Rare B decays at LHCb

Luis Miguel Garcia Martin on behalf of the LHCb collaboration

Instituto de Fisica Corpuscular (IFIC, UV-CSIC)

European Physical Society Conference on High Energy Physics 10 - 17 July, 2019

Introduction: Rare decays

- 2 Latest results on Rare Decays
 - Very Rare Decays (see Marco Santamaria's and Anna Lupato's talk)
 - Electro-weak decays (see Vitalii Lisovskyi's talk)
 - Radiative Decays

Introduction

Flavour Changing Neutral Currents (FCNC) are forbidden in Standard Model (SM) at tree level:

- Supressed (Rare processes)
- Potential interences from NP diagrams

SM

- NP contributions could significantly change the value of observables
- This talk focus on FCNC in *b*-decays: b
 ightarrow s(d)

NP

Introduction

Model independent description by EFT: Operator product expansion.

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \underbrace{\left[\mathcal{C}_i(\mu)\mathcal{O}_i(\mu)\right]}_{\text{left-handed part}} + \underbrace{\mathcal{C}'_i(\mu)\mathcal{O}'_i(\mu)}_{\text{right-handed part}} \begin{bmatrix} i=1,2 & \text{Tree} \\ i=3-6,8 & \text{Gluon penguin} \\ i=7 & \text{Photon penguin} \\ i=9,10 & \text{Electroweak penguin} \\ \text{Higgs (scalar) penguin} \\ i=P & \text{Pseudoscalar penguin} \end{bmatrix}$$

- W^- bosons only couple to left-handed quarks \implies right-handed currents suppressed
- Wilson Coefficients (C_i) parametrize coupling strength and describe loop part of the diagrams
- Looking for deviation w.r.t SM prediction:

$$\left\{ \begin{array}{ll} \mathcal{C}_{i} = \mathcal{C}_{i}^{SM} + & \mathcal{C}_{i}^{NP} \\ \mathcal{C}_{i}' = & & \mathcal{C}_{i}'^{NP} \end{array} \right.$$

Introduction

Model independent description by EFT: Operator product expansion.

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \underbrace{\left[\mathcal{C}_i(\mu)\mathcal{O}_i(\mu)\right]}_{\text{left-handed part}} + \underbrace{\mathcal{C}'_i(\mu)\mathcal{O}'_i(\mu)}_{\text{right-handed part}} \begin{bmatrix} i=1,2 & \text{Tree} \\ i=3-6,8 & \text{Gluon penguin} \\ i=7 & \text{Photon penguin} \\ i=8 & \text{Higgs (scalar) penguin} \\ \text{Higgs (scalar) penguin} \\ i=9 & \text{Higgs (scalar) penguin} \\ \text{Photon penguin} \\ \text{Higgs (scalar) penguin} \\ \text$$

- W^- bosons only couple to left-handed quarks \implies right-handed currents suppressed
- Wilson Coefficients (C_i) parametrize coupling strength and describe loop part of the diagrams
- Looking for deviation w.r.t SM prediction:

$$\left\{ \begin{array}{ll} \mathcal{C}_i = \mathcal{C}_i^{SM} + & \mathcal{C}_i^{NP} \\ \mathcal{C}_i' = & & \mathcal{C}_i'^{NP} \end{array} \right.$$

Tensions w.r.t SM in several decay channels with a $b \rightarrow sll$ transition from:

- Branching ratios
- Angular observables
- Lepton Flavour Universality tests (see Marco Santimaria's talk)

• Large theory uncertainty in branching ratios due to form factors

Experimental status

Global fits show possible NP contributions in C_9 or both C_9 and C_{10} [M.Alguero et al, arXiv:1903.09578]:

• Several models including Leptoquarks and $\underline{Z'}$ have arisen to explain these deviations

