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1 Introduction

A primary goal of the Large Hadron Collider (LHC) and future colliders is the exploration

of the electroweak symmetry breaking sector of the Standard Model (SM). It is important to

find out whether the Higgs potential is indeed of the form suggested by the Standard Model,

where the trilinear and quartic Higgs boson self-couplings are completely determined by the

Higgs boson mass and its vacuum expectation value. As a deviation of the trilinear coupling

from its SM value would be a clear sign of physics beyond the Standard Model, it is crucial

to have precise predictions for processes which allow the measurement of this coupling.

An important process in this regard is Higgs boson pair production via gluon fusion.

While the cross section is about a factor of one thousand smaller than that of single Higgs

boson production, it is nevertheless the Higgs boson pair production channel with the

largest cross section. It also has the interesting feature that there is a delicate cancellation

between triangle-type diagrams, containing the trilinear Higgs boson coupling λ, and box-

type diagrams, containing only Yukawa couplings, such that deviations of the trilinear

coupling from the SM value can lead to distinct features in observables such as the Higgs

boson pair invariant mass (mhh) distribution.

Measurements of double Higgs boson production in gluon fusion at the LHC already

have led to constraints on the ratio κλ = λBSM/λSM [1–4], where currently−5.0 ≤ κλ ≤ 12.0

at 95% confidence level [3] is the most stringent bound derived from Higgs boson pair

production measurements. The tightest bounds typically result from the combination

of various Higgs boson decay channels. Among these, an important channel is the bb̄bb̄

channel [5, 6] due to the large branching ratio of H → bb̄. Reconstructing the Higgs bosons

from boosted jets is promising, not only in view of a potential 27 TeV or 100 TeV collider,

but also at the HL-LHC [7]. However, such an analysis also requires precise predictions in
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the high-pT , or large-mhh regime of the Higgs bosons, reaching mhh values of about 3 TeV

at the LHC, which is a region where high-energy expansions are fully justified. In this paper

we will combine the high energy expansion of refs. [8–10] with the full NLO calculation of

refs. [11–13] to arrive at predictions which combine the virtues of both approaches in the

kinematic ranges where they work best.

The leading-order (LO) contribution to Higgs boson pair production in gluon fusion

already contains one loop, therefore the calculation of higher-order corrections is a complex

task. While the LO calculation was performed some time ago [14–16], next-to-leading order

(NLO) results with full top quark mass dependence became available only recently [11, 12,

17], based on a numerical evaluation of the corresponding two-loop integrals.

Analytic higher-order results are known in various approximations. NLO QCD cor-

rections in the mt →∞ limit, sometimes also called “Heavy Top Limit (HTL)”, or “Higgs

Effective Field Theory (HEFT)” approximation, have been calculated in ref. [18] using the

so-called “Born-improved HTL” approximation, which involves rescaling the NLO results

in the mt → ∞ limit by a factor BFT/BHTL, where BFT denotes the squared LO matrix

element in the full theory. In ref. [19] an approximation called “FTapprox” was introduced,

which contains the real radiation matrix elements with full top quark mass dependence,

while the virtual part is calculated in the Born-improved HTL approximation.

The next-to-next-to-leading order (NNLO) QCD corrections in the mt →∞ limit have

been computed in refs. [20–23]. The HTL results have also been improved in various ways:

the virtual corrections have been supplemented by an expansion in 1/m2
t in [24, 25] up to

order 1/m12
t at NLO and 1/m4

t at NNLO. Real radiation corrections, which involve three

closed top quark loops have been expanded up to 1/m8
t in ref. [26]. Soft gluon resummation

has been performed at NNLO+NNLL level in [27]. In ref. [28], the NNLO calculation in

the HTL of ref. [23] has been combined with results including the full top quark mass

dependence at NLO as well as in the 2 → 4 matrix elements present in the NNLO real

radiation. The latter results have been supplemented by soft gluon resummation in ref. [29].

Analytic approximations for the top quark mass dependence of the two-loop amplitudes

entering gg → HH at NLO have also been studied in the high-energy limit [8–10], around

the top pair threshold expansion combined with large mass expansion [30], and for small

Higgs boson transverse momentum [31].

