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We consider the interaction between a plane wave and a (countermoving) black hole. We show that
energy is transferred from the black hole to the wave, giving rise to a negative absorption cross section.
Moving black holes absorb radiation and deposit energy in external radiation. Due to this effect, a black
hole hole of massM moving at relativistic speeds in a cold medium will appear to be surrounded by a bright

“ring” of diameter 3
ffiffiffi
3

p
GM=c2 and thickness ∼GM=c2.
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I. INTRODUCTION

The response of a black hole (BH) to an incoming wave
has been studied for decades, in the frame where the BH is
at rest [1–13]. Such interaction is crucial to understand how
BHs react to their environment, what types of signatures
are imprinted by strong-field regions, and their possible
observational effects. It was shown that nonspinning BHs
absorb low-frequency plane waves. For a BH of mass M,
the low-frequency absorption cross section of scalars is
equal to the horizon area, σ ¼ 16π ðGM=c2Þ2. High-
frequency plane waves, on the other hand, are absorbed
with a cross section σ ¼ 27π ðGM=c2Þ2 [6,8,14]. Although
spinning BHs also absorb plane waves, they can amplify
certain, low-frequency, angular modes through superra-
diance [15–17] (which also acts on charged BHs [18]).
Superradiance extracts energy away from such BH and
provides important signatures of possible fundamental
ultralight fields in nature [17,19–21].
A significant fraction of BHs are found in binaries, such

as those seen by the LIGO/Virgo observatories [22]. In
addition, most BHs are moving at high speeds relative to
our own frame. Thus, an understanding of the interaction
between waves and moving BHs is a necessary ingredient
to explore the enormous potential of such sources [23,24].
It was recently pointed out that BH binaries could

amplify incoming radiation through a gravitational sling-
shot mechanism for light [23]. The argument requires only
one BH moving with velocity v, and a photon reflected at

an angle of 180° by the strong-field region (such orbits do
exist [6]). Then, a trivial change of frames and consequent
blueshift yields

Epeak
f ¼ 1þ v=c

1 − v=c
Ei; ð1Þ

for the energy gain by the photon during the process. This is
also the blueshift by photons reflecting off a mirror moving
with velocity v. In addition, effective field theory methods
were recently used to suggest that BH binaries could
amplify radiation through superradiance [24]. Again, the
argument seems to imply that a single moving BH is able to
amplify incoming radiation.
The purpose of the present work is to study the scattering

of a plane wave off a moving BH. Clearly, such study
involves “only” a Lorentz transformation of the well-
known results for BHs at rest. Our purpose is to generalize
to BH physics the classical problem of scattering off a
moving mirror or a sphere, addressed by Sommerfeld and
others [25,26]. Our results are surprisingly simple but
nontrivial, interesting, and—as far as we are aware—new.

II. AMPLIFICATION IN THE
WEAK-FIELD REGIME

Consider a BH of mass M and a high-frequency photon
described by null geodesics in the BH spacetime, with a
large impact parameter b ≫ M and moving in the −z
direction. The photon’s incoming energy is Ei in the frame
where the BH is moving in theþz direction with velocity v.
A boost in the þz direction brings us to the BH frame, and
blueshifts the wave to E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ v=cÞ=ð1 − v=cÞp
Ei. In

this frame, the photon is deflected by the Einstein angle
α ¼ 4 GM=ðbc2Þ. Now boost back to the −z direction,
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where due to relativistic aberration the angle with the z-axis
is α0 ∼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ v=cÞ=ð1 − v=cÞp
, and the frequency is now

Ef ¼ E1=ðγð1þ v cos α0=cÞÞ. One finds the weak-field
energy amplification for such photons

Eweak
f ¼

�
1þ 8G2M2v

b2c4ðc − vÞ
�
Ei: ð2Þ

If a plane wave is passing through, one can see that the
1=r nature of the gravitational potential causes the total
extracted energy to diverge; this phenomenon is akin to the
divergence of the scattering cross section of the Coulomb
potential [27]. For a body of size Rmin moving in a plane
wave of density ρ and extent Rmax, we find the total energy
loss per second