Radiative decays

- Rare decays with a $b
 ightarrow s \gamma$ transition
- Mostly sensitive to C_7 and C'_7 through photon polarization:

$$\alpha_{\gamma} = \frac{P(\gamma_L) - P(\gamma_R)}{P(\gamma_L) + P(\gamma_R)} \qquad \alpha_{\gamma}{}^{LO} = \frac{|C_7|^2 - |C_7'|^2}{|C_7|^2 + |C_7'|^2}$$

Time-dependent decay rates of $B_s \to \phi \gamma$ and $\overline{B_s} \to \phi \gamma$ grant access to photon polarization:

$$\Gamma_{B_{s} \to \phi\gamma}(t) \propto e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{A}_{\phi\gamma}^{\Delta} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \mathcal{C}_{\phi\gamma} \cos\left(\Delta m_{s}t\right) - \mathcal{S}_{\phi\gamma} \sin\left(\Delta m_{s}t\right) \right]$$

$$\Gamma_{\overline{B_{s}} \to \phi\gamma}(t) \propto e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{A}_{\phi\gamma}^{\Delta} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{C}_{\phi\gamma} \cos\left(\Delta m_{s}t\right) + \mathcal{S}_{\phi\gamma} \sin\left(\Delta m_{s}t\right) \right]$$

- $\mathcal{A}^{\Delta}_{\phi\gamma}$ and $S_{\phi\gamma}$ are sensitive to photon polarization
- $C_{\phi\gamma}$ is related to direct CP violation
- SM prediction close to zero for ${\cal A}^{\Delta}_{\phi\gamma}$, ${\cal C}_{\phi\gamma}$ and ${\cal S}_{\phi\gamma}$

Time-dependent decay rates of $B_s \to \phi \gamma$ and $\overline{B_s} \to \phi \gamma$ grant access to photon polarization:

$$\Gamma_{B_{s} \to \phi\gamma}(t) \propto e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{A}_{\phi\gamma}^{\Delta} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \mathcal{C}_{\phi\gamma} \cos\left(\Delta m_{s}t\right) - \mathcal{S}_{\phi\gamma} \sin\left(\Delta m_{s}t\right) \right]$$

$$\Gamma_{\overline{B_{s}} \to \phi\gamma}(t) \propto e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{A}_{\phi\gamma}^{\Delta} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{C}_{\phi\gamma} \cos\left(\Delta m_{s}t\right) + \mathcal{S}_{\phi\gamma} \sin\left(\Delta m_{s}t\right) \right]$$

- $\mathcal{A}^{\Delta}_{\phi\gamma}$ and $\mathcal{S}_{\phi\gamma}$ are sensitive to photon polarization
- $C_{\phi\gamma}$ is related to direct CP violation
- SM prediction close to zero for ${\cal A}^{\Delta}_{\phi\gamma}$, $C_{\phi\gamma}$ and $S_{\phi\gamma}$
- Previous: $\mathcal{A}^{\Delta}_{\phi\gamma}$ measured in untagged analysis with Run I data at LHCb [LHCb: PRL118(2017)021801]

*Untag: No separation between B_s and $\overline{B_s}$

Time-dependent decay rates of $B_s \to \phi \gamma$ and $\overline{B_s} \to \phi \gamma$ grant access to photon polarization:

$$\Gamma_{B_s o \phi \gamma}(t) \propto e^{-\Gamma_s t} \Big[\cosh \left(rac{\Delta \Gamma_s t}{2}
ight) - \mathcal{A}^{\Delta}_{\phi \gamma} \sinh \left(rac{\Delta \Gamma_s t}{2}
ight) \Big]$$

- $\mathcal{A}^{\Delta}_{\phi\gamma}$ and $S_{\phi\gamma}$ are sensitive to photon polarization
- $C_{\phi\gamma}$ is related to direct CP violation
- SM prediction close to zero for ${\cal A}^{\Delta}_{\phi\gamma}$, $C_{\phi\gamma}$ and $S_{\phi\gamma}$
- Previous: $\mathcal{A}^{\Delta}_{\phi\gamma}$ measured in untagged* analysis with Run I data at LHCb [LHCb: PRL118(2017)021801]

