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1 Introduction

Feynman integrals are the most important building blocks required to study scattering

processes in perturbative quantum field theory. The physics program at the Large Hadron

Collider has benefitted dramatically from the availability of theoretical predictions with

high degree of accuracy. These predictions were made possible by tremendous advance-

ments in the calculation of multi-loop scattering amplitudes in recent years. However, it

has become clear that future efforts to further test our theoretical understanding of the

nature of particle interactions at high energies will require an even higher level of precision.

Computing scattering processes to even higher orders in perturbation theory will therefore

require a deeper understanding of multi-loop Feynman integrals and a further refinement

of the mathematical technology used to evaluate them.

Feynman integrals encode the complicated branch cut structure of scattering ampli-

tudes, reflecting the structure of physical thresholds of scattering processes. Consequently,

Feynman integrals need to be described in terms of classes of special functions that exhibit

the required branch cuts. The classic examples are the logarithm and dilogarithm functions
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that encode the branch cut structure of simple one-loop amplitudes in four space-time di-

mensions. More complicated Feynman integrals require functions with a richer analytical

structure in order to properly encode their branch cut structure. In this context, multiple

polylogarithms [1–3] have proven an amazingly successful class of functions to describe

many scattering processes, in particular in phenomenologically interesting cases where no

massive particles circulate inside the loops.

However, it is well known that MPLs do not exhaust the space of functions to which

Feynman integrals evaluate. It particular, it has been known for several decades that

starting from two loops not all Feynman integrals evaluate to MPLs [4–16], though no

complete analytic results were known. This situation has changed with the work of Bloch

and Vanhove [17], who have shown that the simplest example of a Feynman integral that

cannot be evaluated in terms of MPLs is in fact expressible through a generalisation of

the dilogarithm to an elliptic curve. This result has sparked a lot of activity over the last

few years, and by now we have complete analytic results for many Feynman integrals that

involve functions of elliptic type [18–40]. In all cases these results involve new classes of

transcendental functions, related either to elliptic generalisations of MPLs [17, 41–43] or

iterated integrals of modular forms [35, 44–46]. Incidentally, these are also the same class

of functions which describe string amplitudes at genus one [47–50].

It is also known that functions related to more complicated geometries show up [11,

14, 51–55]. The simplest example of such an integral is probably the three-loop banana

graph with four massive propagators, whose associated geometry is a specific family of K3

surfaces [51]. While functions of elliptic type that arise in Feynman integral computations

start to be well understood, we still lack a clear picture of the class of functions that arise

from more complicated geometries. Hence, no complete analytic results are known for the

banana graph in terms of a well-defined class of transcendental functions.

An exception to this case is the limit where all four masses in the banana graph are

equal. In this case the K3 surface is elliptically fibered, and the base and the fiber are

described by the same elliptic curve. This elliptic curve, in turn, is related to the elliptic

curve of the sunrise integral [51]. The corresponding family of K3 surfaces and their associ-

ated Picard-Fuchs operator were studied in ref. [56], where it was shown that the solutions

of this operator can be written in terms of the solutions of the Picard-Fuchs operator of

the sunrise graph. In ref. [57] this property was used to express all master integrals for the

equal-mass banana graph in terms of iterated integrals whose integration kernels involve

products of complete elliptic integrals. However, a complete analytic solution of all master

integrals for the equal-mass banana graph in terms of a well-defined and well-studied class

of functions is currently still lacking.

In the remainder of this paper we close this gap and we present for the first time

complete analytic results for all three master integrals of the equal-mass three-loop banana

graph in d = 2 dimensions. Our starting point is the differential equation of refs. [56, 57].

From there we show that, since the homogeneous solutions can be expressed in terms of the

same modular forms that appear in the computation of the sunrise graph, the differential

equation for the master integrals of the banana graph can be solved in terms of the same

class of functions as for the sunrise graph. When expressed in this way, our results are
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characterised by a remarkable simplicity. Moreover, we observe that all master integrals can

be written as linear combinations of pure functions of uniform weight, as defined in ref. [36].

The paper is organised as follows: in section 2 we review the banana graph, its dif-

ferential equations and the results of refs. [51] and [57]. In section 3 we illustrate how to

solve the differential equation of the sunrise graph in terms of iterated integrals of modular

forms, and we introduce the relevant class of functions. In section 4 we present our main

result, i.e., analytic results for all master integrals of the banana graph in d = 2 dimensions

in terms of iterated integrals of modular forms and in terms of elliptic polylogarithms.

Finally, in section 5 we draw our conclusions. We include additional appendices where we

discuss how to obtain the boundary conditions for the system of differential equations for

the banana graph and where we present a method to decompose an invertible matrix into

a product of a lower and an upper-triangular matrix.

2 The banana graph

2.1 Notations and conventions

The banana graph depicted in figure 1 constitutes one of the simplest families of a three-

loop Feynman graph. Whenever at least either two propagator masses or the external

invariant vanish, all members of the family can be expressed in terms of standard multiple

polylogarithms (see e.g. ref. [58]). If all propagators are massive, new classes of functions

are known to show up [51, 57], related to a specific family of K3 surfaces. Not much is

known in the most general case and in particular no analytic result is known for the banana

family with distinct propagator masses.

Here we focus on a scenario of intermediate complexity, namely the case where all

internal masses are chosen to be different from zero and equal. More precisely, let us

consider the family of integrals defined by

Ia1,...,a9(p
2,m2; d) =

=

∫ 3∏

i=1

D
dℓi

(ℓ23)
a5(ℓ1 · p)a6(ℓ2 · p)a7(ℓ3 · p)a8(ℓ1 · ℓ2)a9

[ℓ21 −m2]a1 [ℓ22 −m2]a2 [(ℓ1 − ℓ3)2 −m2]a3 [(ℓ2 − ℓ3 − p)2 −m2]a4
,

(2.1)

where the ai ≥ 0 are positive integers, and we have introduced the integration measure

∫

D
dℓ =

1

Γ
(
2− d

2

)

∫
ddℓ

iπd/2
. (2.2)

Since all integrals depend on p2 and m2 only, it is convenient to express their non-trivial

functional dependence in terms of the dimensionless ratio

x =
4m2

p2
. (2.3)

Furthermore, in what follows we will set m = 1 for simplicity, since the dependence on m of

the different integrals can be recovered by dimensional analysis. The integrals may diverge

in d = 4 dimensions. We therefore work in dimensional regularisation where d = d0 − 2ǫ
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Figure 1. The three-loop banana graph.

with d0 > 0 a positive integer. Accordingly, all integrals are interpreted as a Laurent series

in the dimensional regulator ǫ.

Let us now focus on the integrals in eq. (2.1). Using integration-by-parts identities [59,

60], we can express any member of this integral family in terms of four distinct master

integrals. Moreover, we can use dimensional shift identities [61–66] to relate the coefficients

of the Laurent expansion of these master integrals in d = 4− 2ǫ to the corresponding ones

in d = 2− 2ǫ dimensions. Indeed, since all integrals are IR finite, by lowering the number

of dimensions we improve their UV behaviour. This allows us to choose a finite basis of

master integrals as follows

I1(ǫ;x) = (1 + 2ǫ)(1 + 3ǫ)I1,1,1,1,0,0,0,0,0(p
2, 1; 2− 2ǫ) ,

I2(ǫ;x) = (1 + 2ǫ)I2,1,1,1,0,0,0,0,0(p
2, 1; 2− 2ǫ) ,

I3(ǫ;x) = I2,2,1,1,0,0,0,0,0(p
2, 1; 2− 2ǫ) ,

(2.4)

where x has been defined in eq. (2.3). The fourth master integral is the three-loop tadpole

with squared propagators, which in our normalisation evaluates to

I0(ǫ;x) = I2,2,2,0,0,0,0,0,0(p
2, 1; 2− 2ǫ) = 1 . (2.5)

The main goal of this paper is to present analytic results for the three master integrals

in eq. (2.4) in d = 2 dimensions, i.e. for ǫ = 0. We stress that this is sufficient to obtain

results in d = 4 − 2ǫ dimensions up to terms that are suppressed by powers of ǫ, as one

can easily verify from the relevant dimensional shift relations [61, 66]. As an example, the

relation needed to express the master integral I1(d;x) in terms of the four masters in d− 2

dimensions reads

I1(d;x) = c1(d;x)I1(d− 2;x) + c2(d;x)I2(d− 2;x) + c3(d;x)I3(d− 2;x)

+ c0(d;x)I0(d− 2;x) ,
(2.6)

where the coefficients are

c1(d;x) =
1− 20x

3x
+O(d− 4) ,

c2(d;x) =
12− 16x(5 + 7x)

3x2
+O(d− 4) ,

c3(d;x) =
8(1− 4x)(1 + 2x(5 + 2x))

3x3
+O(d− 4) ,

c4(d;x) = −2 +O(d− 4) .

(2.7)
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Inspecting eq. (2.6), we see that expanding the left hand side around d = 4 corresponds to

expanding the integrals on the right hand side in two dimensions. Since all coefficients in

eq. (2.7) are finite in this limit, this implies that the finite pieces of the master integrals

expanded close to d = 2 are sufficient to obtain the finite terms of the corresponding

integrals in d = 4. Moreover, since the only divergent integral on the right hand side is

I0(d;x), it is clear that the poles of the banana integrals close to d = 4 arise exclusively

from the tadpole integral.

