
 - Reco BDT only 1 out of O(20 30) variables in classification BDT

$t\bar{t}H(H \rightarrow b\bar{b})$ Results

- Fit signal strength $\mu = \sigma^{t\bar{t}H} / \sigma^{t\bar{t}H}_{SM} \Rightarrow 1.4\sigma$ observed (1.6 σ expected)
- Systematically limited by MC modelling + background modelling stats
 - Estimating $t\overline{t} + b\overline{b}$ by comparing different MC generators
- Also: *b*-tagging, JES/JER, signal modelling
- No significant gain from more data \rightarrow need to improve modelling and higher stats in MC

$t\overline{t}H(H \rightarrow ML)$ Phys. Rev. D 97, 072003 (2018)

$t\bar{t}H(H \rightarrow \mathbf{ML})$ Details and challenges

- Includes $H \rightarrow WW^*/ZZ^*/\tau\tau$; complex final state \Rightarrow 1-4 leptons, 0-2 taus
- Split into 7 channels using $N_{
 m leptons},~N_{ au_{
 m had}}$, lepton charge
- Many different event topologies \Rightarrow optimisation on many objects needed
- Systematic impact: leptons (prompt & non-prompt/fakes), MET, *b*-tagging, jets
- Veto $t\bar{t}H(H \rightarrow ZZ^* \rightarrow 4I) \rightarrow individual analysis$

Two main background components:

- Prompt leptons \rightarrow estimate via MC: $t\overline{t}W, t\overline{t}Z$, Diboson
- Fake τ_{had} ; fake & non-prompt (light) leptons; charge mis-ID (electrons) \Rightarrow data-driven estimate

$t\overline{t}H(H ightarrow \mathbf{ML})$ MVA and fit

Two MVA stages:

- Object level BDTs \rightarrow remove bad leptons
 - Non-prompt leptons via isolation-like BDT
 - Charge mis-ID via BDT
- Event level MVA \rightarrow discriminate $t\bar{t}H(H \rightarrow ML)$ vs. backgrounds
 - Combine multiple BDTs with multi-dimensional binning

$t\overline{t}H(H ightarrow \mathbf{ML})$ Results

- 2 same-sign (light) leptons "2ISS" and 3 (light) leptons "3I" \Rightarrow Most sensitive channels
- Dominant systematics: signal & background modelling, JES & JER, non-prompt light-lepton estimate, flavour-tagging, $\tau_{\rm had}\text{-ID}$
- Visible signal above background after combining channels \Rightarrow Significance: 4.1 σ observed, 2.8 σ expected

$t\overline{t}H(H \rightarrow \gamma\gamma)$

 $t\bar{t}H(H \rightarrow \gamma\gamma)$ **Overview and strategy**

- Based on 139 fb $^{-1}$ data, new analysis strategy wrt early Run II analysis
 - Similar to 79.8 $\rm fb^{-1}$ analysis, but updated photon ID & jet calibration
- Channel with <u>low</u> statistics: $\sigma \times BR = 0.507 \text{ pb} \times 0.00227$
- Select 2 tight γ & 1 *b*-jet & 1 lep ("Lep") or 2 jets and 0 lep ("Had")
- Backgrounds: non-resonant $\gamma\gamma$; tH & ggF (had); tH & VH (lep)
- One BDT trained per decay channel to discriminate signal vs. background
 - Train on $p_T^{\gamma}/m_{\gamma\gamma}$, using excellent resolution on $m_{\gamma\gamma}$ in [105 GeV-160 GeV]

$$t\bar{t}H(H \to \gamma\gamma)$$

Results

- $\mu_{t\bar{t}H} = 1.38 \ ^{+0.33}_{-0.31} (\text{stat.}) \ ^{+0.13}_{-0.11} (\text{exp.}) \ ^{+0.22}_{-0.14} (\text{theo.}) = 1.38 \ ^{+0.41}_{-0.36}$ $\iff \sigma_{t\bar{t}H} \times \text{BR}_{\gamma\gamma} = 1.59 \ ^{+0.43}_{-0.36} \text{ fb}$
 - 4.9 σ (4.2 σ) observed (expected) ightarrow strong evidence, limited by statistics
- Dominant exp. uncertainties: photon energy scale & resolution; photon efficiency; Jet/E_T^{miss} related uncertainties; background model
- Dominant theory uncert: signal model (UE & PS); HF model in non- $t\bar{t}H$

$t\overline{t}H(H \rightarrow ZZ^* \rightarrow 4I)$ and combination with other channels Phys. Lett. B 784 (2018) 173

