
ZU-TH 21/19
CERN-TH-2019-050
LAPTH-026/19
IPPP/19/38

The transverse momentum spectrum of weak gauge bosons at
N3LL+NNLO
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Abstract. We present accurate QCD predictions for the transverse momentum (p⊥) spectrum of elec-
troweak gauge bosons at the LHC for 13 TeV collisions, based on a consistent combination of a NNLO
calculation at large p⊥ and N3LL resummation in the small p⊥ limit. The inclusion of higher order correc-
tions leads to substantial changes in the shape of the differential distributions, and the residual perturbative
uncertainties are reduced to the few percent level across the whole transverse momentum spectrum. We
examine the ratio of p⊥ distributions in charged- and neutral-current Drell-Yan production, and study dif-
ferent prescriptions for the estimate of perturbative uncertainties that rely on different degrees of correlation
between these processes. We observe an excellent stability of the ratios with respect to the perturbative
order, indicating a strong correlation between the corresponding QCD corrections.

PACS. 12.38.-t Quantum Chromodynamics – 12.38.Bx Perturbative calculations – 14.70.Fm W bosons
– 14.70.Hp Z bosons

1 Introduction

The differential spectrum of electroweak gauge bosons,
measured via their leptonic decays, is among the most
prominent observables at the LHC.

Owing to the outstanding precision of their experi-
mental measurement [1–14], such observables allow for a
precise extraction of some of the Standard Model (SM)
parameters — such as the W boson mass [13], or par-
ton densities [15–18] — as well as for the calibration of
widely used event generators and analysis tools. For this
reason, an accurate theoretical understanding of such ob-
servables is paramount to exploit the precise data and
perform meticulous tests of the SM.

Inclusive and differential distributions for neutral and
charged Drell-Yan (DY) production with lepton pair in-
variant mass M are nowadays known with very high pre-
cision. The total cross section is known fully differentially
in the Born phase space up to NNLO [19–27], while differ-
ential distributions in transverse momentum p⊥ were re-
cently computed up to NNLO both for Z- [28–33] and W -
boson [34–36] production. In the DY distributions, elec-

troweak corrections become important especially at large
transverse momenta, and they have been computed to
NLO accuracy in [37–40].

In kinematical regimes dominated by soft and collinear
radiation, the fixed-order perturbative series for the dif-
ferential p⊥ distribution is affected by large logarithmic
terms of the form αns L

2n−1/p⊥, with L ≡ ln(M/p⊥), which
must be resummed to all orders for a reliable theoretical
prediction. In such regimes, the perturbative (logarithmic)
accuracy is defined in terms of the logarithm of the cumu-
lative cross section Σ as

ln (Σ(p⊥)) ≡ ln

(∫ p⊥

0

dp′⊥
dΣ(p′⊥)

dp′⊥

)
=
∑
n

{
O
(
αns L

n+1
)

+O (αns L
n) + . . .

}
. (1)

One refers to the dominant terms αns L
n+1 as leading log-

arithmic (LL), to terms αns L
n as next-to-leading logarith-

mic (NLL), to αns L
n−1 as next-to-next-to-leading logarith-

mic (NNLL), and so on. The resummation of the p⊥ spec-
trum of SM bosons has been studied in a multitude of
theoretical formulations throughout the years [41–51], and
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the current state of the art for phenomenological studies
at the LHC reaches N3LL accuracy [51–54].

In this article, we reach a new milestone in the theoret-
ical description of transverse momentum distributions in
both neutral and charged DY production, aiming for per-
cent level precision throughout the full kinematical range.
This is achieved by matching the fixed-order NNLO QCD
predictions with the N3LL resummation of large logarith-
mic corrections. We adopt the momentum-space formu-
lation of refs. [49, 51], in which the resummation is per-
formed by generating the QCD radiation by means of a
Monte Carlo (MC) algorithm. All the necessary ingredi-
ents for the N3LL p⊥ resummation have been computed in
refs. [55–61]. The combined framework enables fully dif-
ferential N3LL+NNLO predictions for distributions that
take proper account of the fiducial volume definitions used
in the experimental measurements.

The article is organised as follows. In section 2 we
briefly review the computation of the NNLO differential
distributions in DY-pair production with the parton-level
code NNLOjet, as well as the resummation for the p⊥ dis-
tributions using the computer program RadISH. Section 3
describes our results for 13 TeV LHC collisions. Finally,
section 4 contains our conclusions.

