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Moving black holes:
energy extraction, absorption cross-section and the ring of fire
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We consider the interaction between a plane wave and a (counter-moving) black hole. We show
that energy is transferred from the black hole to the wave, giving rise to a negative absorption
cross-section. Moving black holes absorb radiation and deposit energy in external radiation. Due to
this effect, a black hole hole of mass M moving at relativistic speeds in a cold medium will appear
to be surrounded by a bright “ring” of diameter 3v/3GM/c® and thickness ~ GM/c>.

I. Introduction. The response of a black hole (BH) to
an incoming wave has been studied for decades, in the
frame where the BH is at rest [IHI3]. Such interaction
is crucial to understand how BHs react to their environ-
ment, what types of signatures are imprinted by strong-
field regions and their possible observational effects. It
was shown that non-spinning BHs absorb low-frequency
plane waves. For a BH of mass M, the low-frequency
absorption cross-section of scalars is equal to the horizon
area, 0 = 16m(GM/c?)%. High frequency plane waves,
on the other hand, are absorbed with a cross-section
o = 2Tr(GM/c*)? [6, 8, [14]. Although spinning BHs
also absorb plane waves, they can amplify certain, low-
frequency, angular modes through superradiance [T5HI7]
(which also acts on charged BHs [18]). Superradiance
extracts energy away from such BH and provides impor-
tant signatures of possible fundamental ultralight fields
in nature [I7, [T9H21].

A significant fraction of BHs are found in binaries, such
as those seen by the LIGO/Virgo observatories [22]. In
addition, most BHs are moving at high speeds relative to
our own frame. Thus, an understanding of the interaction
between waves and moving BHs is a necessary ingredient
to explore the enormous potential of such sources [23] [24].

It was recently pointed out that BH binaries could am-
plify incoming radiation through a gravitational slingshot
mechanism for light [23]. The argument requires only one
BH moving with velocity v, and a photon reflected at an
angle of 180° by the strong-field region (such orbits do ex-
ist [6]). Then, a trivial change of frames and consequent
blueshift yields
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for the energy gain by the photon during the process.
This is also the blueshift by photons reflecting off a mirror
moving with velocity v. In addition, effective field the-
ory methods were recently used to suggest that BH bina-
ries could amplify radiation through superradiance [24].
Again, the argument seems to imply that a single moving
BH is able to amplify incoming radiation.

The purpose of the present work is to study the scat-

tering of a plane wave off a moving BH. Clearly, such
study involves “only” a Lorentz transformation of the
well-known results for BHs at rest. Our purpose is to
generalize to BH physics the classical problem of scatter-
ing off a moving mirror or a sphere, addressed by Som-
merfeld and others [25] 26]. Our results are surprisingly
simple but non-trivial, interesting and — as far as we are
aware — new.
II. Amplification in the weak field regime. Con-
sider a BH of mass M and a high-frequency photon, de-
scribed by null geodesics in the BH spacetime, with a
large impact parameter b > M and moving in the —z
direction. The photon energy is F; in the frame where
the BH is moving in the +z direction with velocity v. A
boost in the +2z direction brings us to the BH frame, and
blueshifts the wave to E1 = /(1 +v/e)/(1 —v/c)E;. In
this frame, the photon is deflected by the Einstein an-
gle a = 4GM/(bc?). Now boost back to the —z direc-
tion, where due to relativistic aberration the angle with
the z—axis is & ~ ay/(1+v/c)/(1 —v/c), and the fre-
quency is now E; = E1/(v(1 +vcosa’/c)). One finds
the weak field energy amplification for such photons
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If a plane wave is passing through, one can see that
the 1/r nature of the gravitational potential causes the
total extracted energy to diverge; this phenomenon is
akin to the divergence of the scattering cross section of
the Coulomb potential [27]. For a body of size Rmin
moving in a plane wave of density p and extent Ry, .x, we
find the total energy loss per second
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III. Amplification in the strong-field regime. The
energy loss of radiation when a body travels through a co-
propagating stream is smaller than the energy gain when
counter-propagating. This effect gets more pronounced
at relativistic speeds and in the strong-field regime. We
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FIG. 1. Energy gain of a (high frequency) photon scattered
off a moving BH. The photon has initial energy F;, impact
parameter b and scatters off a BH moving with velocity v in
the opposite direction. The final energy is Ef. The peak of
each curves agrees, to numerical precision, with Eq. . For
impact parameter b < 3v/3M, the photon is absorbed by the
BH.