The full NLO calculation of refs. [11, 12] has been combined [13, 32, 33] with parton

showers within the POWHEG-BOX-V2 [34–36] and MG5 aMC@NLO [37, 38] frameworks as well as

within Sherpa [39]. Ref. [33] contains a discussion of showered results for non-SM values of

the trilinear Higgs coupling, as well as a comparison of Pythia8.2 [40] and Herwig7.1 [41]

showers in combination with Powheg.

The purpose of this paper is to provide results for the process gg → HH at NLO which

are valid and accurate in the low-, medium- and high-energy regimes. This is achieved

by combining the high-energy expansion, computed in refs. [8–10], with the existing grid

of the exact NLO result [13, 42], such that the finite part of the virtual amplitude can

be evaluated at any phase space point without having to do costly two-loop numerical

integrations. Previously, the grid of the exact NLO result was constructed based only on

unweighted events, which are sparse in the high-energy region, and the grid was therefore
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statistically limited in the high-energy region. Extending the grid to higher energies using

the exact NLO result would require the costly evaluation of additional phase-space points in

a regime where the numerical convergence of the two-loop integrals can be poor. Instead, by

combining the existing grid with analytic results obtained through a high-energy expansion,

after a careful assessment of the regions in which the latter leads to an improvement, we

are able to present results with small uncertainties over the full kinematic range. This

improvement is particularly relevant for highly boosted Higgs bosons, for which the previous

grid was unreliable. Parton shower Monte Carlo programs based on the new grid, presented

here, can reliably be used to make predictions in an extended kinematic range.

The remainder of the paper is structured as follows. In the next section we introduce

our notation and in section 3 we describe our approach to obtain Padé approximations

for the NLO virtual corrections based on the high-energy expansion of the form factors.

This approach is validated in section 4 at the level of the master integrals. In section 5 we

present numerical results for the virtual corrections and, in section 6, we study their impact

on the transverse momentum and invariant mass distributions. We conclude in section 7.

2 Notation and conventions

The analysis we perform in this paper is based on the results for the form factors obtained

in refs. [8, 9]. Let us briefly repeat the notation and conventions introduced in these

references.

The amplitude for the process g(q1)g(q2)→ H(q3)H(q4), with all momenta qi defined

to be incoming, can be decomposed into two Lorentz structures

Mab = ε1,µε2,νMµν,ab = ε1,µε2,νδ
abX0s (F1A

µν
1 + F2A

µν
2 ) , (2.1)

where a and b are adjoint colour indices, s = (q1 + q2)2 is the squared partonic centre-of-

mass energy and the two Lorentz structures are given by

Aµν1 = gµν − 1

q12
qν1q

µ
2 ,

Aµν2 = gµν +
1

p2
T q12

(q33q
ν
1q
µ
2 − 2q23q

ν
1q
µ
3 − 2q13q

ν
3q
µ
2 + 2q12q

µ
3 q

ν
3 ) , (2.2)

with

qij = qi · qj , p 2
T =

2q13q23

q12
− q33 =

tu−m4
h

s
,

X0 =
GF√

2

αs(µ)

2π
TF , (2.3)

where s, t = (q1 + q3)2 and u = (q2 + q3)2 are Mandelstam variables which fulfill s+t+u =

2m2
h, TF = 1/2, GF is Fermi’s constant and αs(µ) is the strong coupling constant evaluated

at the renormalization scale µ.

We define the expansion in αs of the form factors as

F = F (0) +
αs(µ)

π
F (1) + · · · , (2.4)
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(a) (b) (c)

(d) (e) (f)

Figure 1. One- and two-loop Feynman diagrams contributing to gg → HH. Solid, curly, and

dashed lines represent fermions, gluons, and Higgs bosons respectively.

and decompose the functions F1 and F2 introduced in eq. (2.1) into “triangle” and “box”

form factors. We thus cast the one- and two-loop corrections in the form

F
(0)
1 =

3m2
h

s−m2
h

F
(0)
tri + F

(0)
box1 ,

F
(0)
2 = F

(0)
box2 ,

F
(1)
1 =

3m2
h

s−m2
h

F
(1)
tri + F

(1)
box1 + F

(1)
dt1 ,

F
(1)
2 = F

(1)
box2 + F

(1)
dt2 . (2.5)

F
(1)
dt1 and F

(1)
dt2 denote the contribution from one-particle reducible diagrams such as the one

shown in figure 1(f). In ref. [9] this contribution has not been considered since the full top

quark mass dependence is available from eqs. (24), (25) and (26) of ref. [43].