2 Setup of the calculation

In this section we give a brief overview of the computa-
tional setup, and describe the ingredients of both the fixed
order (Section 2.1) and the resummed (Section 2.2) calcu-
lations.

2.1 Fixed order

For the calculation of the DY process, we consider the off-
shell production of either a pair of charged leptons (medi-
ated by both a Z boson and a virtual photon) or a charged
lepton and a neutrino (mediated by W± bosons), in asso-
ciation with partonic jets. The jet requirement is replaced
by a lower cut on the transverse momentum of the pair,
that acts as an infrared regulator of the fixed-order calcu-
lation, hence preventing the radiation from being entirely
unresolved.

The NNLO QCD predictions for neutral and charged
DY production have been obtained in refs. [28–36]. Rela-
tive to the LO distribution, in which the leptonic system
recoils against a single parton, the NNLO calculation re-
ceives contributions from configurations with two extra
partons (RR: double-real corrections [62–66]), with one
extra parton and one extra loop (RV: real-virtual correc-
tions [62,63,67–70]) and with no extra partons but two ex-
tra loops (VV: double-virtual corrections [71–74]). Each of
the three contributions is separately infrared divergent ei-
ther in an implicit manner from phase-space regions where
the partonic radiation becomes unresolved (soft and/or
collinear), or in a explicit manner from infrared poles in
virtual loop corrections. Only the sum of the three contri-
butions is finite.

We perform the calculation using the parton-level gen-
erator NNLOjet, which implements the antenna subtrac-
tion method [75–77] to isolate infrared singularities and
to enable their cancellation between different contribu-
tions prior to the numerical phase-space integration. The
NNLO calculation can be structured as

σNNLO
X+jet =

∫
ΦX+3

(
dσRRNNLO − dσSNNLO

)
+

∫
ΦX+2

(
dσRVNNLO − dσTNNLO

)
+

∫
ΦX+1

(
dσV VNNLO − dσUNNLO

)
. (2)

The antenna subtraction terms, dσS,T,UNNLO, are constructed
from antenna functions [75, 78–82] to cancel infrared sin-
gularities between the contributions of different parton
multiplicities. The integrals are performed over the phase
space ΦX+1,2,3 corresponding to the production of the
colour singlet in association with one, two or three par-
tons in the final state. The integration over the final-state
phase space is fully differential such that any infrared-safe
observable O can be studied through differential distribu-
tions as dσNNLO

X+jet/dO.
The matching of the above NNLO prediction to a re-

summed calculation in the small p⊥ limit is computation-
ally very challenging. At small p⊥, both the matrix ele-
ments and the subtraction terms grow rapidly in magni-
tude due to the presence of un-cancelled infrared singu-
larities. This results in large numerical cancellations be-
tween them that ultimately challenge the stability of the
final prediction. The finite remainder of such cancellations
needs to be numerically stable in order to be consistently
combined with a resummed calculation and extrapolated
to the limit p⊥ → 0. The stability of NNLOjet in this ex-
treme regime has been tested thoroughly against the ex-
pansion of the N3LL resummations in refs. [52,53], where
it is shown that the NNLO calculation can be reliably
obtained down to very small p⊥ values.

The residual infrared (logarithmic) divergences that
persist in the p⊥ → 0 limit are cancelled by combining
the fixed-order computation with a resummed calculation,
where the logarithms in the fixed-order prediction are sub-
tracted and replaced by the sum of the corresponding en-
hanced terms to all orders in perturbation theory. This
procedure is discussed in the following Section 2.2.

2.2 Resummation and matching

The resummation is performed in momentum space by
means of the method formulated in refs. [49, 51] and im-
plemented in the computer code RadISH. In this approach,
the factorisation properties of the QCD matrix elements
in the soft and collinear limits are exploited to devise a
numerical procedure to generate the radiation at all per-
turbative orders. This allows for the resummation of the
large logarithmic terms in a fashion that is similar in spirit
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to a Monte Carlo generator. A detailed technical descrip-
tion of the method can be found in Refs. [49,51], and the
formulae up to N3LL accuracy are collected in Ref. [53]
(Section 3 and Appendix B).

In order to have a reliable prediction across the whole
p⊥ spectrum, the fixed-order and resummed predictions
must be consistently combined through a matching pro-
cedure. The matching is performed in such a way that it
reduces to the resummed calculation at small p⊥, while
reproducing the fixed-order prediction at large transverse
momentum. At a given perturbative order, one can adopt
various schemes that differ from one another by terms
beyond the considered order. In the present analysis we
adopt the multiplicative scheme formulated in refs. [53,83],
in which the matching is performed at the level of the cu-
mulative distribution (1) as follows:

ΣN3LL
match(p⊥) =

ΣN3LL(p⊥)

ΣN3LL
asym.

