PHYSICAL REVIEW D 100, 014025 (2019)

Transport coefficients for multicomponent gas of hadrons
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The transport coefficients of a multicomponent hadronic gas at zero and nonzero baryon chemical
potential are calculated using the Chapman-Enskog method. The calculations are done within the
framework of an S-matrix based interacting hadron resonance gas model. In this model, the phase shifts and
cross sections are calculated using K-matrix formalism and where required, by parametrizing the
experimental phase shifts. Using the energy dependence of the cross section, we find the temperature
dependence of various transport coefficients such as shear viscosity, bulk viscosity, heat conductivity, and
diffusion coefficient. We finally compare our results regarding various transport coefficients with previous

results in the literature.
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I. INTRODUCTION

One of the important discoveries from experiments at the
Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) in search of the quark-gluon
plasma (QGP) is the fact that the deconfined quark-gluon
matter behaves as an almost-perfect fluid [1-9]. The
property that quantifies the “liquidness” of a liquid are
its transport coefficients, for, e.g., the ratio of shear
viscosity to its entropy density #,/s or the ratio of bulk
viscosity to its entropy density #,/s. Experimentally
measured elliptic flow, through the azimuthal correlation
of produced particles with respect to the reaction plane is a
sensitive probe for obtaining the transport coefficients. For
example, the magnitude of elliptic flow depends quite
sensitively on the shear viscosity of the QGP fluid, which is
estimated to be around #,/s~0.08 —0.20 during the
hydrodynamic evolution [10-12]. These small values of
n,/s make the system (QGP), a near perfect fluid.

Theoretically, the value of the shear viscosity depends on
the model under consideration. For example, at weak
coupling the dimensionless ratio 7,/s is proportional to
the ratio of mean free path to the mean spacing between the
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particles and weaker coupling means a larger value of this
ratio [13-15]. For example, for a weakly coupled gas of
gluons the #n,/s ~ (ailog(1/a,))~!, where a, is the
QCD coupling constant. For a, = 0.1, the value of
ns/s ~4 x 10°. On the other hand, in a strongly coupled
system there is efficient momentum transfer and the ratio
ns/s is significantly smaller [16]. For example, a lower
bound of the ratio #,/s = 1/4x for strongly coupled field
theories using the anti—de Sitter/conformal field theory
(AdS/CFT) correspondence has been conjectured in
Ref. [17]. In this work, we shall find that the ratio 7,/s
values varies from weak coupling to strong coupling
regime as one goes from lower to higher temperatures.

There are two other important reasons for studying the
temperature dependence of transport coefficients. First,
experimentally it has been observed [18,19] that /s shows
a minimum near the liquid-gas phase transition for different
substances, this might help in studying QCD phase dia-
gram. Such a minimum has also been observed in model
calculation. For example in Ref. [20], it was shown for
massless pions the ratio 7,/s diverges as temperature
T — 0, whereas in the quark gluon phase, at one loop
order in ay, the 77,/ is an increasing function of 7. Second,
it has been predicted that the ratio #,/s should show a
maximum near the phase transition [21-23]. For example
in Ref. [24] the ratio 77, /s for massless pions goes to zero in
the 7 — 0 limit and also to zero in the quark gluon phase
for asymptotically high 7 [25].

In this work, we calculate various transport coefficients
of a hadronic gas consisting of baryon and meson octets
namely 7,7, K, N, A, Z,E. The corresponding resonances
which appear as interactions among these hadronic
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constituents are handled using the K- matrix formalism
[26,27]. The formalism that we use for calculating the
equilibrium thermodynamic quantities like entropy density,
enthalpy density, number density etc., is through the
S-matrix based hadron resonance gas (HRG) model
[27,28]. The cross sections that are used in the calculation
of transport coefficients are calculated in the K-matrix
formalism for all hadrons except for the nucleons, where
we directly use the experimental phase shifts [29]. The
calculations are done for a system with vanishing baryon
chemical potential (1) as well as for finite up = 100 MeV.
The transport coefficients are obtained using Chapman-
Enskog (CE) method developed in Refs. [30-32]. In this
method the solution of the transport equation, i.e., the
distribution function to be determined, is first written as an
infinite series of Laguerre polynomials. With the help of
this expansion, the transport equation could be transformed
into an infinite set of linear, algebraic equations. From this
infinite set of equations, a finite number of equations are
taken and solved to get an approximate solution for the
distribution function. This solution is used to compute the
transport coefficients.

Pioneering work on transport coefficients in the CE
method has been done in Ref. [33] for quark and gluon
system and in Ref. [20], for various binary combinations in
a system consisting of 7 — K — N using experimental cross
sections. Similarly, in Ref. [26] the calculations of /s for a
multicomponent system consisting of 7 — K — N —n at
vanishing yp in the K-matrix formalism, has been carried
out but without including NN interaction. In Ref. [34], CE
method was used for calculating #,/s and #,/s using
UrQMD cross sections and in Ref. [35] using in-medium
cross sections. The current work improves upon all these
previous work to incorporate a larger spectrum of interact-
ing hadronic states (7 stable hadrons 4112 resonances) and
also extends to finite chemical potential. By adding more
stable hadrons into the mixture, one hopes that new
channels of interaction (through resonance formation)
could open up, which would relax the system to equilib-
rium quicker, than with fewer hadrons considered in earlier
works. Also, the degeneracy of the system changes, which
affects equilibrium quantities like entropy density and
number density etc., and in turn also affects the dimension-
less transport coefficient ratios. It is also interesting to
compute transport coefficients at nonzero chemical poten-
tial, since finite baryon density, affects the concentration of
various species interacting in the mixture and thus the
overall weight coming from different channels, on the final
value of transport coefficient. In regards to other formalism,
e.g., in Refs. [22,36,37], which uses relaxation time
approximation (RTA), the present formalism is better in
the sense that small angle scattering is taken care of
naturally, whereas RTA uses thermal averaged cross sec-
tions. Similarly, compared to models like ideal hadron
resonance gas, excluded volume approach [38—42] which

uses constant values of a cross section, the present
formalism utilizes the energy dependence of cross sections
to calculate the temperature dependence of transport
coefficients. Calculations of shear viscosity has also been
done using the Kubo formalism in transport models
[43,44]. Our results on transport coefficients are in rea-
sonable agreement with that from the transport models in
the temperature range of 7' = 80-110 MeV.