At this point a comment on the definition of αs is in order. In ref. [9] αs has been

defined with six active flavours which is an appropriate choice for the high-energy limit. In

this paper, we compare to ref. [12] where a five-flavour αs has been used. Thus, we have

to transform αs and the gluon wave function from the six-flavour to the five-flavour theory

using the relations

α(6)
s (µ) = α(5)

s (µ)

(
1 +

α
(5)
s (µ)

3π
TF log

µ2

m2
t

+O(α2
s)

)
, (2.6)

A(6)
ν (µ) = A(5)

ν (µ)

(
1− α

(5)
s (µ)

3π
TF log

µ2

m2
t

+O(α2
s)

)
, (2.7)

where Aν is the gluon wave function. As can be seen from these expressions the additional

terms cancel because the number of external gluon fields equals the number of strong
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couplings gs in the Born amplitude, such that the resulting analytic expressions remain

identical.

After the renormalization of the ultraviolet divergences, the form factors are still in-

frared divergent. Infrared finite results can be obtained by making a suitable subtrac-

tion [44]

F fin,(1) = F (1),IR −K(1)
g F (0), (2.8)

where K
(1)
g is given by

K(1)
g = −

(
µ2

−s− iδ

)ε
eεγE

2Γ(1− ε)

[
CA
ε2

+
1

ε

(
11

6
CA −

2

3
TFnl

)]
. (2.9)

γE is Euler’s constant and CA = 3 is a colour factor. After the decoupling of the top quark

we have nl = 5 as the number of active flavours.1 Note that the choice of K
(1)
g is not unique.

For example, finite form factors are also obtained if the µ-dependent factor multiplies only

the 1/ε2 term inside the square brackets of eq. (2.9), and not the 1/ε term. The resulting

form factors differ by terms proportional to log(µ2/(−s − iδ)). For the definition of K
(1)
g

in eq. (2.9) it is convenient to introduce

F fin,(1) = F̃ (1) + β0F̃
(0) log

(
µ2

−s− iδ

)
, (2.10)

where F̃ (i) = F fin,(i)(µ2 = −s), and β0 = 11CA/12− TFnl/3.

In ref. [9] we express the analytic results for the form factors in terms of mt, s, t and mh.

Note that our two-loop expressions are Taylor expanded2 in mh including terms up to m2
h.

In section 3 we use the (infrared-finite) form factors to construct the virtual corrections for

the process gg → HH. We adapt the notation of ref. [12] and express our results in terms

of the variables mt, s,mh and p2
T . This is achieved using the relation

t = m2
h −

s

2


1−

√

1− 4
m2
h + p2

T

s


 , (2.11)

and a subsequent re-expansion of the two-loop form factors in mh up to order m2
h. We

use the exact expression for the one-loop corrections [15, 16] and thus no expansion is

necessary.

3 Padé improved virtual corrections

We adapt the notation of ref. [13] and define (see also eq. (4.1) of ref. [30])

Ṽfin =
α2
s (µ)

16π2

G2
F s

2

64

[
C + 2

(
F̃

(0)∗
1 F̃

(1)
1 + F̃

(0)∗
2 F̃

(1)
2 + F̃

(0)
1 F̃

(1)∗
1 + F̃

(0)
2 F̃

(1)∗
2

)]
, (3.1)

1In ref. [9] infrared subtraction has been performed in QCD with six active flavours.
2Let us stress that only the form factors are expanded in mh and the factor 3m2

h/(s−m2
h) in eq. (2.5)

is kept exact.
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with

C =

[∣∣∣F̃ (0)
1

∣∣∣
2

+
∣∣∣F̃ (0)

2

∣∣∣
2
](

CAπ
2 − CA log2 µ

2

s

)
. (3.2)

Here αs corresponds to the five-flavour strong coupling constant. Furthermore, we intro-

duce

Vfin =
Ṽfin

α2
s(µ)

. (3.3)

In ref. [42] a grid of 3398 phase-space points is provided in the file

Virt full noas.grid where the result for the phase-space point Pi = (si, ti) is given

in the format (
β(si) , cos(θi) , Vgrid

fin (Pi) , ±δi
)

(3.4)

with the coordinates β(s) and cos(θ) given by (see page 4 of ref. [13])

β(s) =

√

1− 4m2
h

s
and cos(θ) =

s+ 2t− 2m2
h

sβ(s)
. (3.5)

We use eq. (2.11) together with

p2
T =

tu−m4
h

s
and u = 2m2

h − s− t (3.6)

in order to switch to the coordinates (
√
s, pT ) in the following.