[
ΣN3LL

asym.

ΣN3LO(p⊥)

ΣN3LL
exp. (p⊥)

]
N3LO

,

(3)

where ΣN3LL
exp. denotes the expansion of the resummation

formula ΣN3LL to O(α3
s) (N3LO), and the whole squared

bracket in Eq. (3) is expanded to N3LO. It should be
recalled that O(α3

s) corresponds to N3LO in the total
(i.e. p⊥-integrated) cross section and in any cumulative
distribution, while being NNLO in the fixed-order p⊥-
differential cross section.

In the above equation, ΣN3LO is the cumulative fixed-
order distribution at N3LO, i.e.

ΣN3LO(p⊥) = σN3LO
tot −

∫ ∞
p⊥

dp′⊥
dΣNNLO(p′⊥)

dp′⊥
, (4)

where σN3LO
tot is the total cross section for the charged or

neutral DY processes at N3LO, and dΣNNLO/dp′⊥ denotes
the corresponding NNLO p⊥-differential distribution ob-
tained with NNLOjet. Both of these quantities are accurate
to O(α3

s). Since the N3LO inclusive cross section for DY
production is currently unknown, we approximate it with
the NNLO cross section [19–27] in the following. This ap-
proximation impacts only terms at N4LL order, and is
thus beyond the accuracy considered in this study.

Finally, the quantity ΣN3LL
asym. is defined as the asymp-

totic (p⊥ �M) limit of the resummed cross section

ΣN3LL(p⊥) −−−−−→
p⊥�M

ΣN3LL
asym.. (5)

This prescription ensures that, in the p⊥ � M limit,
Eq. (3) reproduces by construction the fixed-order result,
while in the p⊥ → 0 limit it reduces to the resummed pre-
diction. The detailed matching formulae can be found in
Appendix A of ref. [53].

In the next section, we will also report matched pre-
dictions at lower perturbative orders, NNLL+NLO and
NLL+LO, that are obtained from the following matched

cumulative distributions

ΣNNLL
match(p⊥) =

ΣNNLL(p⊥)

ΣNNLL
asym.

[
ΣNNLL

asym.

ΣNNLO(p⊥)

ΣNNLL
exp. (p⊥)

]
NNLO

,

(6)

ΣNLL
match(p⊥) =

ΣNLL(p⊥)

ΣNLL
asym.

[
ΣNLL

asym.

ΣNLO(p⊥)

ΣNLL
exp. (p⊥)

]
NLO

. (7)

The above matching schemes guarantee that in the
large-p⊥ limit the matched cumulative cross sections re-
produce, by construction, the following total cross sections

ΣN3LL
match(p⊥) −−−−−→

p⊥�M
σNNLO
tot ,

ΣNNLL
match(p⊥) −−−−−→

p⊥�M
σNNLO
tot ,

ΣNLL
match(p⊥) −−−−−→

p⊥�M
σNLO
tot . (8)

We stress once more that the ΣN3LL
match reproduces the NNLO

total cross section at large p⊥ since the N3LO result for the
inclusive DY process is currently unknown. The nominal
accuracy of the predictions is unaffected by this choice.

The final normalised distributions that will be reported
in Section 3 are obtained by differentiating Eqs. (3), (6)
and (7), and dividing by the respective total cross sections
of the right hand side of Eq. (8).

We recall that the resummed calculation contains a
Landau singularity arising from configurations where the
radiation is generated with transverse momentum scales
k⊥ ∼ M exp {−1/(2β0αs)} (with αs = αs(M) and β0 =
(11CA− 2nf )/(12π)). In the predictions presented in the
following, we set the results to zero when the hardest radi-
ation’s transverse momentum reaches the singularity. For
the leptonic invariant masses studied here, this procedure
acts on radiation emitted at very small transverse mo-
mentum that, due to the vectorial nature of the observ-
able [41, 51], gives a very small contribution to the spec-
trum. We however stress that for a precise description of
this kinematic regime, a thorough study of the impact of
non-perturbative corrections is necessary.

3 Results at the LHC

In this section we report our numerical results for the neu-
tral and charged DY transverse momentum distributions
at N3LL+NNLO.

