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The transport coefficients of a multicomponent hadronic gas at zero and nonzero baryon chemical
potential are calculated using the Chapman-Enskog method. The calculations are done within the
framework of an S-matrix based interacting hadron resonance gas model. In this model, the phase shifts and
cross sections are calculated using K-matrix formalism and where required, by parametrizing the
experimental phase shifts. Using the energy dependence of the cross section, we find the temperature
dependence of various transport coefficients such as shear viscosity, bulk viscosity, heat conductivity, and
diffusion coefficient. We finally compare our results regarding various transport coefficients with previous
results in the literature.
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I. INTRODUCTION

One of the important discoveries from experiments at the
Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) in search of the quark-gluon
plasma (QGP) is the fact that the deconfined quark-gluon
matter behaves as an almost-perfect fluid [1–9]. The
property that quantifies the “liquidness” of a liquid are
its transport coefficients, for, e.g., the ratio of shear
viscosity to its entropy density ηs=s or the ratio of bulk
viscosity to its entropy density ηv=s. Experimentally
measured elliptic flow, through the azimuthal correlation
of produced particles with respect to the reaction plane is a
sensitive probe for obtaining the transport coefficients. For
example, the magnitude of elliptic flow depends quite
sensitively on the shear viscosity of the QGP fluid, which is
estimated to be around ηs=s ≈ 0.08 − 0.20 during the
hydrodynamic evolution [10–12]. These small values of
ηs=s make the system (QGP), a near perfect fluid.
Theoretically, the value of the shear viscosity depends on

the model under consideration. For example, at weak
coupling the dimensionless ratio ηs=s is proportional to
the ratio of mean free path to the mean spacing between the

particles and weaker coupling means a larger value of this
ratio [13–15]. For example, for a weakly coupled gas of
gluons the ηs=s ∼ ðα4s logð1=αsÞÞ−1, where αs is the
QCD coupling constant. For αs ¼ 0.1, the value of
ηs=s ∼ 4 × 103. On the other hand, in a strongly coupled
system there is efficient momentum transfer and the ratio
ηs=s is significantly smaller [16]. For example, a lower
bound of the ratio ηs=s ¼ 1=4π for strongly coupled field
theories using the anti–de Sitter/conformal field theory
(AdS/CFT) correspondence has been conjectured in
Ref. [17]. In this work, we shall find that the ratio ηs=s
values varies from weak coupling to strong coupling
regime as one goes from lower to higher temperatures.
There are two other important reasons for studying the

temperature dependence of transport coefficients. First,
experimentally it has been observed [18,19] that η=s shows
a minimum near the liquid-gas phase transition for different
substances, this might help in studying QCD phase dia-
gram. Such a minimum has also been observed in model
calculation. For example in Ref. [20], it was shown for
massless pions the ratio ηs=s diverges as temperature
T → 0, whereas in the quark gluon phase, at one loop
order in αs, the ηs=s is an increasing function of T. Second,
it has been predicted that the ratio ηv=s should show a
maximum near the phase transition [21–23]. For example
in Ref. [24] the ratio ηv=s for massless pions goes to zero in
the T → 0 limit and also to zero in the quark gluon phase
for asymptotically high T [25].
In this work, we calculate various transport coefficients

of a hadronic gas consisting of baryon and meson octets
namely π; η; K; N;Λ;Σ;Ξ. The corresponding resonances
which appear as interactions among these hadronic
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constituents are handled using the K- matrix formalism
[26,27]. The formalism that we use for calculating the
equilibrium thermodynamic quantities like entropy density,
enthalpy density, number density etc., is through the
S-matrix based hadron resonance gas (HRG) model
[27,28]. The cross sections that are used in the calculation
of transport coefficients are calculated in the K-matrix
formalism for all hadrons except for the nucleons, where
we directly use the experimental phase shifts [29]. The
calculations are done for a system with vanishing baryon
chemical potential (μB) as well as for finite μB ¼ 100 MeV.
The transport coefficients are obtained using Chapman-
Enskog (CE) method developed in Refs. [30–32]. In this
method the solution of the transport equation, i.e., the
distribution function to be determined, is first written as an
infinite series of Laguerre polynomials. With the help of
this expansion, the transport equation could be transformed
into an infinite set of linear, algebraic equations. From this
infinite set of equations, a finite number of equations are
taken and solved to get an approximate solution for the
distribution function. This solution is used to compute the
transport coefficients.
Pioneering work on transport coefficients in the CE

method has been done in Ref. [33] for quark and gluon
system and in Ref. [20], for various binary combinations in
a system consisting of π − K − N using experimental cross
sections. Similarly, in Ref. [26] the calculations of η=s for a
multicomponent system consisting of π − K − N − η at
vanishing μB in the K-matrix formalism, has been carried
out but without including NN interaction. In Ref. [34], CE
method was used for calculating ηs=s and ηv=s using
UrQMD cross sections and in Ref. [35] using in-medium
cross sections. The current work improves upon all these
previous work to incorporate a larger spectrum of interact-
ing hadronic states (7 stable hadronsþ112 resonances) and
also extends to finite chemical potential. By adding more
stable hadrons into the mixture, one hopes that new
channels of interaction (through resonance formation)
could open up, which would relax the system to equilib-
rium quicker, than with fewer hadrons considered in earlier
works. Also, the degeneracy of the system changes, which
affects equilibrium quantities like entropy density and
number density etc., and in turn also affects the dimension-
less transport coefficient ratios. It is also interesting to
compute transport coefficients at nonzero chemical poten-
tial, since finite baryon density, affects the concentration of
various species interacting in the mixture and thus the
overall weight coming from different channels, on the final
value of transport coefficient. In regards to other formalism,
e.g., in Refs. [22,36,37], which uses relaxation time
approximation (RTA), the present formalism is better in
the sense that small angle scattering is taken care of
naturally, whereas RTA uses thermal averaged cross sec-
tions. Similarly, compared to models like ideal hadron
resonance gas, excluded volume approach [38–42] which

uses constant values of a cross section, the present
formalism utilizes the energy dependence of cross sections
to calculate the temperature dependence of transport
coefficients. Calculations of shear viscosity has also been
done using the Kubo formalism in transport models
[43,44]. Our results on transport coefficients are in rea-
sonable agreement with that from the transport models in
the temperature range of T ¼ 80–110 MeV.
The paper is organized as follows. In Sec. II, we describe

the K-matrix formalism for calculating the scattering phase
shifts and cross section. In Sec. III we have discussed the
thermodynamics of interacting hadron gas using the for-
malism of Sec. II. Then in Sec. IV, we describe the CE
method for calculating the transport coefficients for single,
binary, and multicomponent system of hadrons at zero and
finite μB. Finally, in Sec. V, we summarize our findings.