For the numerical evaluation of Vfin we proceed as follows:

• After inserting into eq. (3.1) the exact one-loop and two-loop one-particle reducible

form factors and the high-energy expansion of the remaining parts Vfin can be written

as

VNfin = V0 +
N∑

i=2

Vimi
t , (3.7)

where V0 contains all parts that are exact in mt and mh (i.e., F
(0)
tri , F

(0)
box1, F

(0)
box2, F

(1)
dt1

and F
(1)
dt2) and the second term in eq. (3.7) contains those parts which involve3 F

(1)
tri ,

F
(1)
box1 and F

(1)
box2. In eq. (3.7) we explicitly show the dependence on mt but suppress

dependence on mh; note that Vi contains an expansion up to m2
h.

• At this point we fix all numerical values except the top quark mass, i.e.,
√
s, pT and

mh.

• Next we apply the replacements4 m2k
t → m2k

t x
k and m2k−1

t → m2k−1
t xk for the odd

and even powers of mt. We insert the numerical value for mt and consider VNfin as

an expansion in x. In ref. [9] terms up to order m16
t were presented. Since then the

expansion has been extended to m32
t which implies that VNfin is available up to x16.

The analytic results for the form factors can be obtained from [48].

3Exact results for F
(1)
tri are available from refs. [45–47]. For simplicity, in the following we nevertheless

use our expansions which provide a very good approximation of the exact result [9].
4logmt terms are not replaced.
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• Next we construct Padé approximants of VNfin in the variable x which means that we

write eq. (3.7) as a rational function of the form

VNfin =
a0 + a1x+ . . .+ anx

n

1 + b1x+ . . .+ bmxm
≡ [n/m](x) , (3.8)

where ai and bi are determined by comparing the coefficients of xk after expanding

the right-hand side of eq. (3.8) in x.

As an alternative approach one can construct Padé approximations for VNfin−V0, which

have a0 = 0 and different values for the remaining coefficients. Both approaches lead

to very similar final results, so in our analysis we concentrate on the one outlined in

eq. (3.8).

Note that the Padé method described here is different from the one used in [30],

where a conformal mapping and a subsequent Padé approximation is used in order to

combine expansions for large mt and from threshold. The approach here is simpler

since the only aim is to extend the radius of convergence in the variable x.

• For N = 32, Padé approximations with n + m = 16 can be constructed. We

restrict our analysis to Padé approximants which are close to “diagonal” (where

n = m). We require |n − m| ≤ 2. Furthermore, we demand that expansions in-

clude at least terms up to order m30
t . This leads to a list of five Padé approximants

Q = {[7/8], [8/7], [7/9], [8/8], [9/7]}.

• We aim for an approximation of Vfin in the two-dimensional
√
s-pT plane where for

each point a separate Padé approximant is constructed. Due to the structure of the

ansatz (eq. (3.8)), the Padé approximants may develop poles in the complex x plane.

Poles close to x = 1 might lead to unphysical results. For this reason we assign a

weight to each Padé approximant, which depends on the distance of the closest pole

to x = 1, and use this information to construct for each pair (
√
s, pT ) a central value

and an estimate of the uncertainty. In detail, we proceed as follows

– For each phase-space point (
√
s, pT ) we compute for all Padé approximants in

Q (see above) the value at x = 1 and the distance of the closest pole which we

denote by αi and βi, respectively.

– We introduce a re-weighting function, which reduces the impact of values αi
from Padé approximations with poles close to x = 1. We define

ωi =
β2
i∑
j β

2
j

, (3.9)

and assign ωi to each value αi.
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– We use the values αi and ωi to compute the central value from the weighted

average and the uncertainty from the standard deviation as follows

α =
∑

i

ωiαi ,

δα =

√∑
i ωi (αi − α)2

1−∑i ω
2
i

. (3.10)

This procedure provides for each point (
√
s, pT ) a result of the form α± δα which is

based on Padé approximation.