The paper is organized as follows. In Sec. II, we describe
the K-matrix formalism for calculating the scattering phase
shifts and cross section. In Sec. III we have discussed the
thermodynamics of interacting hadron gas using the for-
malism of Sec. II. Then in Sec. IV, we describe the CE
method for calculating the transport coefficients for single,
binary, and multicomponent system of hadrons at zero and
finite up. Finally, in Sec. V, we summarize our findings.

II. K-MATRIX FORMALISM

A theoretical way of calculating the attractive part of the
phase shifts is to use the K-matrix formalism. In this
section, we briefly discuss the K-matrix formalism.

For the process ab — cd

Sab—>cd = <Cd|S|Clb>, (1)

where S is the scattering matrix operator. The scattering
amplitude for the process can be expressed in terms of the
interaction matrix 7' as,

f(/5.0) = LZ(zl + 1)T'P(cos 6), (2)

Qab

where P;(cos@) are the Legendre polynomials for the
angular momentum / and 6 is the scattering angle in the
center of mass frame. The cross section for the process can
be given in terms of scattering amplitude,

o(V/5.0) = |f(Vs.0). (3)

The T matrix is related to the S-matrix by the following
equation

S=1+2i, (4)

where [ is the unit matrix. Using the unitarity of S-matrix
one can show

(T7' +i) =T~ +il. (5)
Therefore, one can define a Hermitian K matrix through
K' =171+l (6)

The K-matrix formalism preserves the unitarity of
S-matrix and neatly handles multiple resonances [45].
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In addition to that, widths of the resonances are handled
naturally in the above formalism. For overlapping reso-
nances the K-matrix gives a good description of the phase
shifts.

One can write real and imaginary part of the 7-matrix in
terms of K matrix as

ImT 7
ReT @

In Ref. [26] the K-matrix formalism was used to study
the shear viscosity of an interacting gas of hadrons.
Recently in Refs. [27,28], K-matrix formalism is used to
study the equation of state and susceptibilities pertaining to
conserved charges.

For the process ab - R — cd, resonances appear as sum

of poles in the K-matrix as K.

KII

ab—cd —

ZgR—mb m gR—wd(\/_)’ (8)

where a, b and ¢, d are hadrons, R is the resonance with
mass mpg. The sum over R is restricted to the addition of
resonances which have the same spin / and isospin /. The
residue functions are given by

g%?—»ab(\/g) = mRFR—uzb(\/E)’ 9)

where /s is the energy in the center of mass frame and
T'r_ap(1/s) is the energy dependent partial decay widths.
For the process R — ab, decay width can be written as [45]

mg 4
Croas(V5) = Ty === (B (qup> qar0))®s  (10)
VS qaso
where T, is the partial width of the pole of the

resonance at half maximum for the channel R — ab,
B'(qup» qupo) are the Blatt-Weisskopf barrier factors [45]
which can be expressed in terms of daughter momentum
q.» and resonance momentum ¢, for the orbital angular
momentum /. The momentum ¢, in the last expression is
given as

s V5) = 575 = a5 ) s = (o, =),
(1)

where m, and m,, are the mass of hadrons a and b decaying
from resonance R. In Eq. (10), g0 = qup(mg) is the
resonance momentum at /s = mg.

Therefore, to compute the K-matrix one needs the
relevant masses and widths of resonances. Further, in
partial wave decomposition, the K-matrix can be written
in terms of phase shift &/ as [45],

K =tand). (12)

Since the K-matrix formalism is applicable only for
attractive interaction, for the repulsive as well as NN
interaction we have used the experimental data of phase
shift [29]. In the present work we do not incorporate
baryon-hyperon and hyperon-hyperon interactions.

III. THERMODYNAMICS OF INTERACTING
HADRONS

The most natural way to incorporate interaction among a
gas of hadrons is to use relativistic virial expansion [46,47]
where the logarithm of the partition function can be
separated into two parts, noninteracting (Z;) and interact-
ing (Z;,) parts, i.e.,

InZ=1InZy+1InZ,. (13)

The noninteracting part of the partition function can be
written as

2 Sl .
:Z%Z(ﬂy—l(z-z/jz)Kz(jmhﬁ), (14)
h J=1

In ZO

where /1 denotes the index of stable hadron, V is the volume
of the system, g, is the degeneracy, m,, is the mass of the
hadron, z;, = exp(u,f) is the fugacity, f is the inverse of
the temperature (T), and K, is the modified Bessel function
of the second kind. For the conserved quantities like baryon
number, strangeness, and electric charge, y; can be written
as up, = Byup + Spus + Qpup- Here By, S),, Q) are respec-
tively the baryon number, strangeness and electric charge of
the hadron and the u's are the chemical potentials of the
corresponding conserved charges. In Eq. (14), +(—) sign
refer to bosons (fermions) and j = 1 term corresponds to
the classical ideal gas.
The interacting part of Eq. (13) can be written as

InZ, = szz’zzb i1,05), (15)

ll 1'7

where b(iy, i) is the virial coefficient defined as,

birei) = s [ b [ deesp (pip + )
[A{S 1%— 8;; SH (16)

In the above equation, the labels i; and i, refer to channel
of the S-matrix which has initial state containing i; + i,
particles. The symbol A denotes the symmetrization (anti-
symmetrization) operator for a system of bosons (fer-
mions), the subscript ¢ refers to trace over all the linked
diagrams.
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Temperature dependence of normalized number density calculated in S-matrix formalism. Left panel shows the n/T> for the

mesons and the right panel shows the same for the baryons. Closed symbols correspond to result at uz = 0 MeV and open symbols at

ug = 100 MeV.

