Jet veto cross-section measurements at ATLAS

Andy Buckley, University of Glasgow 10th MPI@LHC, Perugia, 10 Dec 2018

Jet vetos

Most LHC processes break apart the colliding protons very disruptively:

many colour dipoles ⇒ QCD everywhere!

What about the strange events *without* extra jets?

- Diffraction: exchange of vacuum excitations
- QCD fluctuations: sometimes just no radiation!
- VBF/S: initiated by uncoloured EW bosons

Define observables with *vetoing* of extra jets

Recent ATLAS jet veto measurements

No recent diffractive gap measurements, sorry!

Instead, constraints on QCD dynamics in VBF and top-pair production events:

JHEP 09 (2016) 074 — Jet activity in eµ top quark events at 8 TeV

Eur. Phys. J. C77 (2017) 220 — Jet activity in eµ top quark events at 13 TeV

Phys. Lett. B. 775 (2017) 206 — EW production of Z + dijets at 13 TeV

Eur. Phys. J. C 77 (2017) 474 — EW production of W + dijets at 7 & 8 TeV

Top quark pair gap fractions at 8 and 13 TeV

Lowest-order top pair production \rightarrow only top quarks. But many coloured partons: extra (mainly ISR) radiation likely. How likely?

Select dilepton tt events: eµ + bb requirement e & μ pT > 25 GeV, $|\eta| \le 2.5$

Define "veto region" rapidity ranges in which additional (i.e. not from top) jets are banned:

|y| in 0...0.8...1.5...2.1

NB. Top locations ignored! Also m_# selection

Veto on lead extra jet ($p_{T1} < Q_0$) or scalar sum of all jets > 25 GeV ($\Sigma p_T < Q_{sum}$)

Top quark pair gap fractions: uncertainties

Both 8 and 13 TeV measurements systematics-limited for inclusive tt system mass Major systematics: jet energy scale & resolution + top-pair hard & soft modelling

Top quark pair gap fractions: 8 TeV inclusive results

Data/MC comparisons accurate to within a few percent

Consequence of Powheg NLO + extensive prior tuning. Py8 > PY6

Unsurprisingly, MC and uncertainties \mathbb{Q}_0 , \mathbb{Q}_{sum} most troublesome at low \mathbb{Q}_0 , \mathbb{Q}_{sum}

Worst uncertainties & descriptions at central rapidities (and full range)

Full correlations published for fits

Top quark pair gap fractions: 13 TeV inclusive results

Complex MC story...

Again Powheg works better with Py8... but some over-survival/underactivity

Multileg aMC@NLO and Sherpa better/overactive

Herwig low-Q₀ disruption?

NB. MC-systs feedback

Top quark pair gap fractions: 13 TeV inclusive results

Complex MC story...

Again Powheg works better with Py8... but some over-survival/underactivity

Multileg aMC@NLO and Sherpa better/overactive

Herwig low-Q₀ disruption?

NB. MC-systs feedback

Top quark pair gap fractions: high-m_# results

Dependence on m_# also measured: (MC) uncertainties inflate, but multileg MCs ok ₉

Vector boson fusion Z+jj at 13 TeV

Cross-sections for inclusive, QCD-enriched, and high-mass ⊗ EW-enriched Fiducial definitions: no extrapolation, direct comparison with particle-level MC

Bkg subtraction & correction:
$$\sigma^f = \frac{N_{\text{obs}}^f - N_{\text{bkg}}^f}{L \cdot C^f} \quad \sigma_{\text{EW}}^f = \frac{N_{\text{obs}}^f - N_{\text{QCD-}Zjj}^f - N_{\text{bkg}}^f}{L \cdot C_{\text{EW}}^f}$$

Base selection: isolated leptons in $|\eta| < 2.47$, $p_T > 25$ GeV, $m_{\ell\ell} \sim m_Z \pm 10$ GeV isolated jets |y| < 4.4, $p_T > \{55,45\}$ GeV

QCD/EW-enriched:

 m_{jj} > 250 GeV, and high-mass versions with m_{jj} > 1 TeV 0/1 >25 GeV jets in jj interval + small 2/3j balance (= $|\Sigma \mathbf{p}_{T}|/\Sigma |\mathbf{p}_{T}|$) NB. no explicit rapidity gap! \mathbf{p}_{T} -balance ~ equivalent

Vector boson fusion Z+jj: detector level m_{ii}

Det-level MC/data: Sherpa Zjj 2NLO+4LO, Sherpa diboson, Powheg+PY6 top

Vector boson fusion Z+jj: QCD & EW templates

Diboson & top subtracted: corrected QCD and EW Zjj MC templates

Vector boson fusion Z+jj: results

Fiducial cross-sections for inclusive, QCD-dominated, and EW VBF production of Zij final-state

Total EW-enhanced xsec > QCD 3-jet region, for 25 GeV jet veto

Sherpa QCD modelling best (vs two LO MC models), cf. Powheg 8 TeV.

Powheg EW slightly too steep collider energy dependence

Electroweak W+jj at 7 and 8 TeV

Similar process to Zjj: VBF & other EW production modes (W brem and non-resonant) + QCD

Missing $E_T > 20$ GeV, 1 lepton with $p_T > 25$ GeV, $m_T > 40$ GeV, and 2j. VBF via $M_{jj} > 500$ GeV, $\Delta y_{jj} > 2$

Inclusive selection (bkg subtracted):
Differential fiducial obs, e.g.
(di)jet kinematics and jets in
gap between leading jet pair

Electroweak W+jj at 7 and 8 TeV

Similar process to Zjj: VBF & other EW production modes (W brem and non-resonant) + QCD

Missing $E_T > 20$ GeV, 1 lepton with $p_T > 25$ GeV, $m_T > 40$ GeV, and 2j. VBF via $M_{jj} > 500$ GeV, $\Delta y_{jj} > 2$

EW signal region: require central lepton and no jets between the leading jj.

More differential observables...

Conclusions

- Jet vetos now measured several times in ATLAS Runs 1 and 2
 Mainly for high-scale physics event selections
- Initial significant MC discrepancies now "solved" by MC tuning and QCD model development looks like we understand the ISR physics(?)
- Performance of QCD MC models vs measurements out to high mass gives confidence for VBF background subtraction
- Jet vetos also important for Higgs physics cf. resummation
- The future...
 - More differential measurements of EW gaps/vetos in Run 3
 - Return to diffractive and pure-QCD gap measurements? Theory wishes?