II. K-MATRIX FORMALISM

A theoretical way of calculating the attractive part of the
phase shifts is to use the K-matrix formalism. In this
section, we briefly discuss the K-matrix formalism.
For the process ab → cd

Sab→cd ¼ hcdjSjabi; ð1Þ

where S is the scattering matrix operator. The scattering
amplitude for the process can be expressed in terms of the
interaction matrix Tl as,

fð ffiffiffi
s

p
; θÞ ¼ 1

qab

X
l

ð2lþ 1ÞTlPlðcos θÞ; ð2Þ

where Plðcos θÞ are the Legendre polynomials for the
angular momentum l and θ is the scattering angle in the
center of mass frame. The cross section for the process can
be given in terms of scattering amplitude,

σð ffiffiffi
s

p
; θÞ ¼ jfð ffiffiffi

s
p

; θÞj2: ð3Þ

The T matrix is related to the S-matrix by the following
equation

S ¼ I þ 2iT; ð4Þ

where I is the unit matrix. Using the unitarity of S-matrix
one can show

ðT−1 þ iIÞ† ¼ T−1 þ iI: ð5Þ

Therefore, one can define a Hermitian K matrix through

K−1 ¼ T−1 þ iI: ð6Þ

The K-matrix formalism preserves the unitarity of
S-matrix and neatly handles multiple resonances [45].
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In addition to that, widths of the resonances are handled
naturally in the above formalism. For overlapping reso-
nances the K-matrix gives a good description of the phase
shifts.
One can write real and imaginary part of the T-matrix in

terms of K matrix as

ImT
ReT

¼ K: ð7Þ

In Ref. [26] the K-matrix formalism was used to study
the shear viscosity of an interacting gas of hadrons.
Recently in Refs. [27,28], K-matrix formalism is used to
study the equation of state and susceptibilities pertaining to
conserved charges.
For the process ab → R → cd, resonances appear as sum

of poles in the K-matrix as KI;l
ab→cd

KI;l
ab→cd ¼

X
R

gR→abð
ffiffiffi
s

p ÞgR→cdð
ffiffiffi
s

p Þ
m2

R − s
; ð8Þ

where a, b and c, d are hadrons, R is the resonance with
mass mR. The sum over R is restricted to the addition of
resonances which have the same spin l and isospin I. The
residue functions are given by

g2R→abð
ffiffiffi
s

p Þ ¼ mRΓR→abð
ffiffiffi
s

p Þ; ð9Þ

where
ffiffiffi
s

p
is the energy in the center of mass frame and

ΓR→abð
ffiffiffi
s

p Þ is the energy dependent partial decay widths.
For the process R → ab, decay width can be written as [45]

ΓR→abð
ffiffiffi
s

p Þ ¼ Γ0
R→ab

mRffiffiffi
s

p qab
qab0

ðBlðqab; qab0ÞÞ2; ð10Þ

where Γ0
R→ab is the partial width of the pole of the

resonance at half maximum for the channel R → ab,
Blðqab; qab0Þ are the Blatt-Weisskopf barrier factors [45]
which can be expressed in terms of daughter momentum
qab and resonance momentum qab0 for the orbital angular
momentum l. The momentum qab in the last expression is
given as

qabð
ffiffiffi
s

p Þ ¼ 1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðma þmbÞ2Þðs − ðma −mbÞ2Þ

q
;

ð11Þ

wherema andmb are the mass of hadrons a and b decaying
from resonance R. In Eq. (10), qab0 ¼ qabðmRÞ is the
resonance momentum at

ffiffiffi
s

p ¼ mR.
Therefore, to compute the K-matrix one needs the

relevant masses and widths of resonances. Further, in
partial wave decomposition, the K-matrix can be written
in terms of phase shift δIl as [45],

K ¼ tan δIl : ð12Þ

Since the K-matrix formalism is applicable only for
attractive interaction, for the repulsive as well as NN
interaction we have used the experimental data of phase
shift [29]. In the present work we do not incorporate
baryon-hyperon and hyperon-hyperon interactions.

III. THERMODYNAMICS OF INTERACTING
HADRONS

The most natural way to incorporate interaction among a
gas of hadrons is to use relativistic virial expansion [46,47]
where the logarithm of the partition function can be
separated into two parts, noninteracting (Z0) and interact-
ing (Zint) parts, i.e.,

lnZ ¼ lnZ0 þ lnZint: ð13Þ

The noninteracting part of the partition function can be
written as

lnZ0 ¼
X
h

Vghm2
hT

2π2
X∞
j¼1

ð�1Þj−1ðzjh=j2ÞK2ðjmhβÞ; ð14Þ

where h denotes the index of stable hadron, V is the volume
of the system, gh is the degeneracy, mh is the mass of the
hadron, zh ¼ expðμhβÞ is the fugacity, β is the inverse of
the temperature (T), and K2 is the modified Bessel function
of the second kind. For the conserved quantities like baryon
number, strangeness, and electric charge, μh can be written
as μh ¼ BhμB þ ShμS þQhμQ. Here Bh, Sh,Qh are respec-
tively the baryon number, strangeness and electric charge of
the hadron and the μ;s are the chemical potentials of the
corresponding conserved charges. In Eq. (14), þð−Þ sign
refer to bosons (fermions) and j ¼ 1 term corresponds to
the classical ideal gas.
The interacting part of Eq. (13) can be written as

lnZint ¼
X
i1;i2

zi11 z
i2
2 bði1; i2Þ; ð15Þ

where bði1; i2Þ is the virial coefficient defined as,

bði1; i2Þ ¼
V
4πi

Z
d3p
ð2πÞ3

Z
dε exp ð−βðp2 þ ε2Þ1=2Þ

×

�
A

�
S−1

∂S
∂ε −

∂S−1
∂ε S

��
c
: ð16Þ

In the above equation, the labels i1 and i2 refer to channel
of the S-matrix which has initial state containing i1 þ i2
particles. The symbol A denotes the symmetrization (anti-
symmetrization) operator for a system of bosons (fer-
mions), the subscript c refers to trace over all the linked
diagrams.
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The lowest virial coefficient i.e., the second virial
coefficient, b2 ¼ bði1; i2Þ=V as V → ∞, corresponds to
interaction between two hadrons (i1 ¼ i2 ¼ 1). The higher
order virial coefficients give interaction among many
hadrons. In the present, work we will consider only up
to the second virial coefficient.
The S-matrix can be expressed in terms of phase shifts δIl

as [46]

