

Recent results and prospects for LHCb in SM physics involving W/Z/top

Oscar Augusto de Aguiar Francisco on behalf of the LHCb Collaboration

Rencontres de Blois, France Blois, 2019

・ロト ・四ト ・ヨト ・ヨト

Outline

LHCb experiment

2 Top measurements

3 Z/W boson measurements

Prospects

• Top Asymmetry

- Weak Mixing Angle
- W boson mass

5 Conclusion

э

Image: A math the second se

LHCb experiment

LHCb is a general purpose forward spectrometer (2 < η < 5) optimized to measure CP violation, rare decays involving B and D mesons, and searches for beyond Standard Model physics

Oscar Augusto (CERN)

LHCb experiment

- It offers a unique coverage complementary to ATLAS and CMS
- Probe Parton Density Function (PDFs) in a previously unexplored region of low x and high Q²
- Luminosity collected:

Run I	$3.2 \ fb^{-1}$	7, 8 TeV	2010-2012
Run II	5.9 fb^{-1}	13 TeV	2015-2018

- Low number of pp interactions per bunch crossing 1.1-1.7
- Precise luminosity measurement (1-2%)

A D > A B > A B >

Recent results for LHCb in SM physics involving W/Z/top

Oscar Augusto (CERN)

LHCb W/Z/Top results and prospects

Rencontres de Blois 2019 4 / 23

Image: A match the second s

Top Measurements

Oscar Augusto (CERN)

LHCb W/Z/Top results and prospects

Rencontres de Blois 2019 5 / 23

2

メロト メタト メヨト メヨト

Top measurements

Previous measurements in the forward region:

- First observation of the top in the forward region through the channel $t \rightarrow \mu + b$ (Phys. Rev. Lett. 115 (2015))
- Simultaneous measurement of $W + b\bar{b}$, $W + c\bar{c}$, and $t\bar{t}$ through the channel $t\bar{t} \rightarrow \ell b\bar{b}$ (Phys. Lett. B 767 (2017) 110-120)

Channel $t\overline{t} ightarrow e \mu b$

- Only possible due to an increase in production of a factor ${\sim}10$ with respect to Run I (8 TeV \rightarrow 13 TeV)
- Second lepton with different flavour suppresses contribution from $W+b\bar{b},$ $Z+b\bar{b}$ and QCD background
- Analysis performed with the data collected in 2015 and 2016 $(\sim 2 {
 m fb}^{-1})$
- Fiducial region:
 - $p_{ au}(\ell) > 20 \, GeV$ and $2.0 < \eta(\ell) < 4.5$ (prompt)
 - $\Delta R(\ell, jet) > 0.5$ and $\Delta(\mu, e) > 0.1$

< □ > < □ > < □ > < □ > < □ >

Jet reconstruction and tagging

- Inputs are defined using the particle flow algorithm based on tracks, metastable particles (like K_s^0 and Λ) and calorimeter objects
- Anti-kt clustering algorithm with R=0.5
- Jet tagging is based on the secondary vertex reconstruction inside the jet with Booster Decision Tree discrimination
- Efficiency of about 65% (25%) for identification of b-jets (c-jets) with misidentification for light jets of 0.3%

Channel $t\overline{t} ightarrow e \mu b$

Phys. Lett. B 767 (2017) 110-120

Kinematic variables for the μ and b-jet

- Z + jet, W + t and $t\bar{t}$ shapes obtained from simulation
- *tī* normalized to the data after background subtraction

• Good agreement for the kinematic variables and M(*eµb*)

• • • • • • • • • • • •

• High purity ($\sim 87\%$)

Channel $t\bar{t} ightarrow e \mu b$

Phys. Lett. B 767 (2017) 110-120

Systematic uncertainty	%
trigger	2.0
muon reconstruction	1.1
electron reconstruction	2.8
muon identification	0.8
electron identification	1.3
jet reconstruction	1.6
event selection	4.0
jet tagging	10.0
background	5.1
resolution factor	0.5
total	12.7