dE=dt ¼ −
16πG2M2v2ρ
c2ðc − vÞ log ðRmax=RminÞ: ð3Þ

III. AMPLIFICATION IN THE
STRONG-FIELD REGIME

The energy loss of radiation when a body travels through
a copropagating stream is smaller than the energy gain
when counterpropagating. This effect gets more pro-
nounced at relativistic speeds and in the strong-field
regime. We therefore focus exclusively on amplification
by countermoving waves. The strong-field regime gives
rise to large deflections in the photon’s trajectory, and
consequent large energy amplification, with a peak value
described by Eq. (1). Henceforth, for simplicity, we use
units with c ¼ G ¼ 1. Two procedures can be followed to
compute the energy amplification by moving BHs. One is
to work in a fixed background and perform appropriate
Lorentz boosts of the scattered particles, as we did above.
We will use this procedure when dealing with wave
amplification. Here, as a further check on the results, to
compute rigorously the energy amplification at all impact
parameters, we study null geodesics in the spacetime of a
moving BH. In isotropic coordinates the Schwarzschild
metric is given by

ds2 ¼ −
ð1 − AÞ2
ð1þ AÞ2 dt

2 þ ð1þ AÞ4ðdx2 þ dy2 þ dz2Þ; ð4Þ

where A ¼ M=ð2ρÞ and ρ2 ¼ x2 þ y2 þ z2. Here, the
standard Schwarzschild radial coordinate is related with
ρ via r ¼ ρð1þ AÞ2. Perform a boost along the z direction
by letting

t̂¼ γðtþvzÞ; ẑ¼ γðzþvtÞ; ŷ¼y; x̂¼x: ð5Þ

This yields the metric describing a BH moving with
velocity v and Lorentz factor γ2 ¼ 1=ð1 − v2Þ.

It is now a simple question to study the scattering of a
plane wave of null particles: follow initially countermoving
null geodesics of impact parameter b [i.e., null geodesics
with ŷðt̂ ¼ 0Þ ¼ b and _̂x ¼ _̂y ¼ 0 at large distances] and
monitor their energy E ¼ vμpμ, where p is the four-
momentum associated with the geodesic and vμ ¼
ð1; 0; 0; 0Þ (at large distances) the four-velocity of the
observer.
Our results are shown in Fig. 1 for different velocities v.

There is a minimum impact parameter b ¼ 3
ffiffiffi
3

p
M, below

which the photon simply falls onto the BH. As we increase
the impact parameter starting from this value, the energy
gain peaks very rapidly at a value precisely (to within
numerical precision) described by Eq. (1): These are
photons which are reflected back by the geometry. There
are in fact a multitude of impact parameters for which
photons are reflected back: For

b=M ¼ b1=M ¼ 5.356� 0.003; ð6Þ

b=M ¼ b2=M ¼ 5.199� 0.002; ð7Þ

the photon circles the BH exactly half an orbit (with a
distance of minimum approach of r=M ¼ 3.521� 0.001)
and one-and-a-half orbits (with a distance of minimum
approach of r=M ¼ 3.001� 0.001), respectively; for
impact parameters closer to the critical value a larger
number of orbits around the BH are possible. At large
impact parameters, our numerical results are well described
by the weak-field result (2).

FIG. 1. Energy gain of a (high-frequency) photon scattered off a
moving BH. The photon has initial energy Ei, impact parameter
b, and scatters off a BH moving with velocity v in the opposite
direction. The final energy is Ef. The peak of each curves agrees,
to numerical precision, with Eq. (1). For impact parameter
b < 3

ffiffiffi
3

p
M, the photon is absorbed by the BH.
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IV. THE HIGH-FREQUENCY ABSORPTION
CROSS SECTION

In a scattering experiment, where a plane wave hits a
moving BH head-on, one can define an absorption cross
section

σabs ¼ Ein − Eout

Ein=Ain
; ð8Þ

where Ein is the total energy in the plane wave, Eout is the
total energy in the outgoing wave after interaction with the
BH, and Ain is the surface area that the incident plane
occupies. As we showed, due to the long-range character of
gravity, the absorption cross section above diverges [27].
We define instead a finite quantity σabs20 computed by
sending a constant flux wave centered at the BH, but with
finite transverse size of radius R ¼ 20M (at large distan-
ces). This quantity is shown in Table I for null particles.
The cross section σabs20 is to a good approximation equal

to its geometric optics counterpart σ ¼ 27πM2 for BHs at
rest. It starts decreasing when the BH moves for the
reasons discussed previously: Photons with impact para-
meter b ¼ b1 are given energy. Our results seem to be well
described by