4 Padé improved master integrals

In this section we construct [8/8] Padé approximants (see eq. (3.8)) at the level of the master

integrals, for which numerical results can be obtained using FIESTA [49] and pySecDec [50].

In figure 2 we show the real and imaginary parts of the non-planar seven-line master

integrals G59(1, 1, 1, 1, 1, 1, 1,−1, 0) and G59(1, 1, 1, 1, 1, 1, 1,−2, 0) (see figure 3 and refs. [8,

9] for more notation) as a function of
√
s. In each panel several lines are shown which

correspond to different choices of pT . For better readability we shift some of the lines such

that they are well separated, at least in some parts of the phase space, which leads to

arbitrary units on the y-axis. Solid lines correspond to the Padé approximant5 [8/8] and

the dots are obtained using pySecDec. One observes an impressive agreement between the

Padé-improved and numerical results, even for the lower pT values around 100–200 GeV

(the lower, blue-coloured lines). The small spikes visible above
√
s = 500 GeV in some

of the plots are due to the proximity of poles in the complex plane of the [8/8] Padé

approximants. In our final results, such spikes are removed by the re-weighting procedure

described at the end of section 3.

For illustration we show for pT = 350 GeV the results of the asymptotic expansions

up to order m30
t and m32

t as dashed curves. For
√
s ≈ 2000 GeV reasonable agreement is

found with the numerical result and the Padé approximation. However, for smaller values

of
√
s one observes that the expansions quickly deviate from the exact result.

We obtain similar results for all non-planar master integrals and are thus confident

that the procedure of section 3 applied to VNfin will provide a good approximation, even for

relatively small values of pT .

5 Numerical results for Vfin

In this section we consider Vfin as a function of
√
s and pT and compare to the exact results

obtained in [12]. The results of [12] are available from [42] in the form of a grid in the
√
s-pT

plane, where an uncertainty from numerical integration is assigned to each data point. For

the renormalization scale the value µ =
√
s/2 = mhh/2 has been chosen. Furthermore we

use the values mt = 173 GeV and mh = 125 GeV.

5Similar results are also obtained for other choices.
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Figure 2. Real and imaginary parts of the master integrals G59(1, 1, 1, 1, 1, 1, 1,−1, 0) and

G59(1, 1, 1, 1, 1, 1, 1,−2, 0) as a function of
√
s and various fixed values of pT . Solid lines are ob-

tained from the Padé-improved expansion in mt. The values of pT decrease from top to bottom.

The dots are numerical results obtained with pySecDec, which have small error bars which are not

visible in the plot. For the renormalization scale µ = mt has been chosen.

l1 − q2

l1

l1 − l2
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G59(1, 1, 1, 1, 1, 1, 1,−1, 0)
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G59(1, 1, 1, 1, 1, 1, 1,−2, 0)

Figure 3. Graphical representation of the master integrals discussed in figure 2. Thick solid and

dotted lines represent massive and massless lines, respectively. The external momenta are on the

light cone. The expressions written above the graphs denote the propagators with negative index

in the 8th position of G59.
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Figure 4. Vfin normalized to the central values provided in [42] as a function of pT . The dark blue

data points with error bars are obtained from [12, 42]. The data points without uncertainty bars

are based on VN
fin, see legend and text for details.

In figure 4 we show all data points from [42], normalized to their central values, as a

function of pT (the dark blue points with uncertainty bars). Note that in general, different

data points belong to different values of
√
s. Figure 4 also contains Padé results for VNfin

constructed from N = 30 and N = 32 input, again normalized to the central values of

the grid points from [42] (the coloured points without uncertainty bars). Additionally,

the results of the expansions V30
fin and V32

fin are shown as green and light-blue data points,

respectively. Note that the data points based on VNfin are computed using the same input

values as those of the grid points.

As expected, good agreement is found for large values of pT (which implies large

values of
√
s). Most of the data points lie within one sigma of the grid points [42]. One

also observes that some of the points are outside the one-sigma range, however, still agree

within two sigma. The interesting region of figure 4 is pT . 400 GeV. Here, the high-energy

expansion diverges rather quickly and the agreement with the grid points breaks down. The

Padé-improved results, however, follow the dark blue points until pT ≈ 200 GeV. Some of

the Padé approximants reproduce the exact numerical result even down to pT ≈ 150 GeV

with reasonable precision. This behaviour motivates a closer look into the comparison of

Padé-improved and numerical results for fixed values of pT .