therefore focus exclusively on amplification by counter-
moving waves. The strong-field regime gives rise to large
deflections in the photon’s trajectory, and consequent
large energy amplification, with a peak value described
by Eq. . Henceforth, for simplicity, we use units with
¢ =G = 1. To compute rigorously the energy amplifica-
tion at all impact parameters, we study null geodesics in
the spacetime of a moving BH. In isotropic coordinates
the Schwarzschild metric is given by
1— A)?

ds* = El—i—A;thz + (1 + A)* (d2® + dy® + d=?) , (4)
where A = M/(2p) and p? = 22 +y*+22. Here, the stan-
dard Schwarzschild radial coordinate is related with p via
r = p(1+ A)2. Perform a boost along the z direction, by
letting

t=7(t+vz), Z2=~(+vt), g=vy, @==2z. (5
This yields the metric describing a BH moving with ve-
locity v and Lorentz factor v2 = 1/(1 — v?).

It is now a simple question to study the scattering of
a plane wave of null particles: follow initially counter-
moving null geodesics, of impact parameter b (i.e., null
geodesics with §(f = 0) = b and 2 = § = 0 at large
distances) and monitor their energy E = v* p,,, where p
is the four-momentum associated with the geodesic and
v = (1,0,0,0) the four-velocity of the observer.

Our results are shown in Fig. [1] for different velocities
v. There is a minimum impact parameter b = 3v/3M,
below which the photon simply falls onto the BH. As we
increase the impact parameter starting from this value,
the energy gain peaks very rapidly at a value precisely (to

within numerical precision) described by Eq. : these
are photons which are reflected back by the geometry.
There are in fact a multitude of impact parameters for
which photons are reflected back: for

b/M = by /M = 5.356 + 0.003 , (6)
b/M = by/M = 5.199 + 0.002 , (7)

the photon circles the BH exactly half an orbit (with a
distance of minimum approach of r/M = 3.521 + 0.001)
and one-and-a-half orbit (with a distance of minimum ap-
proach of r/M = 3.001 £ 0.001), respectively; for impact
parameters closer to the critical value a larger number
of orbits around the BH are possible. At large impact
parameters, our numerical results are well described by
the weak-field result .

IV. The high-frequency absorption cross-section.
In a scattering experiment, where a plane wave hits a
moving BH head-on, one can define an absorption cross-
section

O'abs _ Ein - Eout (8)
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where FEj, is the total energy in the plane wave, Foyu
is the total energy in the outgoing wave after interaction
with the BH, and Aj;, is the surface area that the incident
plane occupies. As we showed, due to the long-range
character of gravity, the absorption cross-section above
diverges [27]. We define instead a finite quantity o3b®,
computed by sending a constant flux wave centered at the
BH, but with finite transverse size of radius R = 20M.
This quantity is shown in Table [[] for null particles.

The cross-section o35% is to a good approximation equal
to its geometric-optics counterpart o = 277 M? for BHs
at rest. It starts decreasing when the BH moves for the
reasons discussed previously: photons with impact pa-
rameter b = by are given energy. Our results seem to be
well described by
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with a; = 28.8, ag = 29.1, which reproduces the numer-
ical points between v = [0,0.99] to within 1% accuracy.

v o3t /(rM?) [ w o38° /(mM?)
0.00 27.0 0.30 2.1
0.01 26.4 0.50 -31.1
0.02 25.8 0.80 -205.6
0.10 20.6 0.90 -496.8

TABLE I. Absorption cross-section for a BH moving with ve-
locity v onto a constant flux wave. The incoming wave has
a finite spatial extent in the direction transversal to the mo-
tion, forming a cylinder of radius R = 20M. Notice that the
absorption cross-section becomes negative at large velocities,
indicating that BH transfers energy to the scattered waves.
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FIG. 2. Numerical values of the quantity i—‘; obtained through
(null geodesic) geometric-optics, and wave-scattering with
wM = 17. The two methods are in clear agreement for
b> M.

The coefficients a1, as grow when the incident surface
radius R grows (for example, a calculation of o35%, for
R =10, leads to a; = 18.0, as = 20.0; such cross section
also becomes negative at large v).