2.2 The system of differential equations satisfied by the banana family

It is well known that master integrals satisfy differential equations in the external kinematic

variables [67–71]. For the three non-trivial master integrals of the banana graph defined

in the previous subsection, this system of differential equations can be written as [57]

∂x






I1(ǫ;x)
I2(ǫ;x)
I3(ǫ;x)




 =

[

B(x) + ǫD(x)
]






I1(ǫ;x)
I2(ǫ;x)
I3(ǫ;x)




+






0

0

− 1
2(4x−1)




 , (2.8)

where the matrices B(x) and D(x) are given by

B(x) =






1
x

4
x 0

1
4(1−x)

1
x + 2

1−x
3
x + 3

1−x

− 1
8(1−x) +

1
8(1−4x) − 1

1−x + 3
2(1−4x)

1
x + 6

1−4x − 3
2(1−x)




 , (2.9)

D(x) =






3
x

12
x 0

1
1−x

2
x + 6

1−x
6
x + 6

1−x

− 1
2(1−x) +

1
2(1−4x) − 3

1−x + 9
2(1−4x)

1
x + 12

1−4x − 3
1−x




 . (2.10)

The inhomogeneity arises from the tadpole master integral in eq. (2.5), which does not de-

pend on x and therefore decouples entirely from the system of differential equations. Since

in this paper we are only concerned with the value of the integrals in d = 2 dimensions, we

can let ǫ = 0 in eq. (2.8), which removes the dependence on the matrix D(x). From now

on we therefore focus on this simpler system. Introducing the shorthand Ii(x) ≡ Ii(0;x)
for the master integrals evaluated at ǫ = 0, the system reads

∂x






I1(x)
I2(x)
I3(x)




 = B(x)






I1(x)
I2(x)
I3(x)




+






0

0

− 1
2(4x−1)




 . (2.11)

Let us sketch how to solve this system using the method of variation of constants. Assume

that we can find a fundamental solution matrix to eq. (2.11), i.e., a 3 × 3 matrix W(x)

satisfying the homogeneous equation associated to eq. (2.11),

∂xW(x) = B(x)W(x) . (2.12)

We then see that the vector (M1(x),M2(x),M3(x))
T defined as






I1(x)
I2(x)
I3(x)




 = W(x)






M1(x)

M2(x)

M3(x)




 (2.13)
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satisfies the inhomogeneous system of differential equations

∂x






M1(x)

M2(x)

M3(x)




 = W−1(x)






0

0

− 1
2(4x−1)




 , (2.14)

which can now easily be solved by quadrature. We note that W(x) is always invertible for

generic values of x because its columns span the three-dimensional solution space of the

homogeneous system in eq. (2.12) and are therefore linearly independent.

Solving the differential equation involves then two steps:

1. Finding a fundamental solution matrix W(x) satisfying the homogeneous differential

equation in eq. (2.12).

2. Solving eq. (2.14) by quadrature. This involves in particular computing integrals over

(products of) the entries of the fundamental solution matrix.

In the remainder of this section we review how to construct the fundamental solution

matrix W(x) in the case of the equal-mass banana graph. The entries of W(x) are in

general transcendental functions, so that the second step will involve the computation of

integrals over transcendental functions. The main goal of this paper is to show how these

integrals can be systematically performed in terms of iterated integrals over known objects.

2.3 The fundamental solution matrix

In general, it can be very complicated to find the fundamental solution matrix of a system

of differential equations. In the case of Feynman integrals, the fundamental solution matrix

can be obtained by studying the maximal cut of the integrals [23, 72, 73]. For the equal-mass

banana graph, there is an alternative way to solve the homogeneous differential equation

in eq. (2.12) [51, 57], which we review in the remainder of this section.

It will be convenient to introduce the following parametrisation of the fundamental

solution matrix,

W(x) =






H1(x) J1(x) I1(x)

H2(x) J2(x) I2(x)

H3(x) J3(x) I3(x)




 . (2.15)

Next, we convert the linear first-order system of differential equations in eq. (2.12) into a

third-order differential equation for the first line of W(x),

L(3)
x H1(x) = L(3)

x J1(x) = L(3)
x I1(x) = 0 , (2.16)

where L(3)
x is the third-order linear differential operator [51, 57]

L(3)
x = ∂3

x +
3(8x− 5)

2(x− 1)(4x− 1)
∂2
x +

4x2 − 2x+ 1

(x− 1)(4x− 1)x2
∂x +

1

x3(4x− 1)
. (2.17)
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This can be achieved in a standard way by using the system of differential equations to

re-express H2(x) and H3(x) in terms of H1(x) and its derivatives, namely

H2(x) =
1

4
(x ∂x − 1)H1(x)

H3(x) =
1

12
(x2(1− x) ∂2

x − x(1 + x) ∂x + 1)H1(x) ,

(2.18)

yielding in this way a third-order differential equation satisfied by H1(x). If a solution for

H1(x) can be found by solving this higher-order equation, the corresponding solutions for

H2(x) and H3(x) can be recovered by differentiating H1(x) according to eq. (2.18). The

same reasoning can of course be applied to the other two columns of W(x), i.e. to the

solutions Ji(x) and Ii(x).

In general, solving a third-order differential equation is a formidable task, and no

general algorithm is known for finding the kernel of a generic third-order linear differential

operator. It turns out, however, that the operator L(3)
x is very special, and its solution can

be expressed in terms of the solutions to the following second-order differential operator,

L(2)
x = ∂2

x +
8x− 5

2(x− 1)(4x− 1)
∂x −

2x− 1

4x2(x− 1)(4x− 1)
. (2.19)

Specifically, L(3)
x is the symmetric square of the operator L(2)

x [74], meaning that the three

independent solutions of L(3)
x are the products of the two independent solutions of L(2)

x .

The solutions of L(2)
x , in turn, can be expressed in terms of complete elliptic integrals of the

first kind. With this insight, one finds that the three independent homogeneous solutions

can be suitably written as [57, 74]

H1(x) =
√

λ+(x)λ−(x)K
(
λ+(x)

)
K
(
λ−(x)

)
,

J1(x) =
√

λ+(x)λ−(x)K
(
λ+(x)

)
K
(
1− λ−(x)

)
,

I1(x) =
√

λ+(x)λ−(x)K
(
1− λ+(x)

)
K
(
1− λ−(x)

)
,

(2.20)

where we defined

λ±(x) =
4x

2x+ (1− 2x)
√

x−1
x ±

√
4x−1
x

, (2.21)

and K denotes the complete elliptic integral of the first kind

K(λ) =

∫ 1

0

dt
√

(1− t2)(1− λt2)
. (2.22)

By inspecting eq. (2.20), one might wonder why we have used four apparently independent

building blocks to construct the solutions, i.e. K
(
λ+(x)

)
, K

(
λ−(x)

)
, K

(
1 − λ+(x)

)
, and

K
(
1−λ−(x)

)
, when we stated explicitly that all three solutions can be written as products

of only two independent functions. Indeed, the four functions above are not independent

and the explicit relations among them are non-trivial as they require to cross the branch

cut of K(x) and therefore depend on the prescription we adopt to do so. Instead, working

with an over-complete number of functions has the advantage of allowing us to choose a
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compact representation for the solutions, which have the correct analytic properties. For

an explicit solution in terms of two functions only, see eq. (3.13) in the next section.

We have thus obtained the components of the first row of the fundamental solution

matrix in eq. (2.15). The other rows can be obtained from eq. (2.18): they involve deriva-

tives of complete elliptic integrals of the first kind that are expressible in terms of complete

elliptic integrals of the second kind,

E(λ) =

∫ 1

0
dt

√

1− λt2

1− t2
. (2.23)

The complete set of results for the fundamental solution matrix can be found for example

in ref. [57].

The previous discussion makes it clear that, upon inserting the solution for W(x) into

eq. (2.14), the Mi(x) will naturally be expressed as integrals over products of complete el-

liptic integrals of the first and second kind. This program was carried out in ref. [57]. It is

a priori not obvious if/how these new classes of iterated integrals can be expressed in terms

of other classes of special functions that have appeared in Feynman integral computations

and/or pure mathematics. The main goal of this paper is to show that it is indeed possible

to express all master integrals for the banana family in terms of a known set of special func-

tions: the class of functions that naturally appear in the solution of the two-loop sunrise in-

tegral family with three equal masses. The connection between the two families of integrals

will be explored in more detail in the next section before we return to our original problem.

3 The geometry associated to the two-loop sunrise graph

3.1 Relating the equal-mass banana and sunrise graphs

The purpose of this subsection is to set the stage for the mathematical objects that will

appear in the analytic result for the master integrals of the equal-mass banana graph in

d = 2 dimensions presented in section 4. As anticipated at the end of the previous section,

the relevant functions will essentially be identical to those appearing in the computation

of the equal-mass two-loop sunrise family

Sa1,...,a5(p
2,m2; d) =

∫

D
dℓ1D

dℓ2
(ℓ1 · p)a4(ℓ2 · p)a5

[ℓ21 −m2]a1 [ℓ22 −m2]a2 [(ℓ1 − ℓ2 − p)2 −m2]a3
, (3.1)

where the integration measure was defined in eq. (2.2).

It has been known for a long time [4, 75] that in the case where all three propagators

are massive, the sunrise integral cannot be expressed in terms of polylogarithmic functions,

but instead requires the introduction of functions related to elliptic integrals.

By now we know several analytic representations for the sunrise family, all of which

require the introduction of new classes of functions which generalise multiple polylogarithms

and elliptic integrals. In the remainder of this section we review the class of functions

relevant to the sunrise graph. As we will see in section 4 below, some of these classes of

functions also appear in the banana graph.
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We start with some general facts about the sunrise family. Since all of these results are

in principle well known (cf., e.g., refs. [7, 22]), and all the technical steps are very similar to

the case of the banana family discussed in the previous section, we will be rather brief and

only highlight the main points. The equal-mass sunrise family has three master integrals.