We now fix pT and consider Vfin as a function of
√
s. For small values of pT and

√
s

the grid points are dense. However, for pT & 300 GeV and/or
√
s & 1000 GeV they become
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quite sparse. Furthermore, if one wants to perform an analysis for fixed pT one can in

principle only use a few data points from the grid which makes a comparison difficult.

On the web-page [42] an interpolation routine is provided which allows for an extension

of the grid points to the whole phase space. By default, the interpolation routine does

not provide an estimate of the numerical uncertainty of the results it produces. The

numerically evaluated grid input points have a typical numerical uncertainty ranging from

a few percent to around 10%, and the uncertainty on each phase-space point is displayed

in figure 4. Additionally, there is an uncertainty coming from the interpolation procedure

itself. This was assessed in detail for part of our current input points in [13] via a closure

test. However, we find that in regions where the grid is only sparsely populated this

interpolation routine provides unreliable results. In order to separate interpolated points

with solid support from nearby grid-points from interpolated points without such support,

we enhance an interpolated data point at P0 = (
√
s0, pT,0) by an error estimate as follows:

• Define a region around P0 as

∆ =
{

(
√
s, pT )

∣∣∣|√s−√s0| ≤ 5 GeV, |pT − pT,0| ≤ 10 GeV
}

.

• P is the set of data points of the grid [42] which lie in ∆: P = {Vgrid
fin (P1) ±

δ1,Vgrid
fin (P2)± δ2, . . . ,Vgrid

fin (Pn)± δn}, where δi are the corresponding numerical un-

certainties.

• If P is empty no uncertainty can be assigned to the interpolated value V int
fin (P0). Note

that such a point has no support from the actual grid points.

• For non-empty set P we define σ =
∑n

i=1 |δi| /n as a mean uncertainty assigned to

V int
fin (P0).

In figure 5 we show Vfin as a function of
√
s for four different values of pT . The blue

dots correspond to the results obtained from the grid [42] using the procedure described

above. Blue dots with no uncertainty bar have no nearby grid points from which one can

estimate an uncertainty. The other dots correspond to our Padé-improved results which

are obtained using the prescription from section 3. If no uncertainty is visible for these

points, it is smaller than the dot size.

Let us start with the discussion of figures 5(a) and (b) which correspond to pT =

250 GeV and pT = 200 GeV, respectively. For
√
s < 800 GeV both the numerical and the

Padé results have small uncertainties and agree very well. Between
√
s ≈ 800 GeV and√

s ≈ 1400 GeV the Padé results behave smoothly but the (interpolated) numerical results

show strong variation which is due to the interpolation procedure used in ref. [42]. This

is also true for
√
s > 1400 GeV where the results from [42] show an unphysical constant

behaviour. This behaviour suggests that above
√
s ≈ 800 GeV one should not trust the

results of [42] but rather the approximations obtained from the high-energy expansion [8, 9].

On the other hand, for
√
s . 800 GeV, the good agreement of the Padé results with the

numerical calculation provides confidence regarding the reliability of the Padé procedure.

For pT = 150 GeV, see figure 5(c), the Padé procedure develops uncertainties of about

10% to 20% for
√
s . 800 GeV. It is nevertheless quite impressive that agreement with
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Figure 5. Vfin as a function of
√
s for selected values of pT : (a) pT = 250 GeV, (b) pT = 200 GeV,

(c) pT = 150 GeV, (d) pT = 100 GeV. Both the grid points [12, 42] and the combined Padé improved

results are shown. For pT = 100 GeV we also show the large-mt expansion including terms up to

order 1/m12
t .

the numerical results, which have small uncertainties, is found. For higher values of
√
s it

seems that one can trust the results from [42] up to about
√
s = 1300 GeV, above which

they again become constant, which is unphysical.

Although it is far from the region of convergence of the high-energy expansion, we

show in figure 5(d) the results for pT = 100 GeV. Here, the Padé method develops large

uncertainties over the whole range of
√
s. It is, however, interesting to note that the central

value shows good agreement with the numerical results for
√
s . 1500 GeV. In this plot

we also show, as a solid red curve, results for the large-mt expansion of Vfin, which is

constructed using the large-mt expansion of the form factors, computed to order 1/m12
t

in [22]. We observe agreement with the exact results (blue dots) up to
√
s ≈ 400 GeV

which constitutes a good consistency check.