LHCb $\sqrt{s} = 13 \text{ TeV}$ $\rightarrow \rightarrow \qquad \text{data}$ $\rightarrow \rightarrow \rightarrow \qquad \text{powheg}$ $\rightarrow \rightarrow \qquad \text{aMC@NLO}$ $\rightarrow \rightarrow \rightarrow \qquad \text{MCFM}$

イロト イヨト イヨト イヨト

2

Z/W measurements

Oscar Augusto (CERN)

LHCb W/Z/ lop results and prospects

Rencontres de Blois 2019 10 / 23

- 2

メロト メロト メヨト メヨト

Channel
$$Z \rightarrow \ell \ell \ (\ell = e \text{ or } \mu)$$

Selection:

- *p*_T(ℓ) > 20 GeV
- $2.0 < \eta(\ell) < 4.5$
- 60 GeV< $m_{\mu\mu}$ <120 GeV (Z candidates only)
- Isolation requirement to reduce QCD base on a cone with $\Delta R < 0.5$ where $\Delta R = \sqrt{\eta^2 + \phi^2}$ (W candidates only)

High Z boson purity:

- Dimuon $99.2 \pm 0.2)\%$
- Dielectron $92.2 \pm 0.5)\%$

Good agreement with the model predictions and simulations

$\mathsf{Channel}\ \mathrm{Z} \to \tau\tau$

- $\tau\tau$ reconstructed via $\ell\ell$, ℓh or ℓhhh
- 58% of all $Z \rightarrow \tau \tau$ modes
- first time high- p_T tau reconstructed via 3-prong decay mode
- Back-to-back in ϕ ($|\Delta \phi(\tau, \tau)| > 2.7$)
- τ isolation requirement reduces contribution from QCD
- leptonic mode
 - At least one high p_T lepton ($p_T(\ell) > 20$ GeV)
 - unbalanced p_T between the two leptons due to the neutrinos
- hadrons
 - vertex information of h₃ allow a better mass estimation (m_{corr})
 - *h*₁ impact parameter minimum requirement reduces the prompt contributions

$$m_{corr} = \sqrt{M_{SV}^2 + ec{p}_{miss} \cdot ec{p}_{miss}} + |ec{p}_{miss}|$$

A B A B A B A

Channel $Z \rightarrow \tau \tau$

- Measurement in agreement with NNLO predictions and the lepton universality
- Dominated by the systematic uncertainty (Selection and reconstruction efficiencies, and background estimation)

イロト イヨト イヨト イ

Channel $\mathrm{Z} ightarrow b ar{b}$

- First measurement of the $Z \rightarrow b\bar{b}$ in the forward region with $2fb^{-1}$
- Challenging reconstruction due to the large QCD background
- Balance jet (*jet_{balance}*) required to reduce the contribution from QCD multi-jet
- Selection:
 - $2.2 < \eta(b jet) < 4.2$
 - *p*_T(*b*−*jet*) > 20 GeV
 - ▶ 45 GeV < m_{jj} < 165 GeV</p>
 - $|\Delta \phi(b jet_1, b jet_2)| > 2.5$
 - ▶ p_T(jet_{balance}) > 10 GeV
 - $p_T(\vec{Z}_{b\bar{b}} + j\vec{et}_{balance}) > 20 \text{ GeV}$

- uGB-BDT minimizes the correlation with *m_{ii}*
- inputs are based on the kinematic variables of the 3-jet system

Channel $\mathrm{Z} ightarrow b ar{b}$

- Simultaneous fit of m_{jj} in the signal region and control region determines the Z_{bb̄} yield and jet energy scale factor
- Pearson IV distribution describes the QCD background
- Observation of the ${
 m Z}
 ightarrow b ar{b}$ production with 6 σ
- Systematic uncertainty dominated by the jet tagging ($\sim 17\%)$
- Cross-section is compatible with the prediciotn at NLO with aMC@NLO + Pythia
- jet energy scale is compatible with unity shows that the LHCb simulation describes well the b-jet energy