One of these master integrals can be chosen as the tadpole integral S2,2,0,0,0(p
2,m2; 2−2ǫ),

which equals one in our normalisation (cf. eq. (2.5)).

Following ref. [22], we choose the remaining two master integrals as1

S1(ǫ; t) = −S1,1,1,0,0(p
2,m2; 2− 2ǫ) ,

S2(ǫ; t) = −
[
1

3
(t2 − 6t+ 21)− 12ǫ(t− 1)

]

S1,1,1,0,0(p
2,m2; 2− 2ǫ)

− 2(t− 1)(t− 9)S2,1,1,0,0(p
2,m2; 2− 2ǫ),

(3.2)

where we encode the kinematics in the dimensionless variable t = p2/m2. Note that

the variable t should not be confused with the variable x defined in eq. (2.3) for the

banana graph: the two quantities are not trivially related. The precise relation between

the quantity x for the banana family and the kinematical variable t defined here will be

discussed below.

Just like for the banana family, we will put m = 1 in the following, as its dependence

can be restored later on by simple dimensional analysis. The master integrals in eq. (3.2)

satisfy the following system of differential equations [22],

∂t

(

S1(ǫ; t)

S2(ǫ; t)

)

= (B̃(t)− 2ǫD̃(t))

(

S1(ǫ; t)

S2(ǫ; t)

)

+

(

0

1

)

, (3.3)

where B̃(t) and D̃(t) are 2 × 2 matrices which are independent of ǫ, while the inhomoge-

neous term comes from the tadpole master integral which decouples from the system of

differential equations. For simplicity, in the following we focus on the sunrise family in

d = 2 dimensions. The master integrals Si(ǫ; t) = Si(t)+O(ǫ) are finite in two dimensions,

so we can let ǫ = 0 in eq. (3.3) and ignore the contribution from D̃(t). The matrix B̃(t) is

given by ref. [22]. Adapted to our conventions, it reads,

B̃(t) =
1

6 t (t− 1)(t− 9)

(

3(3 + 14t− t2) −9

(t+ 3)(3 + 75t− 15t2 + t3) −3(3 + 14t− t2)

)

. (3.4)

We first have to solve the homogenous equation associated to eq. (3.3), i.e., we need

to find a 2 × 2 matrix WS(t) that satisfies ∂tWS(t) = B̃(t)WS(t). The solution to the

inhomogeneous equation for ǫ = 0 in eq. (3.3) is then obtained by defining the new basis

(S1(t),S2(t))
T = WS(t)(T1(t), T2(t))T which fulfils the simpler inhomogeneous differential

equation,

∂t

(

T1(t)
T2(t)

)

= WS(t)
−1

(

0

1

)

. (3.5)

1In ref. [22], the master integrals S1 and S2 are named g6 and g7 and are defined in eq. (7.7). The

kinematical parameter u in [22] equals our parameter t, after taking into account that propagators are

Euclidean in the definition (5.1) of the integrals in that reference.
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The 2 × 2 system satisfied by WS(t) is equivalent to a linear second-order differential

equation for the functions in the first row of WS(t) [7]:

L(2)
t = ∂2

t +

(
1

t− 9
+

1

t− 1
+

1

t

)

∂t +

(
1

12(t− 9)
+

1

4(t− 1)
− 1

3t

)

. (3.6)

We choose its kernel to be spanned2 by the functions Ψ1 and Ψ2:

Ψ1(t) =
4

[(3−
√
t)(1 +

√
t)3]1/2

K

(
t14(t)t23(t)

t13(t)t24(t)

)

,

Ψ2(t) =
4i

[(3−
√
t)(1 +

√
t)3]1/2

K

(
t12(t)t34(t)

t13(t)t24(t)

)

,

(3.7)

with tij(t) = ti(t)− tj(t) and

t1(t) = −4 , t2(t) = −(1 +
√
t)2 , t3(t) = −(1−

√
t)2 , t4(t) = 0 . (3.8)

The period matrix for the sunrise differential equation is then,

WS(t) =

(

Ψ1(t) Ψ2(t)

DtΨ1(t) DtΨ2(t)

)

, (3.9)

with Dt =
1
3(3+14t−t2)− 2

3 t(t−9)(t−1)∂t. Note that Ψ1(t) and Ψ2(t) are naturally related

to the maximal cut of the integral S1,1,1,0,0(p,m
2; 2) [7]. It turns out that the second-order

differential operator L(2)
t in eq. (3.6) is closely related to the second-order operator L(2)

x for

the banana graph provided in eq. (2.19). Indeed, relating the kinematical variables for the

sunrise and the banana graph via

x(t) =
−4 t

(t− 1)(t− 9)
, (3.10)

one finds

L(2)
x = L̃(2)

t = ∂2
t +

(
1

t− 9
+

1

t− 1

)

∂t +

(
1

36(t− 9)
− 1

4(t− 1)
+

1

4t2
+

2

9t

)

. (3.11)

This is not quite the same operator as in eq. (3.6). However, one can verify that

L̃(2)
t

√
tΨ1(t) = L̃(2)

t

√
tΨ2(t) = 0 , (3.12)

that is, the solutions to the two differential operators differ by a square root of t.

In section 2.3 we stated that the third-order differential operator L(3)
x in eq. (2.17) is

the symmetric square of L(2)
x . Correspondingly, the solutions of L(3)

x are sums of products

of the functions in eq. (3.7) with an additional factor of (
√
t)2 = t which can be precisely

traced back to eq. (3.12). In particular, it is straightforward to check that the functions in

eq. (2.15) can be cast in the following alternative form which makes manifest the connection

2In terms of the solutions in ref. [22] one finds that for the region 0 < t < 1 we can relate the solutions

as Ψ1(t) = 2I
(0,1)
1 (t) and Ψ2(t) = 2iJ

(0,1)
1 (t), where the integrals on the right-hand side are defined in

eq. (D.11) in ref. [22].

– 10 –



J
H
E
P
0
9
(
2
0
1
9
)
1
1
2

between the fundamental solution matrix for the banana graph, W(x), and the one for the

sunrise, WS(t), namely

H1(x(t)) = −1

3
tΨ1(t)

2 ,

J1(x(t)) =
i

3
tΨ1(t) (Ψ1(t) + Ψ2(t)) ,

I1(x(t)) =
1

3
t (Ψ1(t) + Ψ2(t)) (Ψ1(t) + 3Ψ2(t)) .

(3.13)

We see that, as expected, the solutions of L(3)
x are sums of products of the solutions of L(2)

x

with an additional prefactor of t.

Equation (3.13) is our first hint that the function spaces of the sunrise and banana

families in d = 2 dimensions are closely related. Since the two-loop sunrise graph can

be expressed in terms of elliptic polylogarithms [17–21, 33, 76] and iterated integrals of

modular forms [35, 46], it is tantalising to investigate whether the same class of functions

describes the banana family in d = 2 dimensions as well. This was already hinted at in

ref. [51], where it was argued that the three-loop equal-mass banana graph is an elliptic

trilogarithm and closely related to the same congruence subgroup relevant to the two-loop

equal-mass sunrise graph. In the remainder of this paper we make this connection concrete,

and we present analytic results for the equal-mass banana graph in d = 2 dimensions in

terms of the same class of functions as for the two-loop equal-mass sunrise graph.

3.2 The elliptic curve associated to the sunrise graph

Since the goal of this paper is to show that the equal-mass sunrise and banana graphs can

be expressed in terms of the same class of functions, let us review in the remainder of this

section the geometric objects and functions that appear in the computation of the two-loop

equal-mass sunrise graph.

In the previous section we have seen that the homogeneous solutions of the second order

differential equation satisfied by the two-loop equal-mass sunrise graph can be expressed in

terms complete elliptic integrals of the first kind, cf. eq. (3.7). The appearance of complete

elliptic integrals is closely related to the presence of an elliptic curve in the geometry

associated to the problem. Loosely speaking, an elliptic curve can be defined as the set of

points (x, y) that solve the polynomial equation y2 = (x − a1) · · · (x − a4), where the ai
are complex numbers that are constants with respect to (x, y). Instead of characterising

an elliptic curve by the roots ai of the polynomial equation, we can also characterise it by

its two periods, defined by

ω1 = 2 K(λ) and ω2 = 2i K(1− λ) , with λ =
(a1 − a4)(a2 − a3)

(a1 − a3)(a2 − a4)
. (3.14)

The periods are not uniquely defined, but we could replace them by any integer linear

combination of the ω1 and ω2 chosen above. More precisely, the periods are only defined

modulo SL(2,Z) transformations, which act on the two periods as follows
(

ω2

ω1

)

→
(

a b

c d

)(

ω2

ω1

)

,

(

a b

c d

)

∈ SL(2,Z) . (3.15)

– 11 –



J
H
E
P
0
9
(
2
0
1
9
)
1
1
2

Such transformations are called modular transformations. The geometry is also left un-

changed by a rescaling, and so only the ratio of the two periods carries relevant information

τ =
ω2

ω1
= i

K(1− λ)

K(λ)
, (3.16)

where it is customary to refer to τ as the modular parameter of the elliptic curve. Modular

transformations act on τ via Möbius transformations,

τ → aτ + b

cτ + d
,

(

a b

c d

)

∈ SL(2,Z) . (3.17)

Note that it is always possible to choose τ to lie in the complex upper half-plane H = {τ ∈
C | Im τ > 0}.