σabs20

πM2
∼ 27 − a1v − a2

vð1þ vÞ
ð1 − vÞ ; ð9Þ

with a1 ¼ 28.8, a2 ¼ 29.1, which reproduces the numeri-
cal points between v ¼ ½0; 0.99� to within 1% accuracy.
The coefficients a1, a2 grow when the incident surface
radius R grows (for example, a calculation of σabs10 , for
R ¼ 10, leads to a1 ¼ 18.0, a2 ¼ 20.0; such cross section
also becomes negative at large v).
From the previous discussion, it could also be anticipated

that the absorption cross section becomes negative at large
enough velocities. Given that the only scale in the traverse
directions is that of the BH, M, photons with an impact
parameter b ∼ b1 within a width ∼M will also be amplified.
On the other hand, all photons with impact para-
meter smaller than 3

ffiffiffi
3

p
M are absorbed. Thus, the cross

absorption section is expected to be of order ∼27πM2−
2π × 3

ffiffiffi
3

p
M2ðð1þ vÞ=ð1 − vÞ − 1Þ. For large velocities,

this (order-of-magnitude) argument predicts a negative
cross section ∼ −10πM2ð1þ vÞ=ð1 − vÞ, in rough agree-
ment with the numerical fit (9).

V. THE ABSORPTION CROSS SECTION
OF MOVING BHs

Consider now the extension of the previous results to
arbitrary low-frequency waves, where geometric optics no
longer provides an adequate description of the scattering
phenomenon. Let us focus on a minimally coupled scalar
field theory described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
gμν∇νϕð∇μϕÞ�: ð10Þ

For most situations of interest, the scalar field is but a
small perturbation and can be studied in a fixed spacetime
geometry—the so-called test field approximation. A well-
studied problem concerns the scattering on a Schwarzschild
geometry describing a BH at rest. In this setup, consider the
ansatz

ϕω1
ðt; r; θ;φÞ ¼

X
l;m

Km
l e

−iω1tYm
l ðθ;φÞ

ψω1
ðrÞ
r

; ð11Þ

where Km
l are complex coefficients, Ym

l the spherical
harmonics, and the radial function ψω1

also carries an
ðl; mÞ dependence. Define f ≡ 1–2M=r and a tortoise
coordinate r� satisfying dr=dr� ¼ f. The massless
Klein-Gordon equation yields

d2

dr2�
ψω1

þ
�
ω2
1 − f

�
lðlþ 1Þ

r2
þ 2M

r3

��
ψω1

¼ 0: ð12Þ

This equation admits the asymptotic solution

ψω1
ðr → þ∞Þ ∼ Ie−iω1r� þ Reþiω1r� ; ð13Þ

with I and R the complex-valued amplitudes of the incident
and reflected spherical waves, respectively. The transmitted
spherical wave at the BH horizon can be written as

ψω1
ðr → 2MÞ ∼ Te−iω1r� : ð14Þ

The quantities (R=I) and (T=I) appearing in the above
solution are complex functions of l and ω1M, but, for
simplicity, we omit this in our notation.
It is well known that a (distorted) plane wave can be

written as a partial wave expansion, which asymptotically
as r → ∞ reads [1,28]

TABLE I. Absorption cross section for a BH moving with
velocity v onto a constant flux wave. The incoming wave has a
finite spatial extent in the direction transversal to the motion,
forming a cylinder of radius R ¼ 20M. Notice that the absorption
cross section becomes negative at large velocities, indicating that
the BH transfers energy to the scattered waves.

v σabs20 =ðπM2Þ v σabs20 =ðπM2Þ
0.00 27.0 0.30 2.1
0.01 26.4 0.50 −31.1
0.02 25.8 0.80 −205.6
0.10 20.6 0.90 −496.8
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e−iω1ðtþz�Þ ≃ −
X
l;m

e−iω1ðtþr�Þ

2iω1r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
Y0
l ðθ;φÞ

þ outgoing wave; ð15Þ

where z� ≡ r� cos θ.
Choosing Km

l ≡ −δm0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þp

=ð2iω1IÞ, one can
rewrite the asymptotic behavior of ϕω1

as

ϕω1
ðr → þ∞Þ ∼ e−iω1ðtþz�Þ þ

X
l

R
r
Y0
l e

−iω1ðt−r�Þ; ð16Þ

with R a complex function of R=I. Thus, with this choice
of Km

l , Eq. (11) describes the scattering of scalar plane
waves (propagating along the −z direction) by a BH at rest.
The stress-energy tensor of a massless scalar field is

Tμν ¼
1

2
ð∂μϕ

�∂νϕþ ∂μϕ∂νϕ
�Þ − 1

2
gμν∂αϕ�∂αϕ: ð17Þ

Thus, the net energy E (measured by a stationary observer
at infinity) entering a spherical surface Sr of radius
r → þ∞, per unit of time, is