The lowest virial coefficient i.e., the second virial
coefficient, b, = b(iy,i,)/V as V — oo, corresponds to
interaction between two hadrons (i; = i, = 1). The higher
order virial coefficients give interaction among many
hadrons. In the present, work we will consider only up
to the second virial coefficient.

The S-matrix can be expressed in terms of phase shifts 5/
as [46]

S(e) = > (21 + 1)(21 + 1) exp(2id)),
1.1

(17)

where [ and [ denote angular momentum and isospin,
respectively. Integrating Eq. (16) over the total momentum
we get

93ic)
Oe

1 © )
by = wA d&‘«’sz(ﬁs)Z” Ih (18)

The factor g, = (21 + 1)(2/ + 1) is the degeneracy factor,
M is the invariant mass of the interacting pair at zero center
of mass momentum. The prime over the summation sign
denotes that for given / the sum over [ is restricted to values
consistent with statistics.

The Eq. (18) shows that the contribution arising from
interaction to thermodynamic variable depends on the
derivative of the phase shift. The positive values of
derivative of phase shifts (attractive interactions) give
positive contributions to the thermodynamical variables
and negative value of derivative of phase shifts (repulsive
interactions) give negative contributions.

Once we know the partition function [Eq. (13)] we can
calculate various thermodynamic quantities like pressure,
energy density, entropy density, number density etc. In
Fig. 1, we show the scaled number density (n/T7) as a
function of temperature, using the interacting model
described above, for mesons (z, K, 7) and baryons (N,
A, Z, B) at up =0 MeV and at upz = 100 MeV.

IV. TRANSPORT COEFFICIENTS

The relativistic Boltzmann equation, describing the space-
time evolution of the phase space density f = f(x, p), where
x is position and p is momentum, is given by [48],

p”aufl = C[f’f]

The collision term C[f, f], in the Boltzmann approximation,
is given by,

(19)

1 d3p2 d3p3 d3p4

Clf.fl= 2 T?T[fsﬂ(l +0f1)(1+0f2)
2> P3Py
= [1f2(1 4 0f3)(1 + 60f4)]W(ps, pslp1. p2)-

(20)

where p;, p, are momenta of incoming and ps3, p4
are momenta of outgoing particles, respectively.
W(ps, pslp1» po) is the transition rate in the collision process
p1+ P> < p3 + ps. The constant § = +1 for bosons or
fermions and O for classical Maxwellian particles. We shall
employ the Chapman-Enskog method as discussed in
Refs. [30-32] to linearize and solve the kinetic equation
Eq. (20). We split the derivative operator 9 into a timelike
and spacelike part

o — UMD + VH, (21)
where D = U?0, and V¥ = A, and A* = g"* — UFU" is
the projection operator. Here, U* is the hydrodynamic four
velocity, as discussed in Ref. [30]. Taking 0 =0, i.e.,
assuming the particles to be classical, we expand the
distribution function f into an equilibrium part £©) and a
deviation ef(", i.e.,

=710 4er,

To order ¢, substituting Eq. (22) into the transport equation
Eq. (19) gives

(22)
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pUDFY + pV, 0 = 0clp, (23)

where L[] is the linearized collision operator [found from
Eq. (20), using Eq. (22) and invoking the principle of detailed

balance given as, f(lo) féo) =f éo)f 4(;0)}
Hence,

Llpl =

1 [ dp,dpsd®
3 | CRERER A G+ b= s )
Pz P3 P4

x W(ps. palp1. p2).- (24)

The ¢; is the ratio f\" /). The equilibrium distribution
functions f l(_o) are assumed to be Maxwell-Boltzmann type

fl(O) — exp (ﬂi(x) ;(fCZI;UD(X)> ] (25)

To identify the functions u(x), U*(x), and T(x) with the
usual definitions of chemical potential, hydrodynamic
velocity and temperature of the system, we demand that
the particle density n and energy density en be determined
solely by the local equilibrium distribution function in
Eq. (25) as,

d3

n= /Wg)po(l’”%)f(o)’ (26)
d3

en — / Wfpo(pwﬂy 70, (27)

The choice of distribution function given in Eq. (25) along
with condition given in Egs. (26) and (27) determines the
set of independent variables T, u, U*. The derivative of
the distribution function f(©, then depends only on the
above set of independent variables. Then one can express

Df© as

of© af© af©)
0) — o
Df 5 Dn o+ = DT 4= DU
ou , O [(u .
{8 Dn +<T 8T< )+pUﬂ
£
x D(logT) — pMDU”} Tt (28)
and Ve f©)
£
Ver) = [TV“( )—l—p"U V¢log T — p"VeU }T’
(29)

expressed in terms of temperature 7', density n, hydro-
dynamic four-velocity U* and the chemical potential p.

Multiplying Eq. (23) with [@*pp*/p® and contracting
with U, gives [48],

DT = —(y = )TV, U* (30)

where y = c¢p/cy is the ratio of heat capacities at constant
pressure cp and constant volume cy. Similarly, on multi-
plying Eq. (23) with [d’pp*/p® and contracting with
projection operator A*, gives the equation of motion

pur = L wep, (31)

wn

where, wn is the enthalpy density, wn = en + P and P is
the pressure [30]. Also, the continuity equation, e.g., given
in Ref. [48]

Dn = —nV,U". (32)

can be used to express the time derivative of number
density in terms of gradients of hydrodynamic velocity.
Equations (30)—(32) are used in Egs. (28) and (29), to
express time derivative of 7', n, and U* in terms of gradients
of U* and P, respectively.