$t\bar{t}H(H \rightarrow \mathbf{ZZ}^* \rightarrow 4\mathbf{I})$

Overview and results

- Pure channel: S/B \approx 125-300%, **<u>BUT</u>** $\sigma \times$ BR = 0.507 pb \times 0.0001251
- Event selection similar to $t\bar{t}H(H
 ightarrow \gamma\gamma)
 ightarrow$ hadronic/leptonic regions
- Main backgrounds: $t\overline{t}W, t\overline{t}Z$ and non- $t\overline{t}H$ (ggF, tH)
- BDT with 2 bins in hadronic regions for 115 GeV $< m_{4l} < 130$ GeV
 - Combined with lep region event yields as input to likelihood fit
- Expect 1 event, but 0 observed in data $\rightarrow \underline{\text{more data needed}} \rightarrow \text{set limits:}$ $\Rightarrow \mu_{t\bar{t}H} < 1.77 \iff \sigma_{t\bar{t}H} < 900 \text{ fb}^{-1} @ 68\% \text{ CL}$
- Dominant systematics: signal (PS) modelling, Higgs+HF modelling, JES

Expected					Observed	
Bin	$t\bar{t}H$ (signal) Non- $t\bar{t}H$ Higgs		Non-Higgs	Total	Total	
$H \to ZZ^* \to 4\ell$						
Had 1	0.169 ± 0.031	0.021 ± 0.007	0.008 ± 0.008	0.198 ± 0.033	0	
Had 2	0.216 ± 0.032	0.20 ± 0.09	$0.22 \hspace{0.2cm} \pm \hspace{0.2cm} 0.12 \hspace{0.2cm}$	$0.63 \hspace{0.2cm} \pm \hspace{0.2cm} 0.16$	0	
Lep	0.212 ± 0.031	0.0256 ± 0.0023	0.015 ± 0.013	0.253 ± 0.034	0	

$t\bar{t}H$ combination

Final combined results

L					
ATLAS	at Syst SM	Uncertainty source		$\Delta \sigma_{t\bar{t}H}/o$	「tīH [%]
vs = 13 TeV, 36.1 - 79.8 fb ⁻¹		Theory uncertainties (modelli	ng)		11.9
-	Total Stat. Syst.	$t\bar{t}$ + heavy flavour			9.9
ttH (bD)	$0.79\pm \begin{smallmatrix} 0.61\\ 0.60 \end{smallmatrix}$ ($\pm \begin{smallmatrix} 0.29\\ 0.28 \end{smallmatrix}$, $\pm \: 0.53$)	tīH			6.0
		Non-t <i>t</i> H Higgs boson proc	luction		1.5
ttH (multilepton)	$1.56 \pm 0.42 \ (\pm 0.30 \ ,\pm 0.37 \)$	Other background processe	es		2.2
tH (vv)	$1.39 \pm \frac{0.48}{4.02} (\pm \frac{0.42}{4.02} \pm \frac{0.23}{4.02})$	Experimental uncertainties			9.3
		Fake leptons			5.2
tîH (ZZ)	< 1.77 at 68% CL	Jets, $E_{\rm T}^{\rm miss}$			4.9
		Electrons, photons			3.2
Combined H	$1.32 \pm \frac{0.26}{0.26} (\pm 0.18, \pm \frac{0.11}{0.19})$	Luminosity			3.0
		τ -leptons			2.5
-1 0 1 2	3 4	Flavour tagging			1.8
	$\sigma_{ttH}/\sigma_{ttH}^{SW}$	MC statistical uncertainties			4.4
Analysis	Integrated	tTH cross	Obs	Exp	
Analysis	megrateu	nn closs	003.	Exp.	
	luminosity [fb ⁻¹]	section [fb]	sign.	sign.	
$H ightarrow \gamma \gamma$	79.8	710^{+210}_{-190} (stat.) $^{+120}_{-90}$ (syst.)	4.1σ	3.7σ	
$H \rightarrow$ multilepton	36.1	$790 \pm 150 \text{ (stat.)} ^{+150}_{-140} \text{ (syst.)}$	4.1σ	2.8σ	
$H \rightarrow b\bar{b}$	36.1	400^{+150}_{-140} (stat.) ± 270 (syst.)	1.4σ	1.6σ	
$H \to ZZ^* \to 4\ell$	79.8	<900 (68% CL)	0σ	1.2σ	
Combined (13 TeV)	36.1-79.8	$670 \pm 90 \text{ (stat.)} ^{+110}_{-100} \text{ (syst.)}$	5.8σ	4.9σ	
Combined (7, 8, 13 TeV)	4.5, 20.3, 36.1–79.8	-	6.3σ	5.1σ	

• $t\bar{t}H$ production observed in ATLAS! \rightarrow measurement compatible with SM