*Untag: No separation between B_s and $\overline{B_s}$

Time-dependent decay rates of $B_s \to \phi \gamma$ and $\overline{B_s} \to \phi \gamma$ grant access to photon polarization:

$$\Gamma_{B_{s} \to \phi\gamma}(t) \propto e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{A}_{\phi\gamma}^{\Lambda} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \mathcal{C}_{\phi\gamma} \cos\left(\Delta m_{s}t\right) - \mathcal{S}_{\phi\gamma} \sin\left(\Delta m_{s}t\right) \right]$$

$$\Gamma_{\overline{B_{s}} \to \phi\gamma}(t) \propto e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{A}_{\phi\gamma}^{\Delta} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{C}_{\phi\gamma} \cos\left(\Delta m_{s}t\right) + \mathcal{S}_{\phi\gamma} \sin\left(\Delta m_{s}t\right) \right]$$

- $\mathcal{A}^{\Delta}_{\phi\gamma}$ and $\mathcal{S}_{\phi\gamma}$ are sensitive to photon polarization
- $C_{\phi\gamma}$ is related to direct CP violation
- SM prediction close to zero for ${\cal A}^{\Delta}_{\phi\gamma}$, $C_{\phi\gamma}$ and $S_{\phi\gamma}$
- Previous: $\mathcal{A}^{\Delta}_{\phi\gamma}$ measured in untagged analysis with Run I data at LHCb [LHCb: PRL118(2017)021801]
- New: $S_{\phi\gamma}$ and $C_{\phi\gamma}$ measurement using flavour tagging

*Tagging: Separation between B_s and $\overline{B_s}$ [JINST11(2016)P05010]

- Mass fit of $B_s o \phi \gamma$ (signal) and $B o K^* \gamma$ (control) decays
- Using Run 1 data at LHCb [LHCb: arXiv:1905.06284]
- Background subtracted with sPlot technique, fitting the B mass
 - Signal: Double-side Crystal Ball
 - Combinatorial: First order polynomial
 - Partially reconstructed: ARGUS convoluted with a Gaussian

Time-dependent analysis of $B_s \rightarrow \phi \gamma$: Proper time fit

Analysis strategy:

- Simultaneous unbinned ML fit to $B_s \to \phi \gamma$ (signal) and $B_s \to K^* \gamma$ (control) channels
- Mis-tag probability and resolution evaluated per event

Rare B de

at LHCb

 $egin{aligned} S_{\phi\gamma} &= 0.43 \pm 0.30 \pm 0.11, \ C_{\phi\gamma} &= 0.11 \pm 0.29 \pm 0.11, \ \mathcal{A}^{\Delta}_{\phi\gamma} &= -0.67 \, {}^{+0.37}_{-0.41} \pm 0.17 \end{aligned}$

- $\bullet\,$ Compatible with SM at 1.3, 0.3, 1.7 $\sigma\,$
- First measurement of S and C in the $B_s \rightarrow \phi \gamma$ decay [LHCb: arXiv:1905.06284]

10 / 19

L.M. Garcia

S_{CP} and C_{CP} in $b \rightarrow s\gamma$ transitions

 S_{CP}

 C_{CP}

• Measurement competitive with other results from *b*-factories

• Recontruction is very challenging: no Λ_b^0 vertex

- No direction from γ cluster
- Λ is a long-lived particle (LLP) $\implies \Lambda_b^0$ vertex $\neq \Lambda$ vertex

• SM prediction: $\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \gamma) = 10^{-7} - 10^{-5}$

Search for $\Lambda^0_b \to \Lambda^0 \gamma$ decay

First observation of $\Lambda_b^0 \rightarrow \Lambda^0 \gamma$ using 2016 data (1.7 fb⁻¹) [LHCb: arXiv:1904.06697]