We consider pp collisions at a centre-of-mass energy of
13 TeV, and we use the NNLO NNPDF3.1 parton distribu-
tion function set [15] with αs(MZ) = 0.118. The parton
densities are evolved from a low scale Q0 ∼ 1 GeV for-
wards with LHAPDF [84], which correctly implements the
heavy quark thresholds in the PDFs. All convolutions are
handled with the Hoppet package [85]. In the results re-
ported below, we use the NNLO DGLAP evolution of the
adopted PDF set for all perturbative orders shown in the
figures. Although the NNLO corrections to the PDF evo-
lution are formally of order N3LL, we include them also
in the NLL and NNLL predictions in order to guarantee a
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consistent treatment of the quark thresholds in the parton
densities. We note that this choice will lead to numerical
differences in comparison to other NLL and NNLL results
shown in the literature.

We adopt the Gµ scheme with the electro-weak param-
eters taken from the PDG [86], that is

MZ = 91.1876 GeV, MW = 80.379 GeV,

ΓZ = 2.4952 GeV, ΓW = 2.085 GeV,

GF = 1.1663787× 10−5 GeV−2 . (9)

Moreover, we set the CKM matrix equal to the identity
matrix, and we have verified that this approximation is ac-
curate at the few-permille level. For both neutral-current
and charged-current DY we apply fiducial selection cuts
that resemble the ones used by ATLAS in previous anal-
yses [4].

The final state for the neutral DY production is defined
by applying the following set of fiducial selection cuts on
the leptonic pair:

|p`
±

⊥ | > 25 GeV, |η`
±
| < 2.5,

66 GeV < M`` < 116 GeV, (10)

where p`
±

⊥ are the transverse momenta of the two leptons,

η`
±

are their pseudo-rapidities in the hadronic centre-
of-mass frame, and M`` is the invariant mass of the di-
lepton system. The central factorisation and renormalisa-

tion scales are chosen to be µR = µF =
√
M2
`` + |pZ⊥|2

and the central resummation scale is set to Q = M``/2.
In the case of charged DY production, the fiducial vol-

ume is defined as

|p`⊥| > 25 GeV, | /ET | > 25 GeV,

|η`| < 2.5, mT > 50 GeV, (11)

where /ET is the missing transverse energy vector and

mT =

√(
|p`⊥|+ | /ET |

)2 − (|p`⊥ + /ET |
)2
. (12)

The central factorisation and renormalisation scales are

chosen to be µR = µF =
√
M2
`ν + |pW⊥ |2 and the central

resummation scale is again set to Q = M`ν/2.
In both processes, we assess the missing higher-order

uncertainties by performing a variation of the renormalisa-
tion and factorisation scales by a factor of two around their
respective central values whilst keeping 1/2 ≤ µR/µF ≤ 2.
In addition, for central factorisation and renormalisation
scales, we vary the resummation scale Q by a factor of
two in either direction. The final uncertainty is built as
the envelope of the resulting nine-scale variation.

3.1 Fiducial distributions

We start by showing, in Figure 1, the comparison of the
Z and W± normalised distributions at NLL+LO (green),

NNLL+NLO (blue), and N3LL+NNLO (red) in the fidu-
cial volumes defined above. The lower inset of each panel
of Figure 1 shows the ratio of all predictions to the previ-
ous state of the art (NNLL+NLO), with the same colour
code as in the main panels. The difference between each
prediction and the next order is of O(αs), both in the large
p⊥ region and in the limit p⊥ → 0 where αsL ∼ 1.

In comparison to the NNLL+NLO result, we note that
the N3LL+NNLO corrections lead to important distor-
tions in the shape of the distributions, making the spec-
trum harder for p⊥ & 10 GeV, and softer below this scale.
The perturbative errors are reduced by more than a fac-
tor of two across the whole p⊥ range, and the leftover
uncertainty is at the 5% level. In general, we observe a
good convergence of the perturbative description when
the order is increased, although in some p⊥ regions the
N3LL+NNLO and the NNLL+NLO bands overlap only
marginally. This feature can be understood by noticing
that, as mentioned in Section 2.2, both predictions are
normalised to the same NNLO total cross section. Since
at large p⊥ the NNLO corrections lead to an increase in
the spectrum of about 10%, by unitarity of the matching
procedure (that preserves the total cross section) this must
be balanced by an analogous decrease in the spectrum in
the region governed by resummation, as indeed observed
in Figure 1. We stress, nevertheless, that the two orders
are compatible within the quoted uncertainties.