Charged Hadron production in Z-tagged jets

arXiv:1904.08878 Submitted to PRL

- First measurement of the jet hadronization in the forward region and in association with the Z boson
- The light-quark jets enhanced selection can provide information about the difference gluon and quark hadronization dynamics
- Selection:
 - Same Z boson used for Run II (see previous slides)
 - ▶ p_T(jet) > 20 GeV
 - $2.5 < \eta(jet) < 4.0$
 - *p*_T(*hadron*) > 0.25, *p*(*hadron*) > 4 GeV
 - ► ΔR(hadron, jet) < 0.5</p>
 - $|\Delta \phi(\mathbf{Z}, jet)| > 7\pi/8$

イロト イヨト イヨト イヨ

Charged Hadron production in Z-tagged jets

arXiv:1904.08878 Submitted to PRL

• Beginning of a broader hadronization research program at LHCb

• Based on particle identification (tracking, RICH, calorimetry), resonance production within jets $(J/\psi, \Phi, \Upsilon)$, jet tagging and correlation with flavour identification

Oscar Augusto (CERN)

LHCb W/Z/Top results and prospects

Prospects

Oscar Augusto (CERN)

2

イロト イヨト イヨト イヨト

Top Asymmetry

• Single particle asymmetry:

$$A^{lb} = \frac{N^{l^+ b} - N^{l^- b}}{N^{l^+ b} + N^{l^- b}}$$

- Measurements during Run I and II with a precision of 20-40% limited by the available data samples
- Sub percent statistical precision cross-section and asymmetry in the ℓb and μeb final states in Run IV

A B A B A B A

- High purity channel μeb will allow the most precise cross-section measurement in LHCb (total uncertainty of order of few percent) due to its unambiguous identification of $t\bar{t}$ events
- Inclusive cross-section at the percent level will allow a reduction of order of 20% on the gluon PDF uncertainty at large-x (JHEP 02 (2014) 126)

Effective weak mixing angle

LHCB-PUB-2018-009, JHEP 1511(2015) 190, ATL-CONF-2018-037

- Current measurement uncertainty is \sim 6 times larger than the measurements from SLD and LEP
- The total uncertainty (100×10^{-5}) can be reduced by a factor ~ 8 (~ 20) by the end of Run IV (Run V)
- The full high lumi dataset will allow to probe the difference in the measurements from SLD and LEP

W boson mass

- LHCb can reduce the $m_{\rm W}^{LHC}$ uncertainty by 20-40% of the total uncertainty with the Run II data
- Softer W production implies a more direct relation between W mass and the lepton p_T spectrum

• • • • • • • • • • •

- ATLAS and CMS W mass measurements are limited by the theoretical uncertainties
- Upgrade II will allow a statistical precision of few MeV and a similarly precise measurement through ${\rm W}(e\nu)$

Conclusion

LHCb is a general purpose detector in the forward region

- \bullet Vast program of Top and W/Z measurements
- The top production measured on three final states which μeb final state provides clearest signature
- ullet Several Vector boson decays already measured including ${\rm Z} \to \tau \tau$ and ${\rm Z} \to b \bar{b}$
- Beginning of a hadronization program at LHCb with the measurement of charged hadron production in Z-tagged jets
- More measurements to come with the full Run II data

Prospects

- Exciting prospects for the EW and Top physics
- LHCb will play an important role in the W mass and the effective weak mixing angle measurements at LHC

イロト イヨト イヨト

Thank you for your attention!

Oscar Augusto (CERN)

LHCb W/Z/Top results and prospects

Rencontres de Blois 2019 23 / 23

э

< □ > < 同 > < 回 > < 回 >