• Signal excess of 5.6 σ significance

L.M. Garcia

Rare B decays at LHCb

13 / 19

Photon polarization in $\Lambda^0_b \to \Lambda^0 \gamma$

The $\Lambda_b^0 \rightarrow \Lambda^0 \gamma$ observation opens the possibility for direct measurement of photon polarization (α_γ) in *b*-baryon decays [arXiv:1902.04870]:

$$\Gamma_{\Lambda_b}(\theta_{\gamma},\theta_{p}) = 1 - \alpha_{\Lambda} P_{\Lambda_b} \cos \theta_{p} \cos \theta_{\gamma} - \alpha_{\gamma} \left(\alpha_{\Lambda} \cos \theta_{p} - P_{\Lambda_b} \cos \theta_{\gamma} \right)$$

Integrating in helicity angles:

$$\Gamma_{\Lambda_b}(\theta_{\gamma}) = \frac{1}{4} \Big(1 - \alpha_{\gamma} P_{\Lambda_b} \cos \theta_{\gamma} \Big)$$

The decay parameters are:

• $P_{\Lambda_b} = 0.00 \pm 0.06(stat) \pm 0.06(sys)$ [CMS: PRD97(2018)072010]

•
$$lpha_{
m A} = 0.642 \pm 0.013$$
 [PDG 2018]

Photon polarization in $\Lambda^0_b \to \Lambda^0 \gamma$

The $\Lambda_b^0 \rightarrow \Lambda^0 \gamma$ observation opens the possibility for direct measurement of photon polarization (α_γ) in *b*-baryon decays [arXiv:1902.04870]:

$$\Gamma_{\Lambda_{b}}(\theta_{\gamma},\theta_{p}) = 1 - \alpha_{\Lambda} P_{\Lambda_{b}}^{*} \cos \theta_{p} \cos \theta_{\gamma} - \alpha_{\gamma} \left(\alpha_{\Lambda} \cos \theta_{p} - P_{\Lambda_{b}}^{*} \cos \theta_{\gamma} \right)$$

Integrating in helicity angles:

$$\Gamma_{\Lambda_{b}}(\theta_{\gamma}) \sim 1 = \frac{1}{4} \left(1 - \alpha_{\gamma} P_{\Lambda_{b}} \sim 0 \cos \theta_{\gamma} \right) \qquad \qquad \Lambda_{b} \qquad \Lambda_{\lambda_{p}} \sim 0 \cos \theta_{\gamma}$$

$$\Gamma_{\Lambda_{b}}(\theta_{p}) = \frac{1}{4} \left(1 - \alpha_{\gamma} \alpha_{\Lambda} \cos \theta_{p} \right) \qquad \qquad \pi \checkmark$$

The decay parameters are:

- $P_{\Lambda_b} = 0.00 \pm 0.06(stat) \pm 0.06(sys)$ [CMS: PRD97(2018)072010]
- $\alpha_{\Lambda} = 0.642 \pm 0.013$ [PDG 2018]

Other remarkable channels: $\Xi_b^- \to \Xi^- \gamma$

The $\Xi_b^- \to \Xi^- \gamma$ decay is also sensitive to photon polarization through angular distribution [arXiv:1902.04870]:

- Two long-lived particle involved
- Extra decay
- Additional helicity angle

15 / 19

$$\Gamma_{\Xi_{b}^{-}}(\theta_{\Xi},\theta_{\Lambda},\theta_{p}) \propto 1 + \alpha_{\Lambda}\alpha_{\Xi}\cos\theta_{p} - \alpha_{\gamma}\alpha_{\Xi}\cos\theta_{\Lambda} - \alpha_{\gamma}\alpha_{\Lambda}\cos\theta_{\Lambda}\cos\theta_{p} - P_{\Xi_{b}}\alpha_{\Xi}\cos\theta_{\Xi}\cos\theta_{\Lambda} + P_{\Xi_{b}}\alpha_{\gamma}\alpha_{\Xi}\alpha_{\Lambda}\cos\theta_{\Xi}\cos\theta_{p} - P_{\Xi_{b}}\alpha_{\Lambda}\cos\theta_{\Xi}\cos\theta_{\Lambda}\cos\theta_{p} + P_{\Xi_{b}}\alpha_{\gamma}\cos\theta_{\Xi}$$