The discussion of the plots in figure 5 shows that the Padé method provides accurate

results even for relatively small values of pT . Furthermore, it provides realistic estimates of

the uncertainties. In figure 6 we show Vfin as a function of
√
s for fixed values of pT (shown

in different colours, see the plot legend for details). The plot contains the curves for the four

pT values of figure 5 and a further eight choices of pT , with the highest value pT = 650 GeV.

The dots represent the results from [42]. Where available, the uncertainties are explicitly
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Figure 6. Vfin as a function of
√
s for fixed values of pT . The data points and the corresponding

uncertainty bars are obtained from the grid [42]. The solid lines are based on the Padé-improved

high-energy expansion. For high values of pT the uncertainties of the Padé results are smaller than

the thickness of the lines. The uncertainties shown for pT values below 200 GeV are taken over from

figure 5.

indicated. For pT ≥ 200 GeV the Padé results are shown as solid lines. Note that in this

region of the phase space the uncertainty is below the thickness of the lines. One observes

that the solid lines agree with the data points within the indicated uncertainties, which are

in general much larger than the Padé uncertainty. For pT = 100 GeV and pT = 150 GeV

we reproduce in figure 6 the curves from figure 5 (see black and dark violet data points).

We now define a criterion which provides a prescription for the improvement of the

grid [42]. In order to have guidance we show in figure 7 the relative uncertainty of the

Padé results in the
√
s-pT plane. We also overlay all grid points from [42] and use the same

colour scale for their uncertainties. Note that the kinematic boundary is obtained from the

requirement that 1− 4(m2
h + p2

T )/s (see eq. (2.11)) is positive.

From figure 7 we learn that the uncertainty is below 0.1% for pT & 200 GeV and then

grows towards lower pT relatively quickly. Still, even for pT ≈ 150 GeV the uncertainty

is around a few percent for most values of
√
s. Note that larger relative uncertainties for

larger values of
√
s are observed since in this region Ṽfin is small.

On the basis of this observation we extend the grid provided in [42] as follows:

• We increase the number of points computed using the full NLO result from 3398 to

6320. The new points are sampled according to the distribution of unweighted events

and, therefore, populate the same kinematic regime as the original points.
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Figure 7. Relative uncertainty of the Padé results in the
√
s-pT plane. The points of [42] are

overlayed. The colour coding for the relative uncertainty, which is given in percent, is shown on the

right. Note that a logarithmic scale is chosen.

• For
√
s ≥ 700 GeV and pT ≥ 150 GeV we add points from the Padé approximation.

• For
√
s < 700 GeV and pT ≥ 200 GeV we add points from the Padé approximation.

The boundary above which we include points from the Padé approximation is denoted as a

yellow line in figure 7. We note here that if one reproduces figures 6 and 7 using the 6320

points described above the behaviour is qualitatively the same and we therefore refrain

from showing them in this paper.

In figure 8 we compare the Padé results to the improved version of the grid, which

provides precise results in the whole relevant phase space. We note that the wiggly be-

haviour and the deviation of the grid data points from the Padé approximation for larger

values of
√
s and smaller values of pT could be improved by including further data points

from the Padé approximation. This behaviour would then be pushed to higher values of√
s. We judge the performance of the grid as displayed by figure 8 to be sufficient for the

phenomenological applications of this paper, and further improvements of the grid not to

be necessary. This improved grid can be downloaded from [42].

6 Applications

In the following we discuss differential distributions w.r.t. the Higgs boson pair invariant

mass mhh and the “single inclusive” Higgs boson transverse momentum pT,h for hadronic

– 14 –



J
H
E
P
1
1
(
2
0
1
9
)
0
2
4

500 1000 1500 2000
0.00

0.01

0.02

0.03

0.04

0.05

pt=100 GeV pt=250 GeV pt=400 GeV pt=550 GeV

pt=150 GeV pt=300 GeV pt=450 GeV pt=600 GeV

pt=200 GeV pt=350 GeV pt=500 GeV pt=650 GeV

Figure 8. Vfin as a function of
√
s for fixed values of pT . The data points are obtained from

the improved version of the grid and the solid lines are based on the Padé-improved high-energy

expansion.

centre-of-mass energies
√
sH = 14 TeV and

√
sH = 100 TeV. The emphasis of this analysis

is the comparison of the current [42] and improved grid introduced in the previous section.