From the previous discussion, it could also be antici-

pated that the absorption cross section becomes negative
at large enough velocities. Given that the only scale in
the traverse directions is that of the BH, M, photons with
an impact parameter b ~ b; within a width ~ M will
also be amplified. On the other other hand, all photons
with impact parameter smaller than 3v/3M are absorbed.
Thus, the cross absorption section is expected to be of
order ~ 277 M? — 21 x 33/3M? (1 +v) /(1 — v) — 1). For
large velocities, this (order-of-magnitude) argument pre-
dicts a negative cross section ~ —10mM?2(1 +v)/(1 —v),
in rough agreement with the numerical fit @
V. The absorption cross-section of moving BHs.
Consider now the extension of the previous results to
arbitrary low frequency waves, where geometric optics no
longer provides an adequate description of the scattering
phenomenon. Let us focus on a minimally coupled scalar
field theory described by the action

S= / A2/ =G G V¥ (V)" (10)

For most situations of interest, the scalar field is but a
small perturbation and can be studied in a fixed space-
time geometry — the so-called test field approximation.
A well-studied problem concerns the scattering on a
Schwarzschild geometry describing a BH at rest. In this
setup, consider the ansatz

¢w1 (t,r,@,go) — ZKlme—iwlt lem(e,(p)'(/}w1 (7") ) (11)
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where K" are complex coefficients, Y, the spherical har-
monics, and the radial function v, also carries an (I, m)

dependence. Define f = 1 — 2M/r and a tortoise co-
ordinate r, satisfying dr/dr. = f. The massless Klein-
Gordon equation yields

l(ltl) +2:\j)]wwl —0. (12)
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This equation admits the asymptotic solution
P, (r — 400) ~ T e~ ™17 4 Ret™m™ - (13)

with I and R the complex-valued amplitudes of the in-
cident and reflected spherical waves, respectively. The
transmitted spherical wave at the BH horizon can be
written as

Vo, (11— 2M) ~ T =17 (14)

The quantities (R/I) and (T'/I) appearing in the above
solution are complex functions of [ and wi; M, but, for
simplicity, we omit this in our notation.

Tt is well-known that a (distorted) plane wave can be
written as a partial wave expansion, which asymptoti-
cally reads [I}, 28]
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+ outgoing wave,

where z, = r, cosf.

Choosing K|» = —03"\/4n(2l +1)/(2iwI), one can

rewrite the asymptotic behaviour of ¢,, as

G, (1 — +00) ~ 67iw1(t+z*) + Eymefiwl(tfr*) 7
1( ) %l: r l
(16)

with R a complex function of R/I. Thus, with this choice
of K", Eq. describes the scattering of scalar plane
waves (propagating along the —z direction) by a BH at
rest.

The stress-energy tensor of a massless scalar field is

T =

(0,0 0v + 0, 0, 0™) — %gm,(')a(b* @ . (17)
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So, the net energy & (measured by a stationary observer
at infinity) entering a spherical surface S, of radius r,
per unit of time, is

0€ = / dQr3Ty, . (18)
S
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In the limit » — 400, this gives
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One can define the (energy) absorption cross section

0€
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where we have used that the energy density current of
the incident plane waves is (w;)?. Numerical evaluation
of the last expression shows that, for a BH at rest, the
absorption cross section is 0P ~ 277 M?, a well-known
result [6] [14].

Focus now on the problem of a scalar plane wave scat-
tering off a Schwarzschild BH moving with velocity v
along the 4z direction. For simplicity, let us consider
that the wave is propagating along the —z direction. The
Lorentz transformation of a plane wave is a (Doppler
shifted) plane wave; by the principle of covariance, ap-
plying a (global) Lorentz boost of velocity v along the
—z direction to the solution , which describes the
scattering of a plane wave of frequency w; by a BH
at rest, one gets a solution of the equations of motion
describing the scattering of a plane wave of frequency
w =w1v1—v/v/1+v by a BH moving with velocity v.
In mathematical terms: by applying the Lorentz boost
. to Eq. ( ., we get a solution of the Klein-Gordon
equation, which, in spherical coordinates centered at the
BH, & = rsm@cosgp, 7= rsm@smcp, 2 — ot = fcosb,
has the asymptotic behaviour

A R .
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Thus, this solution describes the scattering of a (dis-
torted) plane wave of frequency w by a moving BH.
The asymptotic solution can also be written as
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with P, the Legendre polynomial of the first kind. After
a laborious calculation, and using Ref. [29] for angular

integrations, one finds
2
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where @, is the Legendre polynomial of the second kind,
and we have used that the particle-number current of the
incident plane waves is w. There is angular mode mixing
in [ due to the fact that the boosted spherical harmonics
lose their orthogonality properties. Note that

! 1 1 8l
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which shows that one recovers known results when v — 0.