∂tE ¼
Z
Sr

dΩr2Ttr: ð18Þ

This yields

∂tE ¼
X
l

πð2lþ 1Þ
�
1 −

����Rlðω1MÞ
Ilðω1MÞ

����
2
�
: ð19Þ

One can define the (energy) absorption cross section

σabs ≡ ∂tE
ðω1Þ2

; ð20Þ

where we have used that the energy density current of the
incident plane waves is ðω1Þ2. Numerical evaluation of the
last expression shows that, for a BH at rest, the absorption
cross section is σabs ≃ 27πM2, a well-known result [6,14].
Focus now on the problem of a scalar plane wave

scattering off a Schwarzschild BH moving with velocity
v along theþz direction. For simplicity, let us consider that
the wave is propagating along the−z direction. The Lorentz
transformation of a plane wave is a (Doppler shifted) plane
wave; by the principle of covariance, applying a (global)
Lorentz boost of velocity v along the −z direction to the
solution (11), which describes the scattering of a plane
wave of frequency ω1 by a BH at rest, one gets a solution of
the equations of motion describing the scattering of a plane
wave of frequency ω ¼ ω1

ffiffiffiffiffiffiffiffiffiffiffi
1 − v

p
=

ffiffiffiffiffiffiffiffiffiffiffi
1þ v

p
by a BH

moving with velocity v. In mathematical terms: By apply-
ing the Lorentz boost (5) to Eq. (11), we get a solution of
the Klein-Gordon equation, which, in spherical coordinates
centered at the BH, x̂ ¼ r̂ sin θ̂ cos φ̂, ŷ ¼ r̂ sin θ̂ sin φ̂,
ẑ − vt̂ ¼ r̂ cos θ̂, has the asymptotic behavior

ϕω1
ðr̂ → þ∞Þ ∼ e−iωðt̂þẑ�Þ þ

X
l;m

R
r
Ym
l e

−iω1ðt−r�Þ; ð21Þ

with

t ¼ t̂
γ
− γv cos θ̂ r̂; ðr; r�Þ ¼

ffiffiffi
ξ

p
ðr̂; r̂�Þ;

cos θ ¼ γ cos θ̂ffiffiffi
ξ

p ; ẑ� ≡ vt̂þ r̂� cos θ̂; ð22Þ

where

r̂� ≡ r̂þ 2Mffiffiffi
ξ

p ð1 − vÞ log
�
r̂

ffiffiffi
ξ

p
2M

− 1

�
;

ξ≡ 1þ ðγ2 − 1Þcos2θ̂: ð23Þ

Thus, this solution describes the scattering of a (distorted)
plane wave of frequency ω by a moving BH.
The asymptotic solution (21) can also be written as

ϕω1
∼
X
l

i
2ω1

2lþ1

r̂
ffiffiffi
ξ

p e−iω1ð t̂γ−γvcos θ̂ r̂Þ

×Pl

�
γ cos θ̂ffiffiffi

ξ
p

��
e−iω1 r̂�

ffiffi
ξ

p
þRlðω1MÞ

Ilðω1MÞ e
iω1 r̂�

ffiffi
ξ

p �
; ð24Þ

with Pl the Legendre polynomial of the first kind. After a
laborious calculation, and using Ref. [29] for angular
integrations, one finds

σabs ¼
X
l

πð2lþ 1Þ2
ω2γv

Pl

�
1

v

�
Ql

�
1

v

��
1 −

����Rlðω1MÞ
Ilðω1MÞ

����
2
�

þ
X
l0<l

2π

ω2γv
ð2l0 þ 1Þð2lþ 1ÞPl0

�
1

v

�
Ql

�
1

v

�

×

�
ð−1Þ1þl0þl þ Re

�
R�
l0 ðω1MÞ

I�l0 ðω1MÞ
Rlðω1MÞ
Ilðω1MÞ

��
; ð25Þ

where Ql is the Legendre polynomial of the second kind,
and we have used that the particle-number current of the
incident plane waves is ω. There is angular mode mixing in
l due to the fact that the boosted spherical harmonics lose
their orthogonality properties. Note that

lim
v→0

1

v
Pl0

�
1

v

�
Ql

�
1

v

�
¼ δll0

2lþ 1
;

which shows that one recovers known results when v → 0.
Numerical evaluation of Eq. (25) shows qualitatively the