SðεÞ ¼
X
l:I

ð2lþ 1Þð2I þ 1Þ expð2iδIlÞ; ð17Þ

where l and I denote angular momentum and isospin,
respectively. Integrating Eq. (16) over the total momentum
we get

b2 ¼
1

2π3β

Z
∞

M
dεε2K2ðβεÞ

X
l;I

0gh
∂δIlðεÞ
∂ε : ð18Þ

The factor gh ¼ ð2I þ 1Þð2lþ 1Þ is the degeneracy factor,
M is the invariant mass of the interacting pair at zero center
of mass momentum. The prime over the summation sign
denotes that for given l the sum over I is restricted to values
consistent with statistics.
The Eq. (18) shows that the contribution arising from

interaction to thermodynamic variable depends on the
derivative of the phase shift. The positive values of
derivative of phase shifts (attractive interactions) give
positive contributions to the thermodynamical variables
and negative value of derivative of phase shifts (repulsive
interactions) give negative contributions.
Once we know the partition function [Eq. (13)] we can

calculate various thermodynamic quantities like pressure,
energy density, entropy density, number density etc. In
Fig. 1, we show the scaled number density (n=T3) as a
function of temperature, using the interacting model
described above, for mesons (π, K, η) and baryons (N,
Λ, Σ, Ξ) at μB ¼ 0 MeV and at μB ¼ 100 MeV.

IV. TRANSPORT COEFFICIENTS

The relativistic Boltzmann equation, describing the space-
time evolution of the phase space density f ¼ fðx; pÞ, where
x is position and p is momentum, is given by [48],

pμ∂μf1 ¼ C½f; f�: ð19Þ
The collision termC½f; f�, in the Boltzmann approximation,
is given by,

C½f; f� ¼ 1

2

Z
d3p2

p0
2

d3p3

p0
3

d3p4

p0
4

½f3f4ð1þ θf1Þð1þ θf2Þ

− f1f2ð1þ θf3Þð1þ θf4Þ�Wðp3; p4jp1; p2Þ;
ð20Þ

where p1, p2 are momenta of incoming and p3, p4

are momenta of outgoing particles, respectively.
Wðp3; p4jp1; p2Þ is the transition rate in the collision process
p1 þ p2 ↔ p3 þ p4. The constant θ ¼ �1 for bosons or
fermions and 0 for classical Maxwellian particles. We shall
employ the Chapman-Enskog method as discussed in
Refs. [30–32] to linearize and solve the kinetic equation
Eq. (20). We split the derivative operator ∂μ into a timelike
and spacelike part

∂μ → UμDþ∇μ; ð21Þ

whereD ¼ Uν∂ν and∇μ ¼ Δμν∂ν andΔμν ¼ gμν −UμUν is
the projection operator. Here, Uμ is the hydrodynamic four
velocity, as discussed in Ref. [30]. Taking θ ¼ 0, i.e.,
assuming the particles to be classical, we expand the
distribution function f into an equilibrium part fð0Þ and a
deviation ϵfð1Þ, i.e.,

f ¼ fð0Þ þ ϵfð1Þ: ð22Þ
To order ϵ, substituting Eq. (22) into the transport equation
Eq. (19) gives

(a) (b)

FIG. 1. Temperature dependence of normalized number density calculated in S-matrix formalism. Left panel shows the n=T3 for the
mesons and the right panel shows the same for the baryons. Closed symbols correspond to result at μB ¼ 0 MeV and open symbols at
μB ¼ 100 MeV.
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pμUμDfð0Þ1 þ pμ∇μf
ð0Þ
1 ¼ −fð0Þ1 L½ϕ�; ð23Þ

where L½ϕ� is the linearized collision operator [found from
Eq. (20), usingEq. (22) and invoking the principle of detailed

balance given as, fð0Þ1 fð0Þ2 ¼ fð0Þ3 fð0Þ4 ].
Hence,

L½ϕ� ¼ 1

2

Z
d3p2

p0
2

d3p3

p0
3

d3p4

p0
4

fð0Þ2 ðϕ1 þ ϕ2 − ϕ3 − ϕ4Þ

×Wðp3; p4jp1; p2Þ: ð24Þ

The ϕi is the ratio fð1Þi =fð0Þ1 . The equilibrium distribution

functions fð0Þi are assumed to be Maxwell-Boltzmann type

fð0Þi ¼ exp

�
μiðxÞ − pν

i UνðxÞ
TðxÞ

�
: ð25Þ

To identify the functions μðxÞ; UμðxÞ, and TðxÞ with the
usual definitions of chemical potential, hydrodynamic
velocity and temperature of the system, we demand that
the particle density n and energy density en be determined
solely by the local equilibrium distribution function in
Eq. (25) as,

n ¼
Z

d3p
ð2πÞ3p0

ðpμUμÞfð0Þ; ð26Þ

en ¼
Z

d3p
ð2πÞ3p0

ðpμUμÞ2fð0Þ: ð27Þ

The choice of distribution function given in Eq. (25) along
with condition given in Eqs. (26) and (27) determines the
set of independent variables T; μ; Uν. The derivative of
the distribution function fð0Þ, then depends only on the
above set of independent variables. Then one can express
Dfð0Þ as,

Dfð0Þ ¼ ∂fð0Þ
∂n Dnþ ∂fð0Þ

∂T DT þ ∂fð0Þ
∂Uμ DUμ

¼
�∂μ
∂nDnþ

�
T2

∂
∂T

�
μ

T

�
þ pμUμ

�

×DðlogTÞ − pμDUμ

�
fð0Þ

T
; ð28Þ

and ∇αfð0Þ as,

∇αfð0Þ ¼
�
T∇α

�
μ

T

�
þ pμUμ∇α logT − pμ∇αUμ

�
fð0Þ

T
;

ð29Þ

expressed in terms of temperature T, density n, hydro-
dynamic four-velocity Uμ and the chemical potential μ.