The expressions of Df©) and V#£(©) given in Egs. (28)
and (29) can be substituted in the linearized transport
equation Eq. (23). Thus, one can express the transport
equation in terms of thermodynamics forces, whose com-
ponents include scalar force, vectorial force and tensorial
force, respectively. The scalar force can be expressed as the
divergence of hydrodynamic velocity

X =-V,U", (33)

the vectorial force, due to temperature gradient and pressure
gradient is given as

1
Y* = Vi logT —— VP, (34)
wn

and tensorial forces (traceless indicated by “()”), due to
gradient of hydrodynamic velocity is given as

1 1 1
(2) = VAU + SV =S ART U0 (35)

In terms of these forces, the transport equation is then
given as

OX = p,(p"U, = w)Y" + p,p,(Z") = TL[P].  (36)

The quantity Q is defined as

014025-5
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2

0= G - y) (P U + ((r = 1)w —yT)p*U, —m?,

(37)

where the relativistic version of Gibbs-Duhem relation [48]
TVH(u/T) = —w(V*T/T — VFP/wn) was used for the
derivation of Eq. (36).

An equation similar to Eq. (36) can also be derived for a
two component mixture with components labeled by sub-
scripts 1 and 2. Here, we indicate the few differences
pertaining to extension of derivation of Eq. (36) for binary
mixtures. Interested readers may refer [31] for the complete
derivation.

The analogous linearized transport equation for mixtures
can be written as,

2
PUDEY + VY = =S Lulpl.  (38)
k=1

An equation similar to the Eq. (38) also holds for
component 2. The right-hand side takes collisions of the
form 1(2) + 1(2) - 1(2) +1(2) and 1 +2 — 1 + 2 into
account. The linearized operator is given by

13} Pp,Ppysdp
X (@1 + o — 3 — p4)Wik(p3. palp1. P2). (39)

The factor (1 —§8,;/2) takes into account the correct
weighting for same or different species which interact in the
scattering process.

However, an extra thermodynamics force called the
diffusion force [31], given by

w;—w
Y/f = (V”ﬂl)P,T - (v”ﬂz)P,T -~ 2

"
- VEP,  (40)

needs to be introduced when dealing with mixtures. Here, n
is the particle density and w; is the enthalpy per particle of
component i. Further derivation of the transport equation in
terms of thermodynamic forces proceed along lines similar
to single component system and can be found in Ref. [31].
Here we state the final result analogous to Eq. (36) for
component 1 as

O\ X — pi(PhU, —w))Y, —x2p Yy, + Pipi(Z,,)

= TZ£1]<[¢]? (41)

where, x; = n;/(n; + n,) being the particle number den-
sity fraction. An equation similar to above, also holds for
component 2. The linear equations given in, Eqgs. (36)

and (41) are used in the later sections to derive explicit
expressions for the transport coefficients.

A. Single component system

In the present section we derive the transport coefficients
for a single component system as described by the transport
equation given in Eq. (36).

The observation that thermodynamic forces X, Y# and
(Z) appear as linearly independent quantities in Eq. (36),
enables us to write the function ¢ of Eq. (24) as

¢ = AX - B,Y' + C,(Z"), (42)

where the unknown coefficients A, B, and C,, are still to
be determined. The sign of B, is chosen in accordance with
the sign of the vector force in Eq. (36). Inserting Eq. (42)
into Eq. (36), the transport equation can be separated into
three independent equations, given as

0X = TL[AX] (43)
-(p"U, = w)p,Y" = TL[-B,Y"| (44)
pup2") = TL[C,Z"], (45)

where L[¢] is the linearized collision operator, as defined
in Eq. (24).

We next define the macroscopic dissipative quantities,
such as the viscous pressure and the heat flow which are
functions of ¢. The viscous pressure is defined as [30]

1 [dp
Im= —g/FAﬂDP”P”f(O)Qﬁ, (46)
the heat flow is defined as
dp
= [SEap U= s P @)

and the traceless viscous pressure is defined as
v d3p N 1 v a,f £(0)
() = r Dol =2 By & | p*pPfO . (48)

The dissipative quantities can be written in a more trans-
parent way using the following dimensionless inner prod-
uct bracket notation

.6 =2 [ L2 Fp6r)©

_ 1 &p .
—W/WF(P)G(PV . (49)

where the quantities z = m/T and 7 = p*U,/T have been
used. Inserting the expression for function ¢, given in
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Eq. (42) into the definitions of dissipative quantities
defined in Eqgs. (46)—(48), expresses these dissipative
quantities in terms of bracket notation. Hence, the bulk
viscous pressure is given as,

1
= —gnT(ﬂ”ﬂ#,A)X =1,X, (50)

such that z# = A*p,/T. The heat flow is given as

= —nT(n" <r —%),B,,) Y  =TAY, (51)
and the shear viscous flow as

(1) = nT((w'7"), Cop)(ZF) = 2n,(2").  (52)

The quantities 7,, 4 = A, #*/3 and #, stand for the bulk
(volume) viscosity, heat conductivity, and shear viscosity
coefficients that appear as a constant of proportionality
between thermodynamic forces and the dissipative quantities.