In many situations one is not interested in modular transformations associated with

the full group SL(2,Z), but only a subgroup Γ ⊂ SL(2,Z) is relevant. In particular, in

many applications in mathematics and physics the various congruence subgroups of level

N play a prominent role,

Γ0(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣
∣ c ≡ 0 mod N

}
,

Γ1(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣
∣ a, d ≡ 1 mod N and c ≡ 0 mod N

}
,

Γ(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣
∣ a, d ≡ 1 mod N and b, c ≡ 0 mod N

}
.

(3.18)

Let us now discuss how a family of elliptic curves arises from the sunrise graph. We

see from eq. (3.14) that the periods of an elliptic curve can be expressed in terms of

complete elliptic integrals of the first kind. The same is true for the functions Ψ1(t) and

Ψ2(t), which define two independent periods of a family of elliptic curves parametrised

by the parameter t. The polynomial equation describing a member of this family is y2 =

(x− t1(t)) . . . (x− t4(t)), where the ti(t) were defined in eq. (3.8). A member of this family

can be defined equivalently by specifying the value of t or of the modular parameter τ ,

τ =
Ψ2(t)

Ψ1(t)
. (3.19)

It is possible to invert eq. (3.19) and express t as a function of τ [77],

t(τ) = 9
η(τ)4η(6τ)8

η(2τ)8η(3τ)4
, (3.20)

where η(τ) denotes the Dedekind η-function,

η(τ) = q1/24
∞∏

n=1

(1− qn), q = e2πiτ . (3.21)

The function t(τ) is invariant under modular transformations for Γ1(6),

t

(
aτ + b

cτ + d

)

= t(τ) ,

(

a b

c d

)

∈ Γ1(6) . (3.22)
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Therefore, the family of elliptic curves associated to the sunrise graph is tightly related to

the congruence subgroup Γ1(6) [17, 46].
3

In general, we need to consider not only functions that are invariant under

Γ ⊂ SL(2,Z), but also functions with non-trivial transformation behaviour. A modular

form of weight n for Γ is a holomorphic function f which transforms covariantly under

modular transformations for the group Γ,

f

(
aτ + b

cτ + d

)

= (cτ + d)nf(τ) ,

(

a b

c d

)

∈ Γ , (3.23)

subject to some regularity conditions which we can ignore at this point. It is easy to see

that modular forms define an algebra: the product of two modular forms of weights n1

and n2 is a modular form of weight n1 + n2. If we denote by Mn(Γ) the vector space of

modular forms of weight n for Γ, then Mn(Γ) is always finite-dimensional. It is possible

to construct bases for Mn(Γ) in a completely algorithmic way. Here we only discuss the

case Γ = Γ1(6), which is relevant to the computation of the equal-mass sunrise and banana

graphs. The basis described below was introduced in ref. [78].

We start by noting that the function

f1,0(τ) = Ψ1(t(τ)) (3.24)

is a modular form of weight one for Γ1(6) [46, 78]. Since modular forms form an alge-

bra, it is clear that (f1,0(τ))
n will define a modular form of weight n. Moreover, since

t(τ) in eq. (3.20) is invariant under Γ1(6), multiplying powers of f1,0(τ) by any (rational)

function of t(τ) will not change the behaviour under modular transformations for Γ1(6).

The requirement that modular forms be holomorphic everywhere restricts these rational

functions to be polynomials. The maximal power of this polynomial can be constrained by

analysing the behaviour of Ψ1(t) for large values of t (for details see ref. [78]). With these

considerations, one finds that a basis of Mn(Γ1(6)) is given by the functions [78]

fn,p(τ) = Ψ1(t(τ))
n t(τ)p , 0 ≤ p ≤ n . (3.25)

Note that this definition extends to modular forms of weight zero, f0,0(τ) = 1. The

advantage of this basis in the context of the sunrise and banana graphs will be discussed

in the remainder of this section.

3.3 A class of iterated integrals of modular forms for Γ1(6)

After this excursion into the geometry associated to the sunrise graph, let us now review

what it can teach us about the functions the sunrise graph evaluates to. It is known that

the two-loop equal-mass sunrise integral can be expressed in terms of iterated integrals of

modular forms for Γ1(6) [46]. In this section we give a short review of these functions with

a special focus on the case of Γ1(6).

3Depending on whether one starts from the elliptic curve obtained from the Feynman parameter integral

or the maximal cut, one may instead find Γ1(12), see ref. [46] for a detailed discussion.
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If fia(τ) are modular forms of weight nia for a congruence subgroup Γ, we define the

iterated integrals [44, 45]

I(fi1 , . . . , fik ; τ) =
∫ τ

i∞
dτ ′ fi1(τ

′) I(fi2 , . . . , fik ; τ ′) . (3.26)

In general these integrals may diverge, but the divergences can be regulated in a standard

way [45] (see also ref. [46] for a pedagogical introduction). Moreover, these integrals satisfy

all the properties of iterated integrals. In particular they form a shuffle algebra. We define

the length of I(fi1 , . . . , fik ; τ) as k.
Let us now discuss how we can associate a concept of transcendental weight to the

functions I(fi1 , . . . , fik ; τ). If Γ is a congruence subgroup of level N , then modular forms

for Γ are invariant under translations by N , fia(τ + N) = fia(τ). Hence, fia(τ) admits a

Fourier series of the form

fia(τ) =
∞∑

n=0

an q
n
N , qN = e2πiτ/N . (3.27)

It is always possible to choose a basis such that the Fourier coefficients are rational multiples

of πnia . With this normalisation, we define the transcendental weight4 of I(fi1 , . . . , fik ; τ)
to be

∑k
a=1 nia . The rationale behind this definition will become clear in the next section.

In the case Γ = Γ1(6), we can work with the explicit basis of modular forms in eq. (3.25)

and we define

I( n1 ... nk
p1 ... pk ; τ) = I(fn1,p1 , . . . , fnk,pk ; τ) . (3.28)

It is easy to check that the modular forms fn,p(τ) are normalised such that their Fourier

coefficients are proportional to πn. Hence, I( n1 ... nk
p1 ... pk ; τ) has length k and weight

∑k
a=1 na.

The iterated integrals I( n1 ... nk
p1 ... pk ; τ) have an important property: they allow for an

alternative description in terms of iterated integrals over products of complete elliptic

integrals, similar to those that have appeared in refs. [22, 57] in the context of the sunrise

and banana graphs. The basic idea is the following: we see from eq. (3.25) that if we

change variables from τ to t using eq. (3.19), then fn,p(τ) is proportional to Ψ1(t)
n. The

Jacobian of the change of variables is given by

dτ = − 6πi dt

t(t− 1)(t− 9)Ψ1(t)2
, (3.29)

where we used the fact that

detWS(t) = −2

3
t(t− 9)(t− 1) [Ψ1(t) ∂tΨ2(t)−Ψ2(t) ∂tΨ1(t)] = 4πi . (3.30)

Hence, the integration kernels that define the iterated integrals can be cast in the form

dτ fn,p(τ) = − 6πi dt tp−1

(t− 1)(t− 9)
Ψ1(t)

n−2 , (3.31)

4Note that the transcendental weight of the iterated integrals is distinct from the weight of a modular

form under modular transformations. In particular, the iterated integrals will in general not be modular

forms.
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and in this way we obtain an alternative description of the iterated integrals for Γ1(6) as

iterated integrals over products of complete elliptic integrals,

I( n1 ... nk
p1 ... pk ; τ) = −6πi

∫ t(τ)

0

dt′ t′p1−1

(t′ − 1)(t′ − 9)
Ψ1(t

′)n1−2 I
( n2 ... nk
p2 ... pk ; τ

′(t′)
)
. (3.32)

We see that the basis of modular forms in eq. (3.25) and the iterated integrals in eq. (3.28)

allow us to easily switch between the two representations in terms of modular forms or

products of complete elliptic integrals. This observation will be the key to expressing the

master integrals for the banana family as iterated integrals of modular forms for Γ1(6).

Before we do this, we find it instructive to review the same procedure in the context of the

master integrals for the sunrise family.

3.4 The sunrise integral and modular forms for Γ1(6)

To see how the two-loop sunrise integral can be expressed in terms of iterated integrals of

modular forms, we start from the differential equation in eq. (3.5), which we rewrite as

∂t

(

T1(t)
T2(t)

)

=
1

4πi

(

−Ψ2(t)

Ψ1(t)

)

. (3.33)

We change variables from t to the modular parameter τ using eq. (3.20). The Jacobian of

the change of variables can easily be read of from eq. (3.29). We find

∂τ = − 1

6πi
t(τ)(t(τ)− 1)(t(τ)− 9)Ψ1(t(τ))

2 ∂t , (3.34)

and so eq. (3.33) becomes

∂τ

(

T1(t(τ))
T2(t(τ))

)

=
1

24π2
t(τ)(t(τ)− 1)(t(τ)− 9)Ψ1(t(τ))

2

(

−Ψ2(t)

Ψ1(t)

)

=
1

24π2
(f3,3(τ)− 10f3,2(τ) + 9f3,1(τ))

(

−τ

1

)

=
1

24π2
(f3,3(τ)− 10f3,2(τ) + 9f3,1(τ))

(

−I( 00 ; τ)
1

)

,

(3.35)

where we used the fact that

τ =

∫ τ

i∞
dτ ′f0,0(τ

′) = I( 00 ; τ) . (3.36)

We can choose as initial condition the point t = 0, which corresponds to τ → i∞. Trans-

lating the results of ref. [22] to our conventions we find

T1(t) = Cl2(π/3) +O(t) ,

T2(t) = 0 +O(t) .
(3.37)

Here Cl2(x) denotes the Clausen function,

Cl2(x) =
i

2
(Li2(e

−ix)− Li2(e
ix)) . (3.38)
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We then find the following result for Ti,

T1(t(τ)) =
Cl2(π/3)

2π
− 1

24π2
[I( 3 0

3 0 ; τ)− 10 I( 3 0
2 0 ; τ) + 9 I( 3 0

1 0 ; τ)] ,

T2(t(τ)) =
1

24π2
[I( 33 ; τ)− 10 I( 32 ; τ) + 9 I( 31 ; τ)] .