Multiplying Eq. (23) with
R
d3ppμ=p0 and contracting

with Uμ, gives [48],

DT ¼ −ðγ − 1ÞT∇μUμ ð30Þ

where γ ¼ cP=cV is the ratio of heat capacities at constant
pressure cP and constant volume cV . Similarly, on multi-
plying Eq. (23) with

R
d3ppμ=p0 and contracting with

projection operator Δμν, gives the equation of motion

DUμ ¼ 1

wn
∇μP; ð31Þ

where, wn is the enthalpy density, wn ¼ enþ P and P is
the pressure [30]. Also, the continuity equation, e.g., given
in Ref. [48]

Dn ¼ −n∇μUμ: ð32Þ

can be used to express the time derivative of number
density in terms of gradients of hydrodynamic velocity.
Equations (30)–(32) are used in Eqs. (28) and (29), to
express time derivative of T, n, andUμ in terms of gradients
of Uμ and P, respectively.
The expressions of Dfð0Þ and ∇μfð0Þ given in Eqs. (28)

and (29) can be substituted in the linearized transport
equation Eq. (23). Thus, one can express the transport
equation in terms of thermodynamics forces, whose com-
ponents include scalar force, vectorial force and tensorial
force, respectively. The scalar force can be expressed as the
divergence of hydrodynamic velocity

X ¼ −∇μUμ; ð33Þ

the vectorial force, due to temperature gradient and pressure
gradient is given as

Yμ ¼ ∇μ logT −
1

wn
∇μP; ð34Þ

and tensorial forces (traceless indicated by “hi”), due to
gradient of hydrodynamic velocity is given as

hZμνi ¼ 1

2
∇μUν þ 1

2
∇νUμ −

1

3
Δμν∇αUα: ð35Þ

In terms of these forces, the transport equation is then
given as

QX − pνðpμUμ − wÞYν þ pμpνhZμνi ¼ TL½ϕ�: ð36Þ

The quantity Q is defined as
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Q ¼
�
4

3
− γ

�
ðpμUμÞ2 þ ððγ − 1Þw − γTÞpμUμ −

m2

3
;

ð37Þ

where the relativistic version of Gibbs-Duhem relation [48]
T∇μðμ=TÞ ¼ −wð∇μT=T −∇μP=wnÞ was used for the
derivation of Eq. (36).
An equation similar to Eq. (36) can also be derived for a

two component mixture with components labeled by sub-
scripts 1 and 2. Here, we indicate the few differences
pertaining to extension of derivation of Eq. (36) for binary
mixtures. Interested readers may refer [31] for the complete
derivation.
The analogous linearized transport equation for mixtures

can be written as,

pμ
1UμDfð0Þ1 þ pμ

1∇μf
ð0Þ
1 ¼ −fð0Þ1

X2
k¼1

L1k½ϕ�: ð38Þ

An equation similar to the Eq. (38) also holds for
component 2. The right-hand side takes collisions of the
form 1ð2Þ þ 1ð2Þ → 1ð2Þ þ 1ð2Þ and 1þ 2 → 1þ 2 into
account. The linearized operator is given by

L1k½ϕ� ¼
�
1 −

δ1k
2

�Z
d3p2

p0
2

d3p3

p0
3

d3p4

p0
4

fð0Þk

× ðϕ1 þ ϕ2 − ϕ3 − ϕ4ÞW1kðp3; p4jp1; p2Þ: ð39Þ

The factor ð1 − δ1k=2Þ takes into account the correct
weighting for same or different species which interact in the
scattering process.
However, an extra thermodynamics force called the

diffusion force [31], given by

Yμ
1 ¼ ð∇μμ1ÞP;T − ð∇μμ2ÞP;T −

w1 − w2

wn
∇μP; ð40Þ

needs to be introduced when dealing with mixtures. Here, n
is the particle density and wi is the enthalpy per particle of
component i. Further derivation of the transport equation in
terms of thermodynamic forces proceed along lines similar
to single component system and can be found in Ref. [31].
Here we state the final result analogous to Eq. (36) for
component 1 as

Q1X − pν
1ðpμ

1Uμ − w1ÞYν − x2p
μ
1Y1μ þ pμ

1p
ν
1hZμνi

¼ T
X2
k¼1

L1k½ϕ�; ð41Þ

where, xi ¼ ni=ðn1 þ n2Þ being the particle number den-
sity fraction. An equation similar to above, also holds for
component 2. The linear equations given in, Eqs. (36)

and (41) are used in the later sections to derive explicit
expressions for the transport coefficients.

A. Single component system

In the present section we derive the transport coefficients
for a single component system as described by the transport
equation given in Eq. (36).
The observation that thermodynamic forces X, Yμ and

hZμνi appear as linearly independent quantities in Eq. (36),
enables us to write the function ϕ of Eq. (24) as

ϕ ¼ AX − BμYμ þ CμνhZμνi; ð42Þ

where the unknown coefficients A, Bμ, and Cμν are still to
be determined. The sign of Bμ is chosen in accordance with
the sign of the vector force in Eq. (36). Inserting Eq. (42)
into Eq. (36), the transport equation can be separated into
three independent equations, given as

QX ¼ TL½AX� ð43Þ

−ðpμUμ − wÞpμYμ ¼ TL½−BμYμ� ð44Þ

pμpνhZμνi ¼ TL½CμνZμν�; ð45Þ

where L½ϕ� is the linearized collision operator, as defined
in Eq. (24).
We next define the macroscopic dissipative quantities,

such as the viscous pressure and the heat flow which are
functions of ϕ. The viscous pressure is defined as [30]

Π ¼ −
1

3

Z
d3p
p0

Δμνpμpνfð0Þϕ; ð46Þ

the heat flow is defined as

Iμq ¼
Z

d3p
p0

ΔμαpαðpμUμ − wÞfð0Þϕ; ð47Þ

and the traceless viscous pressure is defined as

hΠμνi ¼
Z

d3p
p0

�
Δμ

αΔν
β −

1

3
ΔαβΔμν

�
pαpβfð0Þϕ: ð48Þ

The dissipative quantities can be written in a more trans-
parent way using the following dimensionless inner prod-
uct bracket notation

ðF;GÞ ¼ T
n

Z
d3p
p0

FðpÞGðpÞfð0Þ

¼ 1

4π2z2K2ðzÞT2

Z
d3p
p0

FðpÞGðpÞe−τ; ð49Þ

where the quantities z ¼ m=T and τ ¼ pμUμ=T have been
used. Inserting the expression for function ϕ, given in
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Eq. (42) into the definitions of dissipative quantities
defined in Eqs. (46)–(48), expresses these dissipative
quantities in terms of bracket notation. Hence, the bulk
viscous pressure is given as,

Π ¼ −
1

3
nTðπμπμ; AÞX ¼ ηvX; ð50Þ

such that πμ ¼ Δμνpν=T. The heat flow is given as

Iμq ¼ −nT
�
πμ
�
τ −

w
T

�
; Bν

�
Yν ¼ TλμνYν; ð51Þ

and the shear viscous flow as

hΠμνi ¼ nTðhπμπνi; CαβÞhZαβi ¼ 2ηshZμνi: ð52Þ

The quantities ηv, λ ¼ Δμνλ
μν=3 and ηs stand for the bulk

(volume) viscosity, heat conductivity, and shear viscosity
coefficients that appear as a constant of proportionality
between thermodynamic forces and the dissipative quantities.
The technical details needed to compute the still

unknown quantities A, Bμ, and Cμν into a tractable form,
using collision integrals is given in Ref. [30]. Here, we
simply write the expressions that can be used for computa-
tional purposes. The bulk viscosity is given by