What you can take away

- Searches for $t\overline{t}Z, t\overline{t}W$ and $t\overline{t}H$ are very challenging
- Individual $t\bar{t}H$ analyses have their own challenges and limitations $\Rightarrow t\bar{t}H(H \rightarrow ML)$ and $t\bar{t}H(H \rightarrow \gamma\gamma)$ have highest sensitivity
- ATLAS observed $t\overline{t}Z$ and $t\overline{t}H$ production \rightarrow compatible with SM
 - Strong evidence for $t\bar{t}W$ production at 13 TeV (observed at 8 TeV)
- Next steps:
 - Current results use up to 79.8 fb⁻¹ data \rightarrow use full Run II data (139 fb⁻¹)
 - Develop improved analyses techniques
 - Extract top Yukawa coupling and t-Z NC EW coupling (sensitive to I_3^W)

Fit configuration	$\mu_{t\bar{t}Z}$	$\mu_{t\bar{t}W}$	Analysis	Integrated	tīH cross	Obs.	Exp.
				luminosity [fb ⁻¹]	section [fb]	sign.	sign.
Combined	1.08 ± 0.14	1.44 ± 0.32	$H \rightarrow \gamma \gamma$	79.8	710 +210 (stat.) +120 (syst.)	4.1σ	3.7σ
2ℓ -OS	0.73 ± 0.28	_	$H \rightarrow$ multilepton	36.1	790 ±150 (stat.) +150 (syst.)	4.1σ	2.8σ
$3\ell t\bar{t}Z$	1.08 ± 0.18	_	$H \rightarrow b\bar{b}$	36.1	400^{+150}_{-140} (stat.) ± 270 (syst.)	1.4σ	1.6σ
9/ CC 1 9/ 4HV	1.00 - 0.10	1 41 1 0 99	$H \to Z Z^* \to 4\ell$	79.8	<900 (68% CL)	0σ	1.2σ
2ℓ -SS and $3\ell t t W$	-	1.41 ± 0.33	Combined (13 TeV)	36.1-79.8	$670 \pm 90 \text{ (stat.)}^{+110}_{-100} \text{ (syst.)}$	5.8σ	4.9σ
4ℓ	1.21 ± 0.29	_	Combined (7, 8, 13 TeV)	4.5, 20.3, 36.1-79.8	-	6.3σ	5.1σ

Thank you!

Backup

$t\bar{t}H(H \to \gamma\gamma)$

Overview & strategy of 79.8 fb⁻¹ analysis

- Based on 79.8 fb $^{-1}$ data, new analysis strategy wrt old analysis
- Channel with <u>low</u> statistics: $\sigma \times BR = 0.507 \text{ pb} \times 0.00227$
- Select $\gamma\gamma$ & various $N_{\rm jets}$, N_{b-tags} , $N_{\rm lep} \rightarrow {\rm hadronic}$ & semi-lep $t\overline{t}$ regions
- Backgrounds: non-resonant $\gamma\gamma$; tH & ggF (had); tH & VH (lep)
- One BDT trained per decay channel to discriminate signal vs. background
 - Train on $p_T^{\gamma}/m_{\gamma\gamma}$, using excellent resolution on $m_{\gamma\gamma}$ in [105 GeV-160 GeV]

$t \overline{t} H(H o \gamma \gamma)$ Results of 79.8 fb $^{-1}$ analysis

- $\mu_{t\bar{t}H} = 1.39 \, {}^{+0.42}_{-0.38} (\text{stat.}) {}^{+0.23}_{-0.17} (\text{syst.})$
 - 4.1 σ (3.7 σ) observed (expected) ightarrow strong evidence, limited by statistics
- Dominant theory uncertainty: signal (PS) modelling; Higgs+HF modelling
- Dominant exp. unc: JER/JES, photon isolation, energy scale & resolution

- 1. MVA against non-prompt leptons
 - Used in SS dilepton and $t\overline{t}W$ trilepton channels
 - Distinguish prompt leptons from those from heavy-hadron decays in jets
 - Use information from charged-particle tracks in a cone around the lepton candidate
 - Jets are reconstructed from these tracks
 - MVA trained on e.g. angular distance between lep & track jet, number of tracks in track jet, ratio of lepton p_T to track jet p_T
 - Rejection factor for leptons from *b*-hadron decays pprox 20
 - Prompt lepton efficiency: 85% (80%) for muons (electrons) with $p_{\rm T} \approx 20$ GeV \Rightarrow reaches plateau of $\approx 98\%$ (96%) at high $p_{\rm T}$
- 2. MVA against charge-flipped electrons
 - Uses various track and cluster properties of electron candidates
 - 95% efficiency for electrons with correct charge reconstruction
 - Rejection factor of ≈ 17 for electrons with misidentified charge that pass the tight likelihood identification requirement

31 / 26