The technical details needed to compute the still
unknown quantities A, B#, and C* into a tractable form,
using collision integrals is given in Ref. [30]. Here, we

simply write the expressions that can be used for computa-
tional purposes. The bulk viscosity is given by

2
a3
n, =T—, 53
0 (53)
the heat conductivity is given by
T p
T 54
3m b] 1 ( )
and the shear viscosity is given by
T 13
=——. 55
s = 10 o, (55)

The definitions of symbols a,, f;, and y, and the
expression for the quantities a,,, by, and ¢y are given
in the Appendix.

In Fig. 2 we use the relations as given in Egs. (53)—(55)
to calculate various transport coefficients for single com-
ponent gas of baryons and mesons. The differential cross
sections that go into the expression of a,,, by, and ¢y are
calculated using K-matrix formalism described in Sec. II
for z, K and n while for nucleons (N) differential cross
section, we use the experimental phase-shift data from
Ref. [29]. One must note that the temperature dependence
of transport coefficients are highly dependent on the
energy dependence of differential cross sections. This is
because the transport coefficients, through the quantities
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FIG. 2. Variation of bulk viscosity, shear viscosity and heat conductivity of the single component gas with temperature. The lower
triangle correspond to the results of transport coefficient computed using current algebra cross sections [49].
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FIG. 3. Energy dependence of the cross section for single

component gas using K-matrix formalism (solid, dot and dashed
lines) and (dot dashed) line for pions using current algebra (CA)
cross sections [49].

ay, byy, and ¢ (as given in the Appendix) are inversely
proportional to the interaction cross sections.

Figure 3 shows, the role of cross sections on the
temperature dependence of transport coefficients. It can
be seen from the comparision of the current algebra (CA)
cross sections of massive pions [49] which increase with
the center of mass energy to that of K-matrix cross section
which shows various peaks corresponding to various
resonances that occur in zz interaction throughout the
energy spectrum. This makes the transport coefficients as
shown in Figs. 2(a)—(c) to decrease with T for current
algebra and increase with T for K-matrix. Similarly, for #n
interaction which has only a few resonances, the temper-
ature dependence of transport coefficients show a dip at
some given range of temperature, which can be alluded to
the sharp rise in the cross sections at corresponding
energies (shown in Fig. 3). Comparing the transport
coefficients among various mesons, we find that transport
coefficients of a gas of # > K > z. This is because the total
cross section of 7 > K > 5. For nucleons, the elastic cross
section decreases with the center of mass energy, the same
is reflected in the transport coefficients of nucleons at low
T, where it drops even lower than for zs, but with
increasing 7', increases faster than for zs.

Finally, we clarify that our calculations of transport
coefficients is limited in scattering energy within the region
where resonance dominates. This constraint on scattering
energy can be translated to the limitation on the temperature
in the following way. Considering each collision takes
place between particles in thermal equilibrium, the scatter-
ing energy squared s fluctuates around the average (s) with
a standard deviation o. The average and standard deviation
can be defined as [50]

35
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3 25 __.-":“A
O " aA
= 20} et
© : .l.. AAA
g aun” NG
@ 15 .I... AA‘A
- Ak
et A‘AA A nm
1.0 AAAA‘ . KK
05 fattt "
1 1 1
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FIG. 4. Temperature dependence of maximum scattering en-
ergy /sy for single component gas of pions, kaons, and
nucleons.

_ @i pas(pr. ) fO (p1) 1 (o)
fd3pld3pzf(0)(l71)f<0) (P2)

(s) (56)

o =1/ (s2) — (s)2. (57)

Thus, we can define the maximum of scattering energy
squared as Sy, (7) = (s) + 0. The temperature depend-
ence of /sy, for a single component gas of pions, kaons
and nucleons is shown in Fig. 4. The /s, for zz, KK and
NN, determined from their resonance mass cutoff, are
2.01 GeV, 2.29 GeV, and 2.34 GeV respectively. From
Fig. 4, the corresponding temperature 7, are found to be
318 MeV, 297 MeV, and 150 MeV respectively.

B. Binary component system

The equation needed to obtain the transport coefficients
for a mixture of two component gas is given in Eq. (41).
The trial function is a linear combination of thermodynamic
forces, i.e.,

1 v
¢k - (AkX - BkMYZ _?B;]lkylﬂ + Cl]: <le>> (58)

The only differences between the trial function for single
component system Eq. (42) and ¢, of binary-component
system is the diffusion force Y/{. Substituting function ¢ in
Eq. (41) gives us

2
Q1 =T LylA. (59)
P
2
—-(P{U, —wi)pt = Tzﬁlk[_Blf]’ (60)
=1
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2
1
—Xpi = TZElk[_TBlllk}’ (61)
k=1
2
Pivy =Ty Lulct), (62)
k=1

where the factors A;, BY, Bj,, and C|° are unknown
functions that are determined later. The law relating the
traceless viscous pressure tensor to the hydrodynamic
velocity and the law relating the viscous pressure to the
divergence of hydrodynamic velocity as in Egs. (50)
and (55) do not change for mixtures. However, the law
relating the heat flow to the temperature and pressure
gradient, as in Eq. (51) needs to modified as,

7’; = quXZ + lqu”, (63)
where X, is the generalized driving force of heat flow and
X’l‘ is the diffusion driving force, which accounts for the

flow due to gradients of different constituents of the system.
The transport coefficients are defined as

T ZZ w
lyg =T =~ 3 T <ﬂyk <Tk - 7k> ' Bkﬂﬂk>’ ()
k=1

for the thermal conductivity and

1< w
== (1) ) @
k=1

for the Dufour coefficients. This coefficients accounts for
the heat flow in the presence of density gradients in a
mixture. The other new coefficient for a mixture is the
diffusion flow given by

Iy = 11Xy + 1, XY, (66)

where the coefficient /, is equal to the Dufour coefficient

l;1- The second coefficient [;; is related to diffusion
coefficient through the relation [31], D, = % This is
given as

1 2
I = _37;(51k—x1)xk(”ﬁk731k”ﬂk)' (67)

—_

As in a single component system, the transport coef-
ficients can be written in collision bracket form, the details
of which can be found in Ref. [31] and in the Appendix.
Here we write the expression which can be used for
computational purposes. The bulk viscosity is given as

My =4 —, (68)

the shear viscosity is given as

T
Ny = IO—A((xlh)zsz — 2x107172¢1 + (%272)%c11),
(69)
and the diffusion coefficient is given as
T 5
D, : : (70)

3n’mymycicy by

The symbols and their relations to collision brackets are
explained in the Appendix.