ηv ¼ T
α22
a22

; ð53Þ

the heat conductivity is given by

λ ¼ T
3m

β21
b11

; ð54Þ

and the shear viscosity is given by

ηs ¼
T
10

γ20
c00

: ð55Þ

The definitions of symbols α2, β1, and γ0 and the
expression for the quantities a22, b11, and c00 are given
in the Appendix.
In Fig. 2 we use the relations as given in Eqs. (53)–(55)

to calculate various transport coefficients for single com-
ponent gas of baryons and mesons. The differential cross
sections that go into the expression of a22, b11, and c00 are
calculated using K-matrix formalism described in Sec. II
for π, K and η while for nucleons (N) differential cross
section, we use the experimental phase-shift data from
Ref. [29]. One must note that the temperature dependence
of transport coefficients are highly dependent on the
energy dependence of differential cross sections. This is
because the transport coefficients, through the quantities

(a)

(c)

(b)

FIG. 2. Variation of bulk viscosity, shear viscosity and heat conductivity of the single component gas with temperature. The lower
triangle correspond to the results of transport coefficient computed using current algebra cross sections [49].
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a22, b11, and c00 (as given in the Appendix) are inversely
proportional to the interaction cross sections.
Figure 3 shows, the role of cross sections on the

temperature dependence of transport coefficients. It can
be seen from the comparision of the current algebra (CA)
cross sections of massive pions [49] which increase with
the center of mass energy to that of K-matrix cross section
which shows various peaks corresponding to various
resonances that occur in ππ interaction throughout the
energy spectrum. This makes the transport coefficients as
shown in Figs. 2(a)–(c) to decrease with T for current
algebra and increase with T for K-matrix. Similarly, for ηη
interaction which has only a few resonances, the temper-
ature dependence of transport coefficients show a dip at
some given range of temperature, which can be alluded to
the sharp rise in the cross sections at corresponding
energies (shown in Fig. 3). Comparing the transport
coefficients among various mesons, we find that transport
coefficients of a gas of η > K > π. This is because the total
cross section of π > K > η. For nucleons, the elastic cross
section decreases with the center of mass energy, the same
is reflected in the transport coefficients of nucleons at low
T, where it drops even lower than for πs, but with
increasing T, increases faster than for πs.
Finally, we clarify that our calculations of transport

coefficients is limited in scattering energy within the region
where resonance dominates. This constraint on scattering
energy can be translated to the limitation on the temperature
in the following way. Considering each collision takes
place between particles in thermal equilibrium, the scatter-
ing energy squared s fluctuates around the average hsiwith
a standard deviation σ. The average and standard deviation
can be defined as [50]

hsi ¼
R
d3p1d3p2sðp1; p2Þfð0Þðp1Þfð0Þðp2ÞR

d3p1d3p2fð0Þðp1Þfð0Þðp2Þ
ð56Þ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs2i − hsi2

q
: ð57Þ

Thus, we can define the maximum of scattering energy
squared as smaxðTÞ ¼ hsi þ σ. The temperature depend-
ence of

ffiffiffiffiffiffiffiffiffi
smax

p
for a single component gas of pions, kaons

and nucleons is shown in Fig. 4. The
ffiffiffiffiffiffiffiffiffi
smax

p
for ππ, KK and

NN, determined from their resonance mass cutoff, are
2.01 GeV, 2.29 GeV, and 2.34 GeV respectively. From
Fig. 4, the corresponding temperature Tmax are found to be
318 MeV, 297 MeV, and 150 MeV respectively.

B. Binary component system

The equation needed to obtain the transport coefficients
for a mixture of two component gas is given in Eq. (41).
The trial function is a linear combination of thermodynamic
forces, i.e.,

ϕk ¼
�
AkX − BkμY

μ
q −

1

T
Bμ
1kY1μ þ Cμν

k hZμνi
�
: ð58Þ

The only differences between the trial function for single
component system Eq. (42) and ϕk of binary-component
system is the diffusion force Yμ

1. Substituting function ϕk in
Eq. (41) gives us

Q1 ¼ T
X2
k¼1

L1k½A1�; ð59Þ

−ðpμ
1Uμ − w1Þpν

1 ¼ T
X2
k¼1

L1k½−Bν
1�; ð60Þ

FIG. 3. Energy dependence of the cross section for single
component gas using K-matrix formalism (solid, dot and dashed
lines) and (dot dashed) line for pions using current algebra (CA)
cross sections [49].

FIG. 4. Temperature dependence of maximum scattering en-
ergy

ffiffiffi
s

p
max for single component gas of pions, kaons, and

nucleons.
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−x2pν
1 ¼ T

X2
k¼1

L1k

�
−
1

T
Bμ
1k

�
; ð61Þ

pμ
1p

ν
1 ¼ T

X2
k¼1

L1k½Cμν
1 �; ð62Þ

where the factors A1, Bμ
1, Bμ

1k, and Cμν
1 are unknown

functions that are determined later. The law relating the
traceless viscous pressure tensor to the hydrodynamic
velocity and the law relating the viscous pressure to the
divergence of hydrodynamic velocity as in Eqs. (50)
and (55) do not change for mixtures. However, the law
relating the heat flow to the temperature and pressure
gradient, as in Eq. (51) needs to modified as,

Īμq ¼ lqqX
μ
q þ lq1X

μ
1; ð63Þ

where Xμ
q is the generalized driving force of heat flow and

Xμ
1 is the diffusion driving force, which accounts for the

flow due to gradients of different constituents of the system.
The transport coefficients are defined as

lqq ¼ λT ¼ −
T
3

X2
k¼1

xk

�
πμk

�
τk −

wk

T

�
; Bkπμk

�
; ð64Þ

for the thermal conductivity and

lq1 ¼ −
1

3

X2
k¼1

xk

�
πμk

�
τk −

wk

T

�
; B1kπμk

�
; ð65Þ

for the Dufour coefficients. This coefficients accounts for
the heat flow in the presence of density gradients in a
mixture. The other new coefficient for a mixture is the
diffusion flow given by

Iμq ¼ l11X
μ
q þ l1qX

μ
1; ð66Þ

where the coefficient l1q is equal to the Dufour coefficient
lq1. The second coefficient l11 is related to diffusion

coefficient through the relation [31], Dd ¼ l11T
nx1x2

. This is
given as

l11 ¼ −
1

3T

X2
k¼1

ðδ1k − x1Þxkðπμk; B1kπμkÞ: ð67Þ

As in a single component system, the transport coef-
ficients can be written in collision bracket form, the details
of which can be found in Ref. [31] and in the Appendix.
Here we write the expression which can be used for
computational purposes. The bulk viscosity is given as