same behavior obtained with geometric optics. In particu-
lar, our results indicate that the second sum of Eq. (25)
diverges logarithmically with l. Using the interpretation
b ≃ l=ω1, which is valid for large l ≫ 1, this can be restated
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as a divergence in the impact parameter b; a well-known
consequence of the long-range character of gravity. For a
quantitative comparison, we consider high-frequency
(ωM ≫ 1) plane waves, and truncate the sums in (25) at
l ¼ ω1R, describing an incident beam with maximum

impact parameter R (see Sec. IV). We computed the (finite)
quantity dσabs=db for b ≫ M, which for waves is approxi-
mated by

dσabs

db
ðlω1Þ ∼ ω1½σabsðlþ 1Þ − σabsðlÞ�: ð26Þ

As shown in Fig. 2, the numerical values obtained for this
quantity by the two approaches are in very good agreement
for b ≫ M, as one expects.

VI. APPEARANCE OF A MOVING BLACK HOLE

The large amplification for strongly deflected photons
implies that a rapidly moving BH looks peculiar.
Downstream photons are deflected and blueshifted
upstream. Thus a rapidly moving BH in a cold gas of
radiation will be surrounded by a bright ring of thickness
∼M. A possible image of a moving BH is shown in Fig. 3.
For a stellar-mass BH moving at velocities v ∼ 0.9996
through the Universe, the ambient microwave cosmic
background will produce a kilometer-sized ring (locally
∼5000 times hotter and brighter than the CMB) in the
visible spectrum.

VII. DISCUSSION

The scattering of massless waves is a fundamental
process in physics. We showed that the universal nature
of gravity, together with the 1=r behavior of Newton’s law
causes moving BHs to amplify plane waves, with a
divergent cross section. This is the only known example
of a negative absorption cross section of neutral fields. We
also showed that even a narrow beam of light can extract
energy from a rapidly (counter-) moving BH. These results
apply to any massless wave in the high-frequency regime.
For BHs at rest, the absorption cross section of low-
frequency electromagnetic or gravitational waves vanishes,
which may imply that amplification happens sooner at low
frequencies, for higher spins. This remains to be under-
stood. These results may have little practical application,
since BHs are not expected to be traveling through our
Universe at relativistic speeds: Mergers of BHs or neutron
stars lead at best to “kicks” in the remnant of v ≲ 10−2

[30–33] for astrophysical setups (even the high-energy
merger of two BHs leads “only” to kicks of v≲ 0.05 [34]).
For these velocities, the effects dealt with here are only
important when the BH moves in very extended media.
Nevertheless, our results show how nontrivial strong
gravity effects can be.
On the other hand, the mechanism for energy extraction

could be relevant in the context of fundamental light fields,
with confined low-energy excitations [23]. A BH binary in
this setup could slow down and transfer some of its energy
to the fundamental field, giving rise to potentially

FIG. 2. Numerical values of the quantity dσ
db obtained through

(null geodesic) geometric optics, and wave scattering with
ωM ¼ 17. The two methods are in clear agreement for b ≫ M.
Note that the numerical values of the v ¼ 0 curves are extremely
small and compatible with zero, up to numerical errors.

FIG. 3. Appearance of a BH moving in a bath of cold (and
countermoving) radiation. The BH is moving along the z-axis
towards us at a speed v ¼ 0.9. The colors denote energy flux
intensity on a screen placed a short distance away from the BH.
The peak energy flux is 10 times larger than that of the
environment. The bright ring has width ∼M for all boost
velocities v. For very large v even a randomly moving gas of
photons will leave a similar observational imprint, since counter-
moving photons will be redshifted away.
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observable effects. However, since energy is being trans-
ferred to radiation of higher frequency, the process stalls
eventually, since sufficiently energetic excitations are
unbound.
The overall result of energy transfer to external radiation

echoes that of the inverse-Compton scattering for fast-
moving electrons in a radiation field [35,36]. In this latter
process, a nearly isotropic radiation field is seen as
extremely anisotropic to the individual ultrarelativistic
electrons. Relativistic aberration causes the ambient
photons to approach nearly head-on; Thomson scattering
of this highly anisotropic radiation reduces the electron’s
kinetic energy and converts it into inverse-Compton radi-
ation by upscattering radio photons into optical or x-ray
photons. The process we discussed here, involving BHs, is
special: BHs are natural absorbers, but the universal—and
strong, close to the horizon—pull of gravity can turn them
also into overall amplifiers.
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