One should note that the expressions given in Egs. (53)—
(55) for single component system and Eqs. (68)—(70) for
binary component system corresponds to the first non-
vanishing approximation of the transport coefficients (by
approximation, we mean that the unknown coefficients B*,
CH*, etc., are expanded using a infinite series of Laguerre
polynomials truncated at some order). Except for bulk
viscosity, the first approximation corresponds to first non-
vanishing value. For bulk viscosity, the nonvanishing value
happens to be the third order approximation for single
component system and second order approximation for
binary component system. Thus, bulk viscosity for binary
mixtures in the second order approximation calculated
in this work depends only on the interaction among
dissimilar species. The coefficient of shear viscosity, on
the other hand, depends on cy,, ¢;; and ¢y, where, ¢y,
describes the interaction between dissimilar species and
C11, €y, describe the interaction among similar species [see
Egs. (A13)-(A15)].

The resulting transport coefficients for various binary
mixtures are shown in Fig. 5. We have found both shear and
bulk viscosities of the mixtures of two species lie in
between the transport coefficients of the individual species.
The dip seen in the shear viscosities of zN and KN can be
attributed to resonances that appear in zN and KN
interaction at the relevant energies which leads to an
increase in the cross section and thus lowering the value
of shear viscosity. Similarly, we show the diffusion coef-
ficient of various binary components in Fig. 5(c) which
depends on the density gradients in a mixture. We find that
KN system has largest diffusion coefficient at smaller
temperatures and zN system the lowest, but with increasing
temperature, the coefficient for KN system, shows a sharp
decrease in its value and the zK system shows a minimum.
The open symbols in Fig. 5 correspond to transport
coefficients at up = 100 MeV. In the CE approximation
up enters implicitly in the expressions of transport coef-
ficients via concentration or number densities of various
reacting mixtures. The number densities were calculated
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FIG. 5. Temperature dependence of shear viscosity, bulk viscosity, and the diffusion coefficient of the binary gas mixture. Close and
open symbols correspond to the results at g = 0 and upg = 100 MeV, respectively.

using virial expansion that was described in Sec. II and are
themselves function of temperature. We find that values of
bulk viscosities are larger for large pp but gradually
asymptotes towards pp = 0 MeV value, while shear vis-
cosities values are smaller for large pp and gradually
asymptotes toward the up = 0 MeV values. The diffusion
coefficient are mostly unaffected by the value of up
considered in the work.

C. Multicomponent system

The derivation of transport coefficients for the multi-
component system follows the same line of reasoning as in
the case of the single and binary component system. The
transport coefficient can be expressed transparently using
the bracket notation which can be found in Refs. [31,32].
Here, we only give the final expressions which can used for
computational purposes. The bulk viscosity of a N com-
ponent gas can be written as

N N
_ 2
n, =nT E E agagay,
=1 =1

(71)

while the coefficients a; satisfy the linear equations

N
Z Ard; = —» (72)
=1
and the shear viscosity can be written as
T3p2 N N
chkclcklv (73)
and the coefficients c; are solutions of
Z Tk
chckl :p_T:yk' (74)

=1

In this work the Eq. (74) for the multicomponent system
can be written as
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Cx Caz Cak CaN Cm’] Can Crx Cz= ]/j;
Ck cik ckk cxkn 0 0 cxx O Yk
CN CzN CkKN CNN CyN 0 0 0 4%
Ccy oy 0 cuv Ccpyp ocpp oz 0 =1 |
cA cean 0 0 ¢ can 0O 7A
Cs iz ¢ckx 0 ¢z 0 ¢z O g
Cz c= 0 0 0 0 0 cgg 7E
(75)

and similarly for Eq. (72). The coefficients c¢;; and ay,
depend on the scattering cross section of the given channel
k and [ and the expressions in terms of collision integrals
are given in the Appendix [see Egs. (A18)—(A20)]. The
zeros in c¢p; occur, when we do not have a resonance
decaying in a channel /.

The result of transport coefficients (7,, #,), for various
multi-channel processes is shown in Figs. 6(a), 6(c)
at up =0 MeV and Fig. 6(b), 6(d) at ugp = 100 MeV.
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We find that bulk viscosity turns out to be additive for a
mixture of hadrons, in contrast to the shear viscosity, which
decreases with the increase in number of components. This
also explains why in RTA, for shear viscosities one should
not add the relaxation time but the inverse of relaxation
time for a multicomponent system. The decrease in shear
viscosities due to the increase in the components of the
reacting mixture is evident, since it opens additional
channels for reactions to occur and thus the overall
cross section of the system. Comparing the result of 7,
at up = 0 MeV with that at uz = 100 MeV, we find that
the values of #, are larger at large yp. Similarly, we notice
that at low 7T the shear viscosities at finite up is slightly
lower than at zero pp. However, with increasing temper-
ature, the value of shear viscosity at finite up overshoots
that at zero pp. This can be understood, since at large T
contributions from heavier baryonic states which have
smaller cross section increases and thus increases the
viscosity. At lower up their concentration is smaller, hence
their effect is not noticeable but increasing pup increases
their concentration (the cross section remains the same) and
hence their effect on viscosity also increases.
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FIG. 6. Temperature dependence of bulk viscosity, shear viscosity at up = 0 MeV and up = 100 MeV for multicomponent gas of

hadrons.
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literature [26,34,38,40,51].