ηv ¼ T
α22
a22

; ð68Þ

the shear viscosity is given as

ηs ¼
T

10Δc
ððx1γ1Þ2c22 − 2x1x2γ1γ2c12 þ ðx2γ2Þ2c11Þ;

ð69Þ

and the diffusion coefficient is given as

Dd ¼
ρT

3n2m1m2c1c2

δ22
b22

: ð70Þ

The symbols and their relations to collision brackets are
explained in the Appendix.
One should note that the expressions given in Eqs. (53)–

(55) for single component system and Eqs. (68)–(70) for
binary component system corresponds to the first non-
vanishing approximation of the transport coefficients (by
approximation, we mean that the unknown coefficients Bμ,
Cμν, etc., are expanded using a infinite series of Laguerre
polynomials truncated at some order). Except for bulk
viscosity, the first approximation corresponds to first non-
vanishing value. For bulk viscosity, the nonvanishing value
happens to be the third order approximation for single
component system and second order approximation for
binary component system. Thus, bulk viscosity for binary
mixtures in the second order approximation calculated
in this work depends only on the interaction among
dissimilar species. The coefficient of shear viscosity, on
the other hand, depends on c12, c11 and c22 where, c12
describes the interaction between dissimilar species and
c11, c22, describe the interaction among similar species [see
Eqs. (A13)–(A15)].
The resulting transport coefficients for various binary

mixtures are shown in Fig. 5. We have found both shear and
bulk viscosities of the mixtures of two species lie in
between the transport coefficients of the individual species.
The dip seen in the shear viscosities of πN and KN can be
attributed to resonances that appear in πN and KN
interaction at the relevant energies which leads to an
increase in the cross section and thus lowering the value
of shear viscosity. Similarly, we show the diffusion coef-
ficient of various binary components in Fig. 5(c) which
depends on the density gradients in a mixture. We find that
KN system has largest diffusion coefficient at smaller
temperatures and πN system the lowest, but with increasing
temperature, the coefficient for KN system, shows a sharp
decrease in its value and the πK system shows a minimum.
The open symbols in Fig. 5 correspond to transport
coefficients at μB ¼ 100 MeV. In the CE approximation
μB enters implicitly in the expressions of transport coef-
ficients via concentration or number densities of various
reacting mixtures. The number densities were calculated
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using virial expansion that was described in Sec. II and are
themselves function of temperature. We find that values of
bulk viscosities are larger for large μB but gradually
asymptotes towards μB ¼ 0 MeV value, while shear vis-
cosities values are smaller for large μB and gradually
asymptotes toward the μB ¼ 0 MeV values. The diffusion
coefficient are mostly unaffected by the value of μB
considered in the work.

C. Multicomponent system

The derivation of transport coefficients for the multi-
component system follows the same line of reasoning as in
the case of the single and binary component system. The
transport coefficient can be expressed transparently using
the bracket notation which can be found in Refs. [31,32].
Here, we only give the final expressions which can used for
computational purposes. The bulk viscosity of a N com-
ponent gas can be written as

ηv ¼ n2T
XN
k¼1

XN
l¼1

akalakl; ð71Þ

while the coefficients ak satisfy the linear equations

XN
l¼1

aklal ¼
αk
n
; ð72Þ

and the shear viscosity can be written as

ηs ¼
T3ρ2

10

XN
k¼1

XN
l¼1

ckclckl; ð73Þ

and the coefficients cl are solutions of

XN
l¼1

clckl ¼
γk
ρT

¼ γ�k: ð74Þ

In this work the Eq. (74) for the multicomponent system
can be written as

(a)

(c)

(b)

FIG. 5. Temperature dependence of shear viscosity, bulk viscosity, and the diffusion coefficient of the binary gas mixture. Close and
open symbols correspond to the results at μB ¼ 0 and μB ¼ 100 MeV, respectively.
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0
BBBBBBBBBBBB@

cπ
cK
cN
cη
cΛ
cΣ
cΞ

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

cππ cπK cπN cπη cπΛ cπΣ cπΞ
cπK cKK cKN 0 0 cKΣ 0

cπN cKN cNN cηN 0 0 0

cπη 0 cηN cηη cηΛ cηΣ 0

cπΛ 0 0 cηΛ cΛΛ 0 0

cπΣ cKΣ 0 cηΣ 0 cΣΣ 0

cπΞ 0 0 0 0 0 cΞΞ

1
CCCCCCCCCCCCA

¼

0
BBBBBBBBBBBB@

γ�π
γ�K
γ�N
γ�η
γ�Λ
γ�Σ
γ�Ξ

1
CCCCCCCCCCCCA

;

ð75Þ

and similarly for Eq. (72). The coefficients ckl and akl
depend on the scattering cross section of the given channel
k and l and the expressions in terms of collision integrals
are given in the Appendix [see Eqs. (A18)–(A20)]. The
zeros in ckl occur, when we do not have a resonance
decaying in a channel kl.
The result of transport coefficients (ηv, ηs), for various

multi-channel processes is shown in Figs. 6(a), 6(c)
at μB ¼ 0 MeV and Fig. 6(b), 6(d) at μB ¼ 100 MeV.

We find that bulk viscosity turns out to be additive for a
mixture of hadrons, in contrast to the shear viscosity, which
decreases with the increase in number of components. This
also explains why in RTA, for shear viscosities one should
not add the relaxation time but the inverse of relaxation
time for a multicomponent system. The decrease in shear
viscosities due to the increase in the components of the
reacting mixture is evident, since it opens additional
channels for reactions to occur and thus the overall
cross section of the system. Comparing the result of ηv
at μB ¼ 0 MeV with that at μB ¼ 100 MeV, we find that
the values of ηv are larger at large μB. Similarly, we notice
that at low T the shear viscosities at finite μB is slightly
lower than at zero μB. However, with increasing temper-
ature, the value of shear viscosity at finite μB overshoots
that at zero μB. This can be understood, since at large T
contributions from heavier baryonic states which have
smaller cross section increases and thus increases the
viscosity. At lower μB their concentration is smaller, hence
their effect is not noticeable but increasing μB increases
their concentration (the cross section remains the same) and
hence their effect on viscosity also increases.