The values of the decay parameters are:

- $\alpha_{\Xi} = -0.458 \pm 0.012$ [PDG 2018]
- $\alpha_{\Lambda} = 0.642 \pm 0.013$ [PDG 2018]

Other remarkable channels: $\Xi_b^- \to \Xi^- \gamma$

The $\Xi_b^- \to \Xi^- \gamma$ decay is also sensitive to photon polarization through angular distribution [arXiv:1902.04870]:

- Two long-lived particle involved
- Extra decay
- Additional helicity angle

$$\Gamma_{\Xi_{b}}(\theta_{\Lambda},\theta_{p}) = \frac{1}{4} \left(1 - \alpha_{\gamma} \alpha_{\Xi} \cos \theta_{\Lambda} + \alpha_{\Lambda} \cos \theta_{p} \left(\alpha_{\Xi} - \alpha_{\gamma} \cos \theta_{\Lambda} \right) \right)$$

The values of the decay parameters are:

- $\alpha_{\Xi} = -0.458 \pm 0.012$ [PDG 2018]
- $\alpha_{\Lambda} = 0.642 \pm 0.013$ [PDG 2018]

Sensitivity to photon polarization

Sensitivity to the photon polarization in b-baryon decays using angular distribution [arXiv:1902.04870]:

- Statistical uncertainty: Goes as $1/\sqrt{N}$ with number of events
- Resolution: Effect neglible
- Acceptance: Asymmetric in α_{γ}
- Background: Important dilution. Low dependence with the shape

Observables in the $b \rightarrow s\gamma$ transition:

- Branching ratios
- $\mathcal{A}^{\Delta}_{\phi\gamma}$ and $S_{\phi\gamma}$
- Angular observables

give complementary constraints in the \mathcal{C}^\prime_7 complex plane

17 / 19

Conclusions

Experimental status:

- Rare decays are excellent probes of NP
- They are extensively studied at LHCb
- Multiple tension w.r.t. SM in $b \rightarrow sll$ transitions
- Rare c-decays are also heavily studied (see Dominik Mitzel's talk)

Latest results from LHCb:

- First measurements of $C_{\phi\gamma}$ and $S_{\phi\gamma}$ in B_s decays
- First observation of $\Lambda^0_b \to \Lambda^0 \gamma$
 - First step toward the direct measurement of the photon polarization

Stay Tuned FOR something AWesome

18 / 19

Many more results with Run 2 data ongoing

Thanks for your attention

Rare B decays at LHCb

LHCb detector

- One of the four detector at LHC
- LHCb is a single-arm (2 $< \eta <$ 5) spectrometer

 θ : Angle between **p** and positive beam axis.

LHCb detector

- One of the four detector at LHC
- LHCb is a single-arm (2 $<\eta<$ 5) spectrometer
- Optimised for beauty and charm decays

LHCb Detector

Expected integrated Luminosity:

• Run II (2018): 6*fb*⁻¹

 $1~\text{fb}^{-1}\approx 10^{12}~\text{pp}$ collisions

Main systematics:

	Uncertainty source	$\sigma(\mathcal{A}^{\Delta})$	$\sigma(S)$	$\sigma(C)$
Statistical	Fit outcome	$^{+0.347}_{-0.379}$	0.264	0.250
External measurements	$(\Gamma_s, \Delta\Gamma_s)$	0.086	0	0
	Γ_d	0.043	0	0
	Δm_s	0	0.008	0.013
Decay time	Acceptance: MC limited statistics	0.082	0	0
	Acceptance: modelling	0.028	0	0
	Resolution: MC limited statistics	0	0.001	0.002
	Resolution: modelling	0	0.096	0.075
Toy studies	Limited statistics	0.011	0.011	0.011
Mistag probability	OS tagger calibration	0	0.010	0.010
	SS tagger calibration	0	0.049	0.031
Background subtraction	Mass modelling: signal	< 0.01	< 0.01	< 0.01
	Mass modelling: combinatorial	0.034	< 0.01	< 0.01
	Mass modelling: partial	0.081	0.010	0.020
	Peaking backgrounds	0.036	0.018	0.030
	Mass-time correlation	0.110	< 0.01	< 0.01
Total	$\sigma_{ m stat.}$	+0.347 -0.379	0.264	0.250
	$\sigma_{ m ext.}$	0.096	0.008	0.013
	$\sigma_{ m syst.}$	0.170	0.111	0.109

Search for $\Lambda_b^0 \to \overline{\Lambda^0 \gamma}$ decay

Analysis statistically limited. Main systematics:

Source	Uncertainty (%)
Data/simulation agreement	7.7
Λ_b^0 fit model	3.0
$B^{ar{0}} o K^{st 0} \gamma$ backgrounds	2.7
Size of simulated samples	1.7
Efficiency ratio	0.7
Sum in quadrature	8.9
$f_{A_b^0}/f_{B^0}$	8.7
Input branching fractions	3.0
Sum in quadrature	9.2

L.M. Garcia

Helicity angles for $\Lambda^0_b \to \Lambda^0 \gamma$ decay

Helicity angles for $\Xi_b^-\to \Xi^-\gamma$ decay

Very Rare Decays

- Very suppressed or forbidden in the SM
- Branching ratios $\mathcal{O}(10^{-8})$ or lower
- Sensitive to C_S , C_P , C_{10} or completely new contributions

For $B ightarrow \mu au$ analysis see Marco Santamaria's talk

Search for the very rare decay $B^+ ightarrow \mu^+ \mu^- \mu^+ u_\mu$

- ullet Very supressed decay with $BR\propto |V_{ub}|^2$
- Using Run 1 + 2016 data (4.7 fb $^{-1}$)
- ν_{μ} not detected, using corrected mass:

$$M_{corr} = \sqrt{M_{\mu\mu\mu}^2 + p_T'^2 + p_T'}$$

 p'_T : missing momentum transverse to B^+ flight direction

- Veto charmonium resonances and selects the region $M_{\mu\mu}^{min} < 980 \ {\rm MeV}/c^2$
- Normalization channel: $B^+ \rightarrow J/\psi K^+$
- Only theoretical estimation: $BR \sim 1.3 imes 10^{-7}$ [PAN (2018) 81:347]

Search for the very rare decay $B^+ ightarrow \mu^+ \mu^- \mu^+ u_\mu$

- Very supressed decay with $BR \propto |V_{ub}|^2$
- Using Run 1 + 2016 data (4.7 fb $^{-1}$)
- ν_{μ} not detected, using corrected mass:

$$M_{corr}=\sqrt{M_{\mu\mu\mu}^2+p_T'^2+p_T'}$$

 p'_T : missing momentum transverse to B^+ flight direction

- Veto charmonium resonances and selects the region $M_{\mu\mu}^{min} <$ 980 MeV/ c^2
- Normalization channel: $B^+ \rightarrow J/\psi K^+$
- Only theoretical estimation: $BR \sim 1.3 imes 10^{-7}$ [PAN (2018) 81:347]

Experimental status

Deviations in several decay channels with a $b \rightarrow s(d)II$ transition (see ???'s talk):

• Large theory uncertainty due to form factors