The variation of #,/s and #5,/s as a function of temper-
ature is shown in Figs. 7(a)—(b). Our results of #,/s is an
increasing function of 7 for 7 < 150 MeV and decreasing
for T > 150 MeV. At up =100 MeV, we find the
magnitude of the peak, seen in 7,/s is larger than at
up = 0 MeV. Similarly, we find that 7,/s decreases with
temperature consistent with previous results in this regard
[26,34,38,40,51]. However, we find that the result of #,/s
at up = 0 violates the AdS/CFT bound around a temper-
ature of 7 = 160 MeV, while the result of yz = 100 MeV
remains above the bound and asymptotically approaches it
at higher temperatures. Of course, the temperature where
the violation of the AdS/CFT bound occurs, is in between
the deconfinement temperature which is around 7 =
155-165 MeV [52,53], where our model should break
down. It is also interesting to note that peak in the ratio 7,/ s
happens to be around the same temperature where the ratio
ne/s violates the AdS/CFT bound. It is also important to
note that recently the temperature dependence of bulk
viscosity has also been calculated in nonconformal field
theories in the context of heavy ion collisions [54]. A
comparison of 7,/s with one such model from Ref. [54] is
shown in Fig. 7(a), with the minimum of the potential ¢,
set at ¢hy, = 2. It is interesting to see that the nonconformal
model compares well with our results.

Let us now discuss the comparison of our result with the
calculations that has been previously reported in the
literature at pup = 0 MeV. In EVHRG (excluded volume
HRG model), ,/s monotonically decreases as a function
of temperature 7" in contrast to our results which shows a
peak structure and further one can note that magnitude of
n,/s in the EVHRG model is a factor of ten more than our
results. The first reason for this is that, the calculation of
n,/s is carried out using RTA [40], in the EVHRG model
using momentum independent relaxation times which is

quantitatively different from that of CE method used in the
current work. The difference in temperature variation can
be attributed to use of constant cross section in the EVHRG
model calculations compared to energy dependent cross
sections used in our work. Moroz [34] uses cross sections
from the UrQMD model, including elastic plus resonance
processes calculated in the CE approximation. The 7,/s
result from Moroz calculation is qualitatively and quanti-
tatively similar to our calculations. Some discrepancies are
still present because of the use of some constant cross
sections to describe nonresonant interaction in Moroz’s
calculation.

The #,/s calculation in EVHRG model [38] is done
assuming all hadrons have the same hard-core radius
r = 0.5 fm. Apart from the fact that the value of r used
is model dependent, one must note that, they also assume
that the shear viscosity is additive for a mixture of hadrons,
contrary to our results. Although 7,/s decreases with
temperature, but the slope is less steeper than our calcu-
lation. This is because in Ref. [38] both 7, and s increase, as
degeneracies increase. However, in our case 5 decreases
and s increases as degeneracies increase. Both this feature
make the slope of 7,/s steeper than Ref. [38]. Wiranata
etal. [26] used K-matrix formalism for calculating 7, /s in a
hadronic gas consisting of # — K — N — 5. Their result is
around six times larger than ours at low 7" and about two
times larger in high 7. The discrepancies between the two
results are first, due to the fact that we have used a larger
spectrum of interacting hadrons and resonances. Second,
and an important difference is that Ref. [26] did not include
the NN mutual interaction, since their cross section were
solely using K- matrix formalism, where as we parametrize
NN experimental phase shifts to calculate the differential
cross section. Owing, to the fact that NN cross section are
larger at small /s as has been previously discussed, their
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contribution to transport coefficients is quite different and
dramatic than other resonant interaction present in K-
matrix formalism. SMASH (simulating many accelerated
strongly interacting hadrons) [51], which is a transport
code, uses Green-Kubo formalism to calculate #,/s for
hadronic gas mixture. One of the common features between
our model and SMASH is the treatment of interactions
through resonances, which have a non-zero lifetime. Our
result of #/s is in good agreement with SMASH within
temperature range of 80—110 MeV. But after 7 ~ 120 MeV,
we find that the SMASH result saturates and forms a plateau
at higher temperature. The same trend is also seen in other
transport codes, e.g., UrQMD [43]. The crucial difference
between our approach and SMASH is that, SMASH utilizes a
feedback loop between the relaxation time and resonance
lifetimes whereas our approach does not [44].

V. SUMMARY

In summary, we have calculated the transport coeffi-
cients for a multicomponent hadronic gas. The thermody-
namic quantities are calculated using the S-matrix based
hadron resonance gas model. The phase shifts required for
the calculation of S-matrix was calculated using the K-
matrix formalism for all hadrons except for nucleons, for
which we directly parametrize the experimental phase
shifts. The transport coefficients were calculated using
the Chapman-Enskog method. Such a method utilizes
the energy dependence of cross sections to calculate the
temperature dependence of transport coefficients.