(3.39)

Let us make a comment about the form of the result for the sunrise graph in eq. (3.39).

It is easy to see that the result in eq. (3.39) is a linear combination of functions of uniform

weight one, where the weight of the iterated integrals of modular forms was defined earlier,

and the weight of Clausen function and π is defined in the usual way. This fact was first

observed in ref. [36].

4 Analytic results for the equal-mass banana graph

After a brief detour through the sunrise integral family, in this section we return to the

banana family and present the main results of this paper. We derive fully analytic results

for all master integrals for the equal-mass banana graphs in d = 2 dimensions. In order to

achieve this, we proceed in exactly the same way as for the sunrise graph in the previous sec-

tion: we start by showing how we can relate the fundamental solution matrix of the system

of differential equations satisfied by the master integrals for the banana family, eq. (2.11),

to modular forms for Γ1(6). In particular, we express the results for all master integrals in

terms of the iterated integrals of modular forms for Γ1(6) defined earlier in eq. (3.28).

After representing the equal-mass banana integral in terms of modular forms for Γ1(6),

we carry on with the main theme of this paper and ask whether the banana integral can also

be recast in terms of other functions used in the past to represent the sunrise integral [46].

We then show the result for the banana integral in terms of iterated integrals of Eisenstein

series of level six and elliptic multiple polylogarithms (eMPLs).

4.1 The equal-mass banana graph and modular forms for Γ1(6)

We start from eq. (3.13), which relates the entry H1(x) in the fundamental solution matrix

W(x) to the maximal cut of the equal-mass sunrise graph in d = 2 dimensions. Comparing

eqs. (3.13) and (3.25), we immediately see that

H1(x(τ)) = −1

3
f2,1(τ) ,

J1(x(τ)) =
i

3
f2,1(τ) (1 + τ) ,

I1(x(τ)) =
1

3
f2,1(τ) (1 + τ) (1 + 3τ) .

(4.1)

where x(τ) is obtained by composing eq. (3.10) with eq. (3.20), and can be written as [51, 56]

x(τ) = −4

(
η(2τ)η(6τ)

η(τ)η(3τ)

)6

. (4.2)

We see that after changing variables from x to τ , H1(x(τ)) is a modular form of weight

two for Γ1(6), while J1(x(τ)) and I1(x(τ)) are modular forms multiplied by a polynomial
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in τ . The other entries in W(x) also involve derivatives of Ψ1(t) and Ψ2(t), and so they

cannot be expressed in terms of f2,1(τ) and τ alone.

In a next step, let us rewrite the differential equations for the three master integrals of

the banana graph, eq. (2.14), in terms of the modular parameter τ and express them in the

language of modular forms for Γ1(6). In order to do so, we need to include the Jacobian

from the change of variables from x to τ , whose value is easily obtained by combining

eq. (3.10) with eq. (3.29). We find,

∂τ = − 2 t(τ)(t(τ)2 − 9)

3πi (t(τ)− 1)(t(τ)− 9)
Ψ1(t(τ))

2 ∂x . (4.3)

The desired differential equation immediately follows upon expressing the elements of the

fundamental solution matrix W(x) in terms of the basis of modular forms for Γ1(6) in

eq. (3.25) and inverting it. Note that the expression forW(x)−1 involves derivatives of Ψ1(t)

and Ψ2(t), but we find that the dependence on the derivatives drops out once eq. (3.30) is

imposed. Combining everything, we find

∂τ






M1(x(τ))

M2(x(τ))

M3(x(τ))




 =

f4,4(τ)− 10f4,3(τ) + 90f4,1(τ)− 81f4,0(τ)

18iπ3






3(1 + τ)2

−2i(2 + 3τ)

−1




 (4.4)

=
f4,4(τ)− 10f4,3(τ) + 90f4,1(τ)− 81f4,0(τ)

18iπ3






3(1 + I( 00 ; τ))2
−2i(2 + 3I( 00 ; τ))

−1




 .

The above differential equation can be solved by quadrature using the iterated integrals

defined in eq. (3.28). The initial condition of the differential equation can be obtained by

analysing the behaviour of the master integrals Ii(x) in eq. (2.4) as x → 0, which corre-

sponds to τ → i∞, the lower integration limit of the iterated integrals in eq. (3.26). We find,

I1(x) = x log3(−x/4)− 4xζ3 +O(x2) ,

I2(x) =
3

4
x log2(−x/4) +O(x2) ,

I3(x) =
1

2
x log(−x/4) +O(x2) .

(4.5)

The derivation of eq. (4.5) is straightforward but technical. We refer to appendix A for the

details. Putting everything together, we find the following result for the master integrals

of the equal-mass banana family in d = 2 dimensions,

M1(x(τ)) = −4ζ3
π2

− i

6π3

[
81I( 40 ; τ)− 90I( 41 ; τ) + 10I( 43 ; τ)− I( 44 ; τ)

+ 162I( 4 0
0 0 ; τ)− 180I( 4 0

1 0 ; τ) + 20I( 4 0
3 0 ; τ)− 2I( 4 0

4 0 ; τ)

+ 162I( 4 0 0
0 0 0 ; τ)− 180I( 4 0 0

1 0 0 ; τ) + 20I( 4 0 0
3 0 0 ; τ)− 2I( 4 0 0

4 0 0 ; τ)
]
,

M2(x(τ)) = − 1

9π3

[
162I( 40 ; τ)− 180I( 41 ; τ) + 20I( 43 ; τ)− 2I( 44 ; τ)

+ 243I( 4 0
0 0 ; τ)− 270I( 4 0

1 0 ; τ) + 30I( 4 0
3 0 ; τ)− 3I( 4 0

4 0 ; τ)
]
,

M3(x(τ)) =
i

18π3

[
81I( 40 ; τ)− 90I( 41 ; τ) + 10I( 43 ; τ)− I( 44 ; τ)

]
. (4.6)
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We note again that the integrals I( n0 ; τ) are formally logarithmically divergent for τ → i∞.

However, all divergences can be subtracted and shuffled out in the standard way such

that they are captured solely in terms of powers of I( 00 ; τ) = τ . After regularisation, all

iterated integrals of modular forms can be evaluated numerically with high precision, and

we have checked that eq. (4.6) numerically agrees with a direct numerical evaluation of

the corresponding Feynman parameter representation.

We can see that, just like the result for the sunrise integral in eq. (3.39), our results

in eq. (4.6) have uniform weight one. Unlike the sunrise result, however, the expressions

for Mi in eq. (4.6) do not have uniform length, i.e. they are composed of iterated integrals

with numbers of integrations ranging from one to three. It is possible to perform a change

of basis which casts the result as integrals which have both uniform length and weight. In

order to achieve this, we decompose the fundamental solution W into a semi-simple times

a unipotent matrix,

W = S U . (4.7)

An additional motivation to split the homogeneous solution into a semi-simple and a unipo-

tent part comes from ref. [36], where it was argued that this splitting naturally leads to

Feynman integrals of uniform weight. An algorithmic way to construct this splitting in the

present is described in appendix B. Given the solution matrix W and using eq. (3.19), we

can find the unipotent matrix

U =






1 − iΨ1(t)+Ψ2(t))
Ψ1(t)

− (Ψ1(t)+Ψ2(t))(Ψ1(t)+3Ψ2(t))
Ψ1(t)2

0 1 −2i(2Ψ1(t)+3Ψ2(t))
Ψ1(t)

0 0 1






=






1 −i(τ + 1) −(τ + 1)(3τ + 1)

0 1 −2i(3τ + 2)

0 0 1




 .

(4.8)

Using this decomposition, we find that

W(x(τ))






M1(x(τ))

M2(x(τ))

M3(x(τ))




 = S(τ)






M̃1(x(τ))

M̃2(x(τ))

M̃3(x(τ))




 , (4.9)

with 




M̃1(x(τ))

M̃2(x(τ))

M̃3(x(τ))




 = U(τ)






M1(x(τ))

M2(x(τ))

M3(x(τ))




 . (4.10)

The functions M̃i are of uniform weight two and of uniform length, given by

M̃1(x(τ)) = −4ζ3
π2

− i

3π3

(
81I( 0 0 4

0 0 0 ; τ)− 90I( 0 0 4
0 0 1 ; τ) + 10I( 0 0 4

0 0 3 ; τ)− I( 0 0 4
0 0 4 ; τ)

)
,

M̃2(x(τ)) =
1

3π3

(
81I( 0 4

0 0 ; τ)− 90I( 0 4
0 1 ; τ) + 10I( 0 4

0 3 ; τ)− I( 0 4
0 4 ; τ)

)
, (4.11)

M̃3(x(τ)) =
i

18π3

(
81I( 40 ; τ)− 90I( 41 ; τ) + 10I( 43 ; τ)− I( 44 ; τ)

)
.
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We can further see that the three different solutions M̃i are related to each other by taking

τ -derivatives:
M̃2(x(τ)) = i∂τM̃1(x(τ)) ,

M̃3(x(τ)) =
i

6
∂τM̃2(x(τ)) = −1

6
∂2
τM̃1(x(τ)) .