(a) (b)

(c) (d)

FIG. 6. Temperature dependence of bulk viscosity, shear viscosity at μB ¼ 0 MeV and μB ¼ 100 MeV for multicomponent gas of
hadrons.
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The variation of ηv=s and ηs=s as a function of temper-
ature is shown in Figs. 7(a)–(b). Our results of ηv=s is an
increasing function of T for T < 150 MeV and decreasing
for T > 150 MeV. At μB ¼ 100 MeV, we find the
magnitude of the peak, seen in ηv=s is larger than at
μB ¼ 0 MeV. Similarly, we find that ηs=s decreases with
temperature consistent with previous results in this regard
[26,34,38,40,51]. However, we find that the result of ηs=s
at μB ¼ 0 violates the AdS/CFT bound around a temper-
ature of T ¼ 160 MeV, while the result of μB ¼ 100 MeV
remains above the bound and asymptotically approaches it
at higher temperatures. Of course, the temperature where
the violation of the AdS/CFT bound occurs, is in between
the deconfinement temperature which is around T ≈
155–165 MeV [52,53], where our model should break
down. It is also interesting to note that peak in the ratio ηv=s
happens to be around the same temperature where the ratio
ηs=s violates the AdS/CFT bound. It is also important to
note that recently the temperature dependence of bulk
viscosity has also been calculated in nonconformal field
theories in the context of heavy ion collisions [54]. A
comparison of ηv=s with one such model from Ref. [54] is
shown in Fig. 7(a), with the minimum of the potential ϕM
set at ϕM ¼ 2. It is interesting to see that the nonconformal
model compares well with our results.
Let us now discuss the comparison of our result with the

calculations that has been previously reported in the
literature at μB ¼ 0 MeV. In EVHRG (excluded volume
HRG model), ηv=s monotonically decreases as a function
of temperature T in contrast to our results which shows a
peak structure and further one can note that magnitude of
ηv=s in the EVHRG model is a factor of ten more than our
results. The first reason for this is that, the calculation of
ηv=s is carried out using RTA [40], in the EVHRG model
using momentum independent relaxation times which is

quantitatively different from that of CE method used in the
current work. The difference in temperature variation can
be attributed to use of constant cross section in the EVHRG
model calculations compared to energy dependent cross
sections used in our work. Moroz [34] uses cross sections
from the UrQMD model, including elastic plus resonance
processes calculated in the CE approximation. The ηv=s
result from Moroz calculation is qualitatively and quanti-
tatively similar to our calculations. Some discrepancies are
still present because of the use of some constant cross
sections to describe nonresonant interaction in Moroz’s
calculation.
The ηs=s calculation in EVHRG model [38] is done

assuming all hadrons have the same hard-core radius
r ¼ 0.5 fm. Apart from the fact that the value of r used
is model dependent, one must note that, they also assume
that the shear viscosity is additive for a mixture of hadrons,
contrary to our results. Although ηs=s decreases with
temperature, but the slope is less steeper than our calcu-
lation. This is because in Ref. [38] both ηs and s increase, as
degeneracies increase. However, in our case η decreases
and s increases as degeneracies increase. Both this feature
make the slope of ηs=s steeper than Ref. [38]. Wiranata
et al. [26] usedK-matrix formalism for calculating ηs=s in a
hadronic gas consisting of π − K − N − η. Their result is
around six times larger than ours at low T and about two
times larger in high T. The discrepancies between the two
results are first, due to the fact that we have used a larger
spectrum of interacting hadrons and resonances. Second,
and an important difference is that Ref. [26] did not include
the NN mutual interaction, since their cross section were
solely using K- matrix formalism, where as we parametrize
NN experimental phase shifts to calculate the differential
cross section. Owing, to the fact that NN cross section are
larger at small

ffiffiffi
s

p
as has been previously discussed, their

(a) (b)

FIG. 7. Variation of normalized bulk and shear viscosity for the multicomponent hadronic gas. The black solid line is the value of ηv=s
and ηs=s at μB ¼ 0 MeV and the black dotted line at μB ¼ 100 MeV. The red dashed line is AdS/CFT bound for ηs=s [55] and from a
nonconformal model [54] for ηv=s. Other symbols are the results of transport coefficients, at μB ¼ 0 MeV, previously reported in the
literature [26,34,38,40,51].
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contribution to transport coefficients is quite different and
dramatic than other resonant interaction present in K-
matrix formalism. SMASH (simulating many accelerated
strongly interacting hadrons) [51], which is a transport
code, uses Green-Kubo formalism to calculate ηs=s for
hadronic gas mixture. One of the common features between
our model and SMASH is the treatment of interactions
through resonances, which have a non-zero lifetime. Our
result of η=s is in good agreement with SMASH within
temperature range of 80–110MeV. But after T ∼ 120 MeV,
we find that the SMASH result saturates and forms a plateau
at higher temperature. The same trend is also seen in other
transport codes, e.g., UrQMD [43]. The crucial difference
between our approach and SMASH is that, SMASH utilizes a
feedback loop between the relaxation time and resonance
lifetimes whereas our approach does not [44].

V. SUMMARY

In summary, we have calculated the transport coeffi-
cients for a multicomponent hadronic gas. The thermody-
namic quantities are calculated using the S-matrix based
hadron resonance gas model. The phase shifts required for
the calculation of S-matrix was calculated using the K-
matrix formalism for all hadrons except for nucleons, for
which we directly parametrize the experimental phase
shifts. The transport coefficients were calculated using
the Chapman-Enskog method. Such a method utilizes
the energy dependence of cross sections to calculate the
temperature dependence of transport coefficients.
We start with various single component gas systems and

gradually add different species of hadrons to finally form a
multicomponent gas mixture. We found that adding new
species into the mixture, opens up new channels for
interaction to occur, which leads to an increase in cross
section and thus reducing the shear viscosity. Similarly, we
calculate the transport coefficients at zero and nonzero μB.
We found that increasing μB increase the contribution of
higher mass baryons, which have a smaller cross section, in
the transport coefficients. This leads to the increase in the
value of η=s at higher temperatures. Interestingly, we found
that at the temperature around T ≈ 160 MeV, the ratio ηv=s
shows a maximum and around the same temperature, the
ηs=s starts violating the AdS/CFT bound. A maximum in
ηv=s is a signature of crossover transition, that has been
seen previously in molecular gases [56]. Similarly, the
violation of AdS/CFT bound may signal the breakdown of
a simple model like the HRG and that the nonperturbative
nature of physics in this regime. However, increasing μB,
evades such a violation of the bound to larger temperature.
Finally, we compute and compare the ratio of ηs=s and
ηv=s, with other models in the literature. Our calculation
shows qualitatively similar features, with models that use
energy dependent cross section in the relevant temperature
ranges. It is also interesting to see that a model which
assumes the hadrons to be gases with interaction governed

by S-matrix elements, which are basically resonances,
capture the essential physics of transport coefficients in
the T − μB plane.
A few future directions for this work. The crucial

assumption that has been done in this work, is the use
of Maxwell-Boltzmann (MB) distribution function, which
may not be valid for large chemical potentials. Then, one
needs to solve the full quantum Boltzmann equation in the
CE method. In that case, the polynomials (the Laguerre
polynomials in the case of MB) satisfying them are not
known, and we have to find them order by order, as has
been done in Ref. [50]. Another important direction would
be to include a feedback mechanism between the relaxation
time and resonance lifetimes as is done in transport codes
[51]. For example, in this work we have considered
resonances like ρ, Δ, etc., as unstable particles, which
although contribute to the cross section, by themselves are
not a part of the mixture. This is only valid, if the lifetime of
resonance is shorter than mean free time of the system.
However, if the resonance lifetime is comparable or larger
to the mean free time of the system, interaction can only
occur until the resonance decays. Thus, the relaxation time
in such cases is limited by the lifetime of the resonance and
not by the mean free time.