We start with various single component gas systems and
gradually add different species of hadrons to finally form a
multicomponent gas mixture. We found that adding new
species into the mixture, opens up new channels for
interaction to occur, which leads to an increase in cross
section and thus reducing the shear viscosity. Similarly, we
calculate the transport coefficients at zero and nonzero pp.
We found that increasing pp increase the contribution of
higher mass baryons, which have a smaller cross section, in
the transport coefficients. This leads to the increase in the
value of 7/ s at higher temperatures. Interestingly, we found
that at the temperature around 7'~ 160 MeV, the ratio 7,/ s
shows a maximum and around the same temperature, the
n,/s starts violating the AdS/CFT bound. A maximum in
n,/s is a signature of crossover transition, that has been
seen previously in molecular gases [56]. Similarly, the
violation of AdS/CFT bound may signal the breakdown of
a simple model like the HRG and that the nonperturbative
nature of physics in this regime. However, increasing pp,
evades such a violation of the bound to larger temperature.
Finally, we compute and compare the ratio of 7,/s and
n,/s, with other models in the literature. Our calculation
shows qualitatively similar features, with models that use
energy dependent cross section in the relevant temperature
ranges. It is also interesting to see that a model which
assumes the hadrons to be gases with interaction governed

by S-matrix elements, which are basically resonances,
capture the essential physics of transport coefficients in
the T — up plane.

A few future directions for this work. The crucial
assumption that has been done in this work, is the use
of Maxwell-Boltzmann (MB) distribution function, which
may not be valid for large chemical potentials. Then, one
needs to solve the full quantum Boltzmann equation in the
CE method. In that case, the polynomials (the Laguerre
polynomials in the case of MB) satisfying them are not
known, and we have to find them order by order, as has
been done in Ref. [50]. Another important direction would
be to include a feedback mechanism between the relaxation
time and resonance lifetimes as is done in transport codes
[51]. For example, in this work we have considered
resonances like p, A, etc., as unstable particles, which
although contribute to the cross section, by themselves are
not a part of the mixture. This is only valid, if the lifetime of
resonance is shorter than mean free time of the system.
However, if the resonance lifetime is comparable or larger
to the mean free time of the system, interaction can only
occur until the resonance decays. Thus, the relaxation time
in such cases is limited by the lifetime of the resonance and
not by the mean free time.
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APPENDIX: DEFINITIONS OF VARIOUS
SYMBOLS USED IN THE TEXT

In the following Appendix, we define the various
symbols and expressions that were used in the main text.

For single component system the symbols a,, 3, and y,,
are defined as

5
a2:7w—3y<1+¥>, (A1)
3y
= A2
ﬂl }/_17 ( )
10w
Y0 _T’ (A?’)

where y = c,,/c,. The quantities ay,, by, and ¢y, are
()

defined in terms of relativistic omega integrals, ;
ayy = 20)82), (A4)

by =8(a? + 7' l), (AS)
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1
Cop = 16(60%2) - z“a)gz) + gz‘za)(()z)), (A06)

where the definitions of relativistic omega integrals are
given in [30] and can be written as

(5 2m N [ g
0 (2)= |5~ dysinh’ycosh’y K ;(2zcoshy)
Kz(Z) 0

x / " 405in 0o (,0) (1 — cos*0)

0

51
S+ (=1,

=>+5 i=0,+1,£2,..., s=2,4,6,...

(A7)
where o(y, ) is the differential cross section for interaction
between two identical particles, expressed through the

quantities y and angle 6 between the initial and final
hadrons defined as

(P —P2)2
2m

(p1+ pa)?

hy —
sinhy o

,  coshy = (A8)
where p; and p, are the initial four-momenta of the two
colliding hadrons.

For binary component system the symbols «;, §;, and y;,

where i = 1, 2 are defined as

a=x 0 (A9)
Yy — 1

(Sl' = (-1)i3C1C2, (AIO)

Yi = _10cihiv (A]])

where h; = K3(z;)/K>(z;) is the specific enthalpy of
species i, ¢; = p;/p is the mass fraction of species i. p;
is the mass density, which is mass times the number density
of species i and p is the total mass density. Similarly x; =
n;/n is the number density fractions of species i, where n;
is particle number density of species i and 7 is the total
number density. The quantity y(;) = ¢, ;/c,; is the ratio of
specific heats of species i. The quantities a;;, ¢;;, Cij, bj;s
and A, are defined in terms of relativistic omega integrals,

0 (0u)

16p,p
Ay = 20 (512)

MTnzwlzoo (A12)

32p%x3x3 11 (1
m(—lozlzﬁ 'Z7 @) (010)

_ _ 1 2
- 10z22(7'Z 260(13)11(612) + 30)&300(”12)

e 2
-3z 10)&2)00(012)4’2 2“)23)00(‘712))’

Cp =

(A13)
32p%x3x3
3M?n’xx,
+ 102371 Z 20\ g (012) + 3w5ip(012)

e 5
=327 ol (012) + Z 205 (01)),

Cc11 = COO(ZI) (1OZ%C_IZ_ICO(112>20(012)

(Al14)

32p2xzx2 o
IM2n2x 2 (1OZ%C 'z 16‘)(12>02(‘712)

1 2
+10z5¢7'Z 2w(lls)oz(fflz) + 3“’&300("12)

e 2
-3z 1“’%2)00(012) +Z 2(‘)23)00(‘712))’

¢ = coo(z2) +

(A15)

A, =cien — C%z» (Al6)

1 - 2
i (Qoiig(e1) = 327 w5 (012)). (A17)

where o, is the cross section between particles # and v.
The coefficients cy(z;) accounts for contribution from
interaction between identical species of type k as given in
Eq. (AS5). The reduced mass u is given as y = mym,/
(my + m,). The abbreviations Z and ¢ are given as Z =
M/T and { = 2u/T, where M = m; + m, is the total mass.
The definitions of relativistic omega integrals are given in
Refs. [31,32] and we do not write them here. For multi-
component system, the coefficients ay;, c;; are given as

ay = —ay = Z an(kl) (1# k) (A18)

cr = Ccoolzx) + Z en(kl) (I#k)  (A19)
=1

e = cip(kl)  (1#k), (A20)

where as,(kl), ¢y (kl), and c,(kl) are the expressions
given in Eqgs. (A12)-(Al5), with subscripts 1 and 2
replaced by k and [.
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