(4.12)

In eq. (4.11) we have expressed the banana integral family in terms of iterated integrals

of the same modular forms already encountered in the sunrise case. It is worth exploring

whether we can also represent the solution in terms of another class of functions which play

a prominent role in the analytic calculation of the two-loop sunrise graph: elliptic multiple

polylogarithms (eMPLs). In the following we show how we can recast eq. (4.11) in terms

of these functions.

4.2 Solution in terms of elliptic polylogarithms

In the previous section, we saw how the banana integral can be expressed in terms of

iterated integrals over the homogeneous solution of the sunrise integral. The sunrise in-

tegral itself has been computed in many different forms before. Here, we are particularly

interested in the fact that the sunrise integral can also be represented in terms of elliptic

polylogarithms [33]. It is therefore natural to ask the question whether it is possible to

express the banana integral in terms of elliptic polylogarithms as well. To answer this

question, let us recall the definition of the eMPLs as used in ref. [33] (see also ref. [41]),

Γ̃ ( n1 ... nk
z1 ... zk ; zk+1, τ) =

∫ zk+1

0
dw g(n1)(w − z1; τ) Γ̃ ( n2 ... nk

z2 ... zk ;w, τ) . (4.13)

Here the integration kernels g(n)(z; τ) are related to expansion coefficients of the Eisenstein-

Kronecker series as defined in ref. [33]. The exact form of these kernels is immaterial for

the following arguments, though it is important to note that for z = r
N + s

N τ , with r, s ∈ Z

and N ∈ N the integration kernels g can be expressed as

g(n)(
r

N
+

s

N
τ, τ) =

n∑

k=0

(2πi s
N )k

k!
h
(n−k)
N,r,s (τ) , (4.14)

where the functions h
(n−k)
N,r,s , 0 ≤ r, s < N , denote modular forms of weight k > 1 for Γ(N)

(cf. eq. (3.18)) defined as [35]

h
(k)
N,r,s(τ) = −

∑

(α,β)∈Z2

(α,β) 6=(0,0)

e2πi(sα−rβ)/N

(α+ βτ)2n
. (4.15)

Not all these Eisenstein series are linearly independent. In ref. [35] it was shown that the

Eisenstein series of weight k ≥ 2 for Γ(N) are spanned by the set {h(k)N,r,s}0≤r,s<N .

From this observation it follows that whenever all the arguments of an eMPL are

rational points, zi =
ri
N + τ si

N , then this function can be written as a linear combination of

Eisenstein series for Γ(N), defined as

I
(
n1 N1
r1 s1

∣
∣ . . .

∣
∣ nk Nk
rk sk ; τ

)
≡ I(h

(n1)
N1,r1,s1

, . . . , h
(nk)
Nk,rk,sk

; τ)

=

∫ τ

i∞
dτ ′ h

(n1)
N1,r1,s1

(τ ′) I
(
n2 N2
r2 s2

∣
∣ . . .

∣
∣ nk Nk
rk sk ; τ ′

)
,

(4.16)
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with h
(0)
0,0,0(τ) ≡ 1. The converse statement, however, is not always true: not every iterated

integral of Eisenstein series for Γ(N) can be written in terms of eMPLs evaluated at rational

points, but this is only possible for specific combinations of iterated integrals of Eisenstein

series (cf., e.g., refs. [45, 48, 79]). The combination of iterated integrals of Eisenstein series

that describes the sunrise integrals satisfies this criterion. It is therefore natural to ask

if the same holds true for the banana graph. In ref. [51] it was argued that the banana

integral with unit powers of the propagators corresponds to an elliptic trilogarithm. In the

remainder of this section we make this statement explicit and extend it to the other two

master integrals for the banana graph, and we show how the representation in terms of

eMPLs can be obtained.

In broad strokes, the strategy we follow is very simple: we write down a very general

ansatz of eMPLs of length three with rational arguments with N = 6. We can express

each of these in terms of iterated integrals of Eisenstein series for Γ(6) using the techniques

described in ref. [35], and we match this expression to our results for the banana integrals

from the previous section. At this point, however, we need to make a technical comment:

while eMPLs naturally give rise to iterated integrals of Eisenstein series for Γ(6), the

banana integrals in eq. (4.11) involve Eisenstein series for Γ1(6). Matching our ansatz of

eMPLs to eq. (4.11) is therefore not completely straightforward. However, since Γ1(6) is

a subgroup of Γ(6), we can express all Eisenstein series for Γ1(6) in terms of those for

Γ(6). In particular, at weight four (which is of relevance here, cf. eq. (4.11)), there are

four Eisenstein series for Γ1(6), which can be written as linear combinations of the basis of

Eisenstein series for Γ(6) as follows,

b1(τ) = h
(4)
6,0,1(τ) + h

(4)
6,1,1(τ) + h

(4)
6,2,1(τ) + h

(4)
6,3,1(τ) + h

(4)
6,4,1(τ) + h

(4)
6,5,1(τ) ,

b2(τ) = h
(4)
6,1,2(τ) + h

(4)
6,3,2(τ) + h

(4)
6,5,2(τ) ,

b3(τ) = h
(4)
6,1,0(τ) ,

b4(τ) = h
(4)
6,1,3(τ) + h

(4)
6,4,3(τ) .

(4.17)

Alternatively, the elements bi(τ) can be expressed in terms of the funtions fn,p(τ) defined

in eq. (3.25),

b1(τ) = − 91

2880
f4,0(τ) +

3

80
f4,1(τ)−

7

864
f4,2(τ) +

1

2160
f4,3(τ) +

7

77760
f4,4(τ) ,

b2(τ) =
13

720
f4,0(τ)−

1

180
f4,1(τ) +

1

216
f4,2(τ)−

1

180
f4,3(τ)−

1

19440
f4,4(τ) ,

b3(τ) = − 1

80
f4,0(τ)−

3

20
f4,1(τ) +

1

72
f4,2(τ)−

1

540
f4,3(τ) +

13

19440
f4,4(τ) ,

b4(τ) =
7

320
f4,0(τ) +

1

80
f4,1(τ)−

7

288
f4,2(τ) +

1

80
f4,3(τ)−

91

77760
f4,4(τ) .

(4.18)
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Using these relations, we can express every iterated integral in eq. (4.11) in terms of the

iterated integrals defined in eq. (4.16). We find

M̃1(x(τ)) =
36i

π3

(

21 I( 0 0
0 0 | 0 0

0 0 | 4 6
0 1 ; τ)− I( 0 0

0 0 | 0 0
0 0 | 4 6

1 0 ; τ) + 21 I( 0 0
0 0 | 0 0

0 0 | 4 6
1 1 ; τ)

+ 3 I( 0 0
0 0 | 0 0

0 0 | 4 6
1 2 ; τ)− 7 I( 0 0

0 0 | 0 0
0 0 | 4 6

1 3 ; τ) + 21 I( 0 0
0 0 | 0 0

0 0 | 4 6
2 1 ; τ)

+ 21 I( 0 0
0 0 | 0 0

0 0 | 4 6
3 1 ; τ) + 3 I( 0 0

0 0 | 0 0
0 0 | 4 6

3 2 ; τ) + 21 I( 0 0
0 0 | 0 0

0 0 | 4 6
4 1 ; τ)

− 7 I( 0 0
0 0 | 0 0

0 0 | 4 6
4 3 ; τ) + 21 I( 0 0

0 0 | 0 0
0 0 | 4 6

5 1 ; τ) + 3 I( 0 0
0 0 | 0 0

0 0 | 4 6
5 2 ; τ)

)

− 4ζ3
π2

,

M̃2(x(τ)) = −36

π3

(

21 I( 0 0
0 0 | 4 6

0 1 ; τ)− I( 0 0
0 0 | 4 6

1 0 ; τ) + 21 I( 0 0
0 0 | 4 6

1 1 ; τ)

+ 3 I( 0 0
0 0 | 4 6

1 2 ; τ)− 7 I( 0 0
0 0 | 4 6

1 3 ; τ) + 21 I( 0 0
0 0 | 4 6

2 1 ; τ)

+ 21 I( 0 0
0 0 | 4 6

3 1 ; τ) + 3 I( 0 0
0 0 | 4 6

3 2 ; τ) + 21 I( 0 0
0 0 | 4 6

4 1 ; τ)

− 7 I( 0 0
0 0 | 4 6

4 3 ; τ) + 21 I( 0 0
0 0 | 4 6

5 1 ; τ) + 3 I( 0 0
0 0 | 4 6

5 2 ; τ)
)

,

M̃3(x(τ)) = − 6i

π3

(

21 I( 4 6
0 1 ; τ)− I( 4 6

1 0 ; τ) + 21 I( 4 6
1 1 ; τ) + 3 I( 4 6

1 2 ; τ)

− 7 I( 4 6
1 3 ; τ) + 21 I( 4 6

2 1 ; τ) + 21 I( 4 6
3 1 ; τ) + 3 I( 4 6

3 2 ; τ)

+ 21 I( 4 6
4 1 ; τ)− 7 I( 4 6

4 3 ; τ) + 21 I( 4 6
5 1 ; τ) + 3 I( 4 6

5 2 ; τ)
)

. (4.19)

This result allows us to make the connection to eMPLs. In order to find a representation of

the M̃i in terms of eMPLs, we write a suitable ansatz for them in terms of eMPLs, rewrite

these eMPLs in terms of iterated integrals of Eisenstein series and then fix the coefficients

in the ansatz with the results given in eq. (4.19). The ansatz we have chosen mirrors the

observation that the M̃i are linear combinations of iterated integrals of modular forms of

uniform weight and length, that all iterated integrals have leading zero entries and that

only the last entry is a nontrivial modular form. Consequently, we chose elliptic multiple

polylogarithms of the form

Γ̃
(
0 ... 0
0 ... 0
︸ ︷︷ ︸

k−times

3−k
z1 ; z, τ

)

(4.20)

evaluated at rational points such that all solutions are related by adding or removing

leading zero entries. More precisely, our ansatz consists of all antisymmetric combinations

Γk
AS (

r1 r2
s1 s2 ) = Γ̃

(
0 ··· 0
0 ··· 0
︸ ︷︷ ︸

(3−k)−times

k
z1 ; z2, τ

)

− Γ̃
(
0 ··· 0
0 ··· 0
︸ ︷︷ ︸

(3−k)−times

k
−z1 ; z2, τ

)

, (4.21)

with zi =
ri
6 + si

6 τ for ri, si ∈ {0, . . . , 5} and for 1 ≤ k ≤ 3.