For our analysis we use the parton distribution functions

PDF4LHC15_nlo_100_pdfas [51–53] and adopt the corresponding value for αs. For

the top quark and Higgs boson masses we use mh = 125 GeV and mt = 173 GeV and

choose µ0 = mhh/2 as the central value for the renormalization (µR) and factorization

(µF ) scales. The uncertainties due to higher-order QCD corrections are estimated

using the usual seven-point scale variation around µ0, i.e., for µR and µF we introduce

µR,F = cR,Fµ0 with cR,F ∈ {0.5, 1, 2} and omit the extreme choices (cR, cF ) = (0.5, 2) and

(cR, cF ) = (2, 0.5).

In figure 9 we show our results for
√
sH = 14 TeV. In the upper panels we present the

mhh and pT,h differential distributions, and in the lower panels we display the ratio of the

NLO corrections to the LO values (K factor). The LO values are shown in black and the

coloured curves correspond to different versions of the NLO prediction, all of which contain

the full real radiation corrections and only differ in the way that the virtual corrections are

implemented. The blue curve, denoted “FTapprox”, incorporates the virtual corrections

computed in the infinite top quark mass limit and rescaled by the exact LO prediction.

The red curve is based on the grid constructed in ref. [13] but improved by increasing the

number of points from 3398 to 6320 (see discussion above). Finally, the green curve is based

– 15 –
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Figure 9. mhh and pT,h distributions for a hadronic centre-of-mass energy
√
sH = 14 TeV.
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Figure 10. mhh and pT,h distributions for a hadronic centre-of-mass energy
√
sH = 100 TeV.

on the new grid, the construction of which is described in section 5. This curve constitutes

our best prediction. The grey and green bands around the corresponding curves have been

obtained by independent variations of µR and µF as described above.

It is interesting to note that for small mhh and pT,h there is perfect agreement of the

red and green curves, which is expected since in this region the dependence on Vfin comes

primarily from the region in the (partonic)
√
s-pT plane where the support of the old grid

was dense. For higher values of mhh and pT,h, one observes a difference between the red

and the green curves. However, in both cases the red curve lies well within the green

uncertainty band.

The mhh and pT,h distributions for
√
sH = 100 TeV are shown in figure 10, where the

same notation is used as in figure 9. Note that now a significant difference is observed

between the red and green curves; for higher values of mhh and pT,h the red curve lies

outside the green uncertainty band. As an example let us consider pT,h = 2000 GeV. For

this value the K factor is reduced from K ≈ 1.7 to K ≈ 1.5 after including the high-energy

results in the grid.
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Let us mention that in figures 9 and 10, the same phase-space points have been used

for all curves. Thus, the differences between the curves is only due to the different imple-

mentations of the virtual corrections.

We should emphasize that one observes no change in the total cross section due to the

change from the red to the green curve, since the main contribution to σtot comes from

smaller centre-of-mass energies. However, figures 9 and 10 show that it is important to use

the improved grid for phenomenological analyses, if one wishes to consider large values of

mhh or pT,h, even for
√
sH = 14 TeV. In these regions the predictions based on “FTapprox”

deviate significantly from the green curve.

7 Conclusions

We provide optimized predictions for the NLO corrections to Higgs boson pair production

by combining the exact numerical results with analytic expressions for the form factors ob-

tained in a high-energy expansion. For the latter the region of convergence is significantly

improved by constructing Padé approximants, which are validated at the level of master in-

tegrals. Furthermore, we identify regions in the phase space where both the exact numerical

evaluations and the Padé results provide precise predictions and find good agreement. We

thus combine both approaches and generate a new grid which is available from [42]. The an-

alytic expressions for the high-energy expansion of the form factors are available from [48].

We apply the improved grid to phenomenological studies of the Higgs boson pair

invariant mass and Higgs boson transverse momentum distributions at LHC energies and

for
√
sH = 100 TeV. We show that at high energies the improvements are noticeable and we

recommend to use the updated grid for phenomenological studies, even for
√
sH = 14 TeV.
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