Numerical evaluation of Eq. shows qualitatively
the same behaviour obtained with geometric-optics. In
particular, our results indicate that the second sum of
Eq. diverges logarithmically with [. Using the inter-
pretation b ~ [/wy, which is valid for large [ > 1, this
can be restated as a divergence in the impact parameter
b; a well-known consequence of the long range character
of gravity. For a quantitative comparison, we consider
high-frequency (wM > 1) plane waves, and truncate the
sums in at | = wiR; describing an incident beam
with maximum impact parameter R (see section IV).
We computed the (finite) quantity do®®/db for b > M,
which for waves is approximated by

daabs abs
- o™ (1)] . (26)

As shown in Fig. [2] the numerical values obtained for
this quantity by the two approaches are in very good
agreement for b > M, as one expects.

VI. Appearance of a moving black hole. The large
amplification for strongly-deflected photons implies that
a rapidly moving BH looks peculiar. Downstream pho-
tons are deflected and blueshifted upstream. Thus a
rapidly moving BH in a cold gas of radiation will be sur-
rounded by a bright ring of thickness ~ M. A possible
image of a moving BH is shown in Fig. 3| For a stellar-
mass BH moving at velocities v ~ 0.9996 through the
universe, the ambient microwave cosmic background will
produce a kilometer-sized ring (locally ~ 5000 times hot-
ter and brighter than the CMB) in the visible spectrum.
Discussion. The scattering of massless waves is a fun-
damental process in physics. We showed that the univer-
sal nature of gravity, together with the 1/r behavior of
Newton’s law causes moving BHs to amplify plane waves,
with a divergent cross-section. This is the only known
example of a negative absorption cross section of neu-
tral fields. We also showed that even a narrow beam of

(lw) ~ wy [0 (1 + 1) —
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FIG. 3. Appearance of a BH moving in a bath of cold (and
counter-moving) radiation. The BH is moving along the z-
axis towards us at a speed v = 0.9. The colors denote energy
flux intensity on a screen placed a short distance away from
the BH. The peak energy flux is ten times larger than that
of the environment. The bright ring has width ~ M for all
boost velocities v. For very large v even a randomly-moving
gas of photons will leave a similar observational imprint, since
counter-moving photons will be red-shifted away.

light can extract energy from a rapidly (counter-) mov-
ing BH. These results apply to any massless wave in the
high frequency regime. For BHs at rest, the absorption
cross-section of low-frequency electromagnetic or gravita-
tional waves vanishes, which may imply that amplifica-
tion happens sooner at low frequencies, for higher spins.
This remains to be understood. These results may have
little practical application, since BHs are not expected to
be traveling through our universe at relativistic speeds:
mergers of BHs or neutron stars lead at best to “kicks” in
the remnant of v < 1072 [30H33] for astrophysical setups
(even the high-energy merger of two BHs leads “only” to
kicks of v < 0.05 [34]). For these velocities, the effects
dealt with here are only important when the BH moves
in very extended media. Nevertheless, our results show
how nontrivial strong gravity effects can be.

On the other hand, the mechanism for energy extrac-
tion could be relevant in the context of fundamental light
fields, with confined low-energy excitations [23]. A BH
binary in this setup could slow down and transfer some of
its energy to the fundamental field, giving rise to poten-
tially observable effects. However, since energy is being
transferred to radiation of higher frequency, the process
stalls eventually, since sufficiently energetic excitations
are unbound.

The overall result of energy transfer to external radi-
ation echoes that of the inverse Compton scattering for

fast-moving electrons in a radiation field [35] 36]. In this
latter process, a nearly-isotropic radiation field is seen
as extremely anisotropic to the individual ultrarelativis-
tic electrons. Relativistic aberration causes the ambient
photons to approach nearly head-on; Thomson scattering
of this highly anisotropic radiation reduces the electron’s
kinetic energy and converts it into inverse-Compton radi-
ation by upscattering radio photons into optical or X-ray
photons. The process we discuss here, involving BHs, is
special: BHs are natural absorbers, but the universal —
and strong, close to the horizon — pull of gravity can turn
them also into overall amplifiers.
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