We find that the solutions M̃i can indeed be expressed in terms of elliptic multiple

polylogarithms and a possible representation is given by (for k = 1, 2, 3)

M̃k = Ckm̃k , (4.22)

where the prefactors are given by

C1 = −12 , C2 = − 6

π
, C3 = − 1

π2
, (4.23)
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and the functions mk are defined as

m̃k = −13319

96
Γk
AS (

0 3
1 0 ) +

2679

160
Γk
AS (

0 5
1 4 )−

77

10
Γk
AS (

0 3
2 0 ) (4.24)

− 2911

15
Γk
AS (

0 0
3 2 ) +

20261

1440
Γk
AS (

0 1
3 4 ) +

577

60
Γk
AS (

0 2
3 5 )−

22841

120
Γk
AS (

0 4
3 1 )

+
1639

180
Γk
AS (

0 4
3 5 )−

755827

7200
Γk
AS (

0 5
3 0 )−

1371547

2160
Γk
AS (

0 5
3 2 ) +

969431

720
Γk
AS (

0 5
3 3 )

− 1011209

2160
Γk
AS (

0 5
3 5 ) +

77

20
Γk
AS (

0 3
4 0 )−

70291

480
Γk
AS (

0 3
5 0 ) +

2679

160
Γk
AS (

0 5
5 4 )

− 10409

90
Γk
AS (

1 0
0 3 ) +

2197

300
Γk
AS (

1 5
0 5 )−

893

120
Γk
AS (

1 0
1 3 ) +

665

6
Γk
AS (

1 3
1 0 )

− 57739

288
Γk
AS (

1 0
2 1 ) +

36031

1440
Γk
AS (

1 0
2 5 )−

140

3
Γk
AS (

1 3
2 0 ) +

14

5
Γk
AS (

1 3
2 3 )

+
22867

360
Γk
AS (

1 3
3 0 )−

2069

40
Γk
AS (

1 4
3 3 )−

1427

40
Γk
AS (

1 0
4 3 ) +

847

40
Γk
AS (

1 0
4 4 )

+
7343

60
Γk
AS (

1 3
4 0 )−

1579

120
Γk
AS (

1 0
5 3 )−

55

8
Γk
AS (

1 0
5 4 ) +

6207

40
Γk
AS (

2 0
0 3 )

− 386267

720
Γk
AS (

2 0
0 4 )−

2197

40
Γk
AS (

2 1
0 0 )−

386267

360
Γk
AS (

2 4
0 2 ) +

386267

360
Γk
AS (

2 4
0 4 )

− 72913

360
Γk
AS (

2 3
3 0 ) +

1481

20
Γk
AS (

2 3
3 3 ) +

665

12
Γk
AS (

2 3
4 0 ) +

893

60
Γk
AS (

2 0
5 3 )

− 1367

30
Γk
AS (

3 0
3 5 )−

188113

10800
Γk
AS (

3 2
3 0 ) +

105

2
Γk
AS (

3 3
3 1 ) +

263

3
Γk
AS (

3 3
3 2 )

+
1582769

10800
Γk
AS (

3 4
3 0 )−

1555

8
Γk
AS (

3 5
3 0 ) +

77

10
Γk
AS (

3 3
4 0 ) +

203

30
Γk
AS (

3 0
5 3 )

− 21

2
Γk
AS (

3 3
5 3 ) +

14

5
Γk
AS (

3 3
5 4 ) +

8141

120
Γk
AS (

4 0
1 3 ) +

1271

24
Γk
AS (

4 3
1 0 )

− 1271

24
Γk
AS (

4 3
1 3 )−

386267

720
Γk
AS (

4 0
2 2 ) +

386267

720
Γk
AS (

4 2
2 0 ) +

386267

720
Γk
AS (

4 2
2 2 )

− 665

6
Γk
AS (

4 3
2 0 )−

386267

720
Γk
AS (

4 4
2 0 )−

31277

360
Γk
AS (

4 3
3 0 )−

147

5
Γk
AS (

4 3
3 3 )

− 386267

360
Γk
AS (

4 2
4 0 ) +

386267

720
Γk
AS (

4 4
4 0 )−

253

180
Γk
AS (

4 0
5 3 )−

1111

10
Γk
AS (

4 3
5 0 )

− 41

12
Γk
AS (

4 3
5 2 ) +

221

60
Γk
AS (

4 3
5 3 ) +

48

5
Γk
AS (

5 0
1 1 ) +

519

40
Γk
AS (

5 0
1 3 )

− 77

2
Γk
AS (

5 3
1 3 ) +

70
Γk
AS (

5 4
1 0 ) +

168

5
Γk
AS (

5 5
1 0 )−

1045553

720
Γk
AS (

5 0
2 2 )

+
231407

270
Γk
AS (

5 0
2 3 ) +

1127

60
Γk
AS (

5 3
2 0 ) +

518

5
Γk
AS (

5 3
2 3 ) +

2069

40
Γk
AS (

5 0
3 3 )

− 9379

360
Γk
AS (

5 3
3 0 )−

126

5
Γk
AS (

5 4
3 0 ) +

126

5
Γk
AS (

5 5
3 0 )−

21637

160
Γk
AS (

5 0
4 1 )

− 1579

160
Γk
AS (

5 0
4 5 ) +

518

5
Γk
AS (

5 1
4 1 ) +

223

10
Γk
AS (

5 3
4 0 ) +

24

5
Γk
AS (

5 4
4 0 )

+
14

5
Γk
AS (

5 4
4 5 )−

208783

144
Γk
AS (

5 0
5 1 ) +

1078601

2160
Γk
AS (

5 0
5 3 )−

141

10
Γk
AS (

5 0
5 5 )

− 37841

2700
Γk
AS (

5 2
5 0 ) +

321817

2700
Γk
AS (

5 3
5 0 )−

136121

2700
Γk
AS (

5 4
5 0 ) +

12277

300
Γk
AS (

5 5
5 0 ) .
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We note here that the boundary constant proportional to ζ3, appearing in eq. (4.19) does

not appear explicitly in this representation, as for k = 1 the term proportional to ζ3 is

contained in the combination of eMPLs.

5 Conclusion and outlook

In this paper we have presented for the first time fully analytic results for all master

integrals of the equal-mass three-loop banana graph. Our results are characterised by

remarkable simplicity, and they only involve the same class of functions that shows up also

in the two-loop equal-mass sunrise graph, namely iterated integrals for modular forms for

Γ1(6) and elliptic polylogarithms evaluated at rational points.

Our paper is also the first time that a family of Feynman integral whose associated

Picard-Fuchs operator is irreducible of order three has been evaluated analytically in terms

of a well-established class of transcendental functions. This result may have important

implications for tackling phenomenologically relevant three-loop processes involving mas-

sive virtual particles. In particular, the banana graph is the simplest subtopology that

appears in the computation of the three-loop corrections to Higgs production via gluon

fusion where the dependence on the top-quark mass is kept. While these corrections are

known numerically [80], no analytic solution is known. Correspondingly, the full analytic

result will necessarily involve integrals over the banana graphs. Our results in terms of

iterated integrals of modular forms are well suited to perform these integrals. Most likely,

however, also higher orders in the ǫ-expansion of the banana graph would be required and

we expect that the techniques presented in this paper can be extended to this case as well.

This is left for future work.

A Boundary condition for the banana graph

In this section we discuss how to obtain the leading asymptotic expansion of the master

integrals for the banana integrals in eq. (4.5). Asymptotic expansions for Feynman integrals

are a well studied topic in the context of the method of expansion-by-regions [81, 82]. Here

we will employ a particular method that relies on Mellin-Barnes integral transformations to

obtain the asymptotic expansion of the banana Feynman integrals around the point x = 0.

We start by Feynman parametrising the integral. The Symanzik polynomials relevant

for the three master integrals in eq. (2.4) are

U = x1x2x3 + x1x4x3 + x2x4x3 + x1x2x4 and

F = s x1x2x3x4 +m2(x1 + x2 + x3 + x4)U ,
(A.1)

so that we can write the Feynman parametric representation of the first master integral as

I1 = (1 + 2ǫ)(1 + 3ǫ)I1,1,1,1,0,0,0,0,0

=
(1 + 2ǫ)(1 + 3ǫ)

Γ(1 + ǫ)3

∫

dx1dx2dx3dx4δ(1− x4)U4ǫF−1−3ǫ ,
(A.2)
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where we have chosen the argument of the δ function in a way that is advantageous for the

rest of the calculation.