ACKNOWLEDGMENTS

B.M. acknowledges financial support from J C Bose
National Fellowship of DST, Government of India. S. S.
and A. D. acknowledge financial support from DAE,
Government of India.

APPENDIX: DEFINITIONS OF VARIOUS
SYMBOLS USED IN THE TEXT

In the following Appendix, we define the various
symbols and expressions that were used in the main text.
For single component system the symbols α2, β1, and γ0

are defined as

α2 ¼
5w
T

− 3γ

�
1þ w

T

�
; ðA1Þ

β1 ¼
3γ

γ − 1
; ðA2Þ

γ0 ¼
10w
T

; ðA3Þ

where γ ¼ cp=cv. The quantities a22, b11, and c00 are

defined in terms of relativistic omega integrals, ωðjÞ
i

a22 ¼ 2ωð2Þ
0 ; ðA4Þ

b11 ¼ 8ðωð2Þ
1 þ z−1ωð2Þ

0 Þ; ðA5Þ
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c00 ¼ 16

�
ωð2Þ
2 − z−1ωð2Þ

1 þ 1

3
z−2ωð2Þ

0

�
; ðA6Þ

where the definitions of relativistic omega integrals are
given in [30] and can be written as

ωðsÞ
i ðzÞ¼

�
2πz3

K2
2ðzÞ

�Z
∞

0

dψsinh7ψcoshiψKjð2zcoshψÞ

×
Z

π

0

dθ sinθσðψ ;θÞð1−cossθÞ

j¼ 5

2
þ1

2
ð−1Þi; i¼ 0;�1;�2;…; s¼ 2;4;6;…

ðA7Þ

where σðψ ; θÞ is the differential cross section for interaction
between two identical particles, expressed through the
quantities ψ and angle θ between the initial and final
hadrons defined as

sinhψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 −p2Þ2

p
2m

; coshψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 þp2Þ2

p
2m

ðA8Þ

where p1 and p2 are the initial four-momenta of the two
colliding hadrons.
For binary component system the symbols αi, δi, and γi,

where i ¼ 1, 2 are defined as

αi ¼ xi
γðiÞ − γ

γðiÞ − 1
; ðA9Þ

δi ¼ ð−1Þi3c1c2; ðA10Þ

γi ¼ −10cihi; ðA11Þ

where hi ¼ K3ðziÞ=K2ðziÞ is the specific enthalpy of
species i, ci ¼ ρi=ρ is the mass fraction of species i. ρi
is the mass density, which is mass times the number density
of species i and ρ is the total mass density. Similarly xi ¼
ni=n is the number density fractions of species i, where ni
is particle number density of species i and n is the total
number density. The quantity γðiÞ ¼ cp;i=cv;i is the ratio of
specific heats of species i. The quantities aii, cii, cij, bii,
and Δc are defined in terms of relativistic omega integrals,

ωðmÞ
ijklðσuvÞ

a22 ¼
16ρ1ρ2
M2n2

ωð1Þ
1200ðσ12Þ; ðA12Þ

c12 ¼
32ρ2x21x

2
2

3M2n2x1x2
ð−10z1z2ζ−1Z−1ωð1Þ

1211ðσ12Þ

− 10z1z2ζ−1Z−2ωð1Þ
1311ðσ12Þ þ 3ωð2Þ

2100ðσ12Þ
− 3Z−1ωð2Þ

2200ðσ12Þ þ Z−2ωð2Þ
2300ðσ12ÞÞ; ðA13Þ

c11 ¼ c00ðz1Þ þ
32ρ2x21x

2
2

3M2n2x1x2
ð10z21ζ−1Z−1ωð1Þ

1220ðσ12Þ

þ 10z21ζ
−1Z−2ωð1Þ

1320ðσ12Þ þ 3ωð2Þ
2100ðσ12Þ

− 3Z−1ωð2Þ
2200ðσ12Þ þ Z−2ωð2Þ

2300ðσ12ÞÞ; ðA14Þ

c22 ¼ c00ðz2Þ þ
32ρ2x21x

2
2

3M2n2x1x2
ð10z22ζ−1Z−1ωð1Þ

1202ðσ12Þ

þ 10z22ζ
−1Z−2ωð1Þ

1302ðσ12Þ þ 3ωð2Þ
2100ðσ12Þ

− 3Z−1ωð2Þ
2200ðσ12Þ þ Z−2ωð2Þ

2300ðσ12ÞÞ; ðA15Þ

Δc ¼ c11c22 − c212; ðA16Þ

b22 ¼
8ρc1c2
Mn

ð2ωð1Þ
1100ðσ12Þ − 3Z−1ωð2Þ

1200ðσ12ÞÞ; ðA17Þ

where σuv is the cross section between particles u and v.
The coefficients c00ðzkÞ accounts for contribution from
interaction between identical species of type k as given in
Eq. (A5). The reduced mass μ is given as μ ¼ m1m2=
ðm1 þm2Þ. The abbreviations Z and ζ are given as Z ¼
M=T and ζ ¼ 2μ=T, whereM ¼ m1 þm2 is the total mass.
The definitions of relativistic omega integrals are given in
Refs. [31,32] and we do not write them here. For multi-
component system, the coefficients akl, ckl are given as

akk ¼ −akl ¼
XN
l¼1

a22ðklÞ ðl ≠ kÞ ðA18Þ

ckk ¼ c00ðzkÞ þ
XN
l¼1

c22ðklÞ ðl ≠ kÞ ðA19Þ

ckl ¼ c12ðklÞ ðl ≠ kÞ; ðA20Þ

where a22ðklÞ, c22ðklÞ, and c12ðklÞ are the expressions
given in Eqs. (A12)–(A15), with subscripts 1 and 2
replaced by k and l.
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