We can use a useful trick to simplify the integral drastically, at the cost of introducing

an additional integration: we introduce a Mellin-Barnes parameter by using the identity,

1

(A+B)λ
=

∫ C+i∞

C−i∞

dξ

2πi
AξB−ξ−λΓ(−ξ)Γ(ξ + λ)

Γ(λ)
, (A.3)

where the contour of integration runs parallel to the imaginary axis and intersects the

real axis at a point C that is chosen such that the contour separates the left poles of the

integrand (due to Γ(ξ + λ)) from the right poles (due to Γ(−ξ)). We can use this identity

to separate the two terms in the F polynomial and write the integral as

I1 =
∫

dξ1
2πi

Γ(−ξ1)Γ(1 + 3ǫ+ ξ1)

Γ(1 + ǫ)3
(−x/4)−ξ1 (A.4)

×
∫

dx1dx2dx3dx4δ(1− x4) (x1x2x3x4)
ξ1 (x1 + x2 + x3 + x4)

−1−3ǫ−ξ1 U−1+ǫ−ξ1 .

This transformation renders the integral effectively massless and we can proceed to inte-

grate out the Feynman parameters xi one at a time. In doing so we encounter two integrals

of the form ∫ ∞

0
dxxα(A+Bx)β(C +Dx)γ . (A.5)

Ordinarily, such an integral can be evaluated in terms of hypergeometric functions. How-

ever, in this case it is advantageous to instead apply the Mellin-Barns trick from eq. (A.3)

once more, in order to split one of the two linear terms into monomial factors, which will

allow us to perform the integral in terms of Γ functions as
∫ ∞

0
dxxα(A+Bx)β = A1+α+βB−1−αΓ(1 + α)Γ(−1− α− β)

Γ(−β)
. (A.6)

After integrating out the Feynman parameters in this fashion, we find the following Mellin-

Barnes representation of the integral,

I1 = (1 + 2ǫ)(1 + 3ǫ)

∫
dξ1dξ2dξ3
(2πi)3

(−x/4)−ξ1 Γ(−ξ1)Γ(−ξ2)Γ(−ξ3)

× Γ(ǫ− ξ2)Γ(ǫ− ξ3)
Γ(1 + ξ123)

2Γ(1− ǫ+ ξ123)Γ(1 + ǫ+ ξ123)

Γ(1 + ǫ)3Γ(2 + 2ξ123)Γ(1− ǫ+ ξ1)
,

(A.7)

where we have defined the abbreviation ξ123 = ξ1 + ξ2 + ξ3. In the above integral, the

contour of integration is defined implicitly through the requirement that it separates the

left and right poles of the Γ functions. An explicit representation of the contour can

be obtained in an algorithmic fashion as implemented for example in the Mathematica

packages MB [83] and MBresolve [84]. The explicit form of the contour is useful when

using Cauchy’s theorem to perform the remaining integrations, by closing the contour and

summing residues. However, we will see that this is actually not necessary in this case.

First of all, so far we have not performed any asymptotic expansion and eq. (A.7) is a

Mellin-Barnes representation of the entire integral, but we only care about the integral in

the limit x → 0.
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The Mellin-Barnes representation allows us to take the asymptotic limit in a straight-

forward fashion: inspecting the integrand of the Mellin-Barnes representation we see that

for generic values of the ξi the integrand vanishes when we take x → 0. To obtain the Lau-

rent expansion around vanishing x, we therefore need to take the leading residues, starting

from ξ1 = 1. The surviving residues can be determined algorithmically for example using

the package MBasymptotics [85]. Solving the constraints for our integral in eq. (A.7) we

find that the only terms contributing in the limit x → 0 are codimension three residues so

that no integrations remain. We have,

limx→0 I1
(1 + 2ǫ)(1 + 3ǫ)

= − x

ǫ3
− 12Γ(1− ǫ)2

ǫ3Γ(1− 2ǫ)
(−x/4)1+ǫ +

12Γ(1− ǫ)3Γ(1 + 2ǫ)

ǫ3Γ(1− 3ǫ)Γ(1 + ǫ)2
(−x/4)1+2ǫ

− 4Γ(1− ǫ)4Γ(1 + 3ǫ)

ǫ3Γ(1− 4ǫ)Γ(1 + ǫ)3
(−x/4)1+3ǫ

= x
[
log(−x/4)3 − 4ζ3

]

+ ǫx

[

− 6ζ4 − 20ζ3 − 30ζ3 log(−x/4)− 3ζ2 log(−x/4)2

+ 5 log(−x/4)3 +
3

2
log(−x/4)4

]

+O(ǫ2) . (A.8)

The other two master integrals can be computed completely analogously, the only difference

are shifted exponents of the Symanzik polynomials, and we can obtain the asymptotic limit

for the second master integral as

limx→0 I2
(1 + 2ǫ)

=
3

4ǫ2
x+

6Γ(1− ǫ)2

ǫ2Γ(1− 2ǫ)
(−x/4)1+ǫ − 3Γ(1− ǫ)3Γ(1 + 2ǫ)

ǫ2Γ(1− 3ǫ)Γ(1 + ǫ)2
(−x/4)1+2ǫ

=

[
3

4
x log(−x/4)2

]

+ ǫx

[
9

2
ζ3 −

3

2
ζ2 log(−x/4) +

3

2
x log(−x/4)2

+
3

4
log(−x/4)3

]

+O(ǫ2) , (A.9)

and similarly for the third master integral,

lim
x→0

I3 = − 1

2ǫ
x− 2Γ(1− ǫ)2

ǫΓ(1− 2ǫ)
(−x/4)1+ǫ

=

[
1

2
x log(−x/4)

]

+ ǫx

[

− 1

2
ζ2 +

1

4
log(−x/4)2

]

+O(ǫ2) .

(A.10)

B Decomposing a matrix into a semi-simple and a unipotent part

In this appendix we show how to decompose an invertible matrix Ω (with certain additional

conditions, see below) into a product of a lower and upper-triangular matrix. From this we

can infer the decomposition of the period matrix of the banana graph into a semi-simple

and a unipotent matrix, see eq. (4.7). A unipotent matrix is a matrix whose difference to

the unit matrix is nilpotent. Good examples are upper triangular matrices with only ones

on the diagonal. A semi-simple matrix, on the other hand, is a matrix which is similar
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to a direct sum of simple matrices. Over an algebraically closed field (e.g., the complex

numbers), semi-simple matrices are just the diagonalisable matrices.

Let us define the matrix

Ω =
(
Ωij

)

1≤i,j≤n
, (B.1)

which we assume to be invertible. In the following we are going to show that the matrix

can be decomposed into the upper-triangular matrix U and a lower-triangular matrix S

such that

Ω = S U . (B.2)

In order to do so, consider the principle minors of Ω,

Mk = det
(
Ωij

)

1≤i,j≤k
= detΩ(k), M0 ≡ 1. (B.3)

Furthermore, let us define auxiliary sets of matrices:

Okℓ = det






Ω11 · · · Ω1k−1 Ω1ℓ
...

...
...

Ωk1 · · · Ωkk−1 Ωkℓ




 , Ckℓ = det









Ω11 · · · Ω1k
...

...

Ωk−11 · · · Ωk−1k

Ωℓ1 · · · Ωℓk









. (B.4)

Using those auxiliary objects, define the matrices:

Sij =
Cji

Mj−1
and Uij =

Oij

Mi
. (B.5)

Note that for the previous equation to make sense, we need to require that all principle

minors of Ω be non-zero.

Writing out the product of S and U , one finds

n∑

k=1

SikUkj =
n∑

k=1

CkiOkj

=
n∑

k=1

1

MkMk−1
det

(

Ω(k−1) Ω∗k

Ωi∗ Ωik

)

det

(

Ω(k−1) Ω∗j

Ωk∗ Ωkj

)

=
n∑

k=1

1

detΩ(k) detΩ(k−1)
det

(

Ω(k−1) Ω∗k

Ωi∗ Ωik

)

det

(

Ω(k−1) Ω∗j

Ωk∗ Ωkj

)

= Ωij . (B.6)

The manipulations in the above equation for generic matrices are algebraically rather in-

volved. We have therefore limited ourselves to testing explicitly the correctness of this

formula for matrices up to n = 10.

Next, we note that the matrix U has the following shape:






1 ∗
. . .

0 1




 . (B.7)
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This immediately implies that U is unipotent. Indeed, considering i > j, one finds

Uij = Oij =
1

Mi
det






Ω11 · · · Ω1i−1 Ω1j

...
...

...

Ωi1 · · · Ωii−1 Ωij




 = 0 . (B.8)

because there are two identical columns. For the diagonal elements one finds

Uii = Oii =
1

Mi
Mi = 1 . (B.9)

One can show along the same lines that all elements Sij for i < j vanish, and so S is

lower-triangular.

The previous considerations do not yet allow us to conclude that S is semi-simple,

because not every lower-triangular matrix is diagonalisable. We can, however, easily check

that the matrix S obtained in this way is diagonalisable on a case by case basis. Indeed,

a sufficient criterion for a triangular matrix to be diagonalisable is that all its diagonal

elements are distinct (because in that case the matrix has a maximal number of distinct

eigenvalues). In particular, we can then easily check that this construction leads to a semi-

simple matrix S in the case of the banana graph where Ω = W(x), with W is defined in

eq. (2.15). Indeed, we immediately see that in that case S has three distinct eigenvalues for

generic values of x. Therefore, S is diagonalisable for generic x, and hence semi-simple. We

have thus obtained the desired decomposition into a semi-simple and a unipotent matrix.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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