In Figure 2, we show the comparison among the NNLO
(green), the NNLL+NLO (blue), and N3LL+NNLO (red)
predictions, where the bands are obtained as discussed
above. Alongside these results, we also show the Monte
Carlo predictions obtained using the Pythia8 generator [87]
with the AZ tune [3], that has been obtained from the Z-
boson p⊥ distribution at 7 TeV. At 7 TeV and 8 TeV the
above tune is known to correctly describe the Z trans-
verse momentum spectrum within a few percent for p⊥ .
50 GeV [3], and it has been employed in the extraction
of the W -boson mass by the ATLAS collaboration [13].
Although it is currently unknown how this tune performs
at 13 TeV in comparison to the data, we use the Pythia8
prediction for reference in the following plots. In partic-
ular, the lower inset of each panel of Figure 2 shows the
ratio of all predictions to Pythia8. We observe a reason-
able agreement between the N3LL+NNLO predictions and
Pythia8 below 30 GeV, while it deteriorates for larger p⊥
values. This feature is particularly visible in the case of
W± production.

A comparison of the N3LL+NNLO band to the fixed-
order one shows that the resummation starts making a
significant difference for p⊥ . 20 GeV, while above this
scale the NNLO provides a reliable theoretical prediction.
To further quantify the relative impact of the non-singular
contributions in this region, we show in Fig. 3 the differ-
ence

∆N3LL ≡ ( dΣN3LL+NNLO/dp⊥ − dΣN3LL/dp⊥)/σNNLO
tot

(13)
between the matched and the resummed predictions
for the Z and W± normalised distributions. In the
lower panel of the plot we show the relative size
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Fig. 1. Comparison of the normalised transverse momentum
distribution for neutral and charged Drell-Yan pair production
at NLL+LO (green, dotted), NNLL+NLO (blue, dashed) and
N3LL+NNLO (red, solid) at

√
s = 13 TeV for the fiducial

volume defined in the text. The lower panel shows the ratio to
the NNLL+NLO result.
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of ∆N3LL with respect to the matched N3LL+NNLO

result, ∆N3LL/(ΣN3LL+NNLO/dp⊥/σ
NNLO
tot ). The non-

singular contributions are somewhat larger for W±; the

relative size of ∆N3LL with respect to the N3LL+NNLO
result is smaller than 5% (10%) for Z (W±) for p⊥ .
10 GeV, and becomes larger than 10% (20%) for p⊥ >
20 GeV.
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3.2 Ratio of Z/W and W−/W+ distributions

Another set of important quantities of interest are the
ratios of the above distributions, which play a central role
in recent extractions of theW -boson mass at the LHC [13].
When taking ratios of perturbative quantities one has to
decide how to combine the uncertainties in the numerator
and denominator to obtain the final error.

One option is to try to identify the possible sources of
correlation in the three processes considered here. From
the point of view of the perturbative (massless) QCD de-
scription adopted in this study, one expects the structure
of radiative corrections to such reactions to be nearly iden-
tical. This is certainly the case as far as resummation is
concerned, since it is governed by the same anomalous di-
mensions and all-order structure in W and Z production.
As a consequence, the resummation scale should be varied
in a correlated manner in both predictions considered in
the ratio. A similar argument can be made regarding the
renormalisation scale µR and the factorisation scale µF .

However, an important difference between Z, W+, and
W− production lies in the different combination of par-
tonic channels probed by each process and, in particular,
in the sensitivity to different heavy quark thresholds in

the PDFs at small p⊥. Therefore, it is not clear whether
a fully correlated variation of the factorisation scale µF is
physically justified. A more conservative uncertainty pre-
scription is to vary the scales µR and Q in numerator and
denominator in a fully correlated way, while varying µF
in an uncorrelated manner within the constraint [36]

1

2
≤
xnum.µF

xden.µF

≤ 2 , (14)

where xµF
is the ratio of the factorisation scale to its cen-

tral value. This corresponds to a total of 17 scale combi-
nations.

Finally, for comparison we also consider the uncorre-
lated variation of µR and µF in the ratio, while imposing

1

2
≤
xnum.µ

xden.µ

≤ 2 , (15)

where xµ is the ratio of the scale µ to its central value,
with µ ≡ {µR, µF }, together with a correlated variation of
the resummation scale Q. This recipe amounts to taking
the envelope of the predictions resulting from 33 different
combinations of scales in the ratio.

To examine the reliability of the above uncertainty
schemes, in Figure 4 we analyse the convergence of the per-
turbative series for the ratios of distributions, by compar-
ing the results at NLL+LO (green), NNLL+NLO (blue),
and N3LL+NNLO (red). The three lower panels in each
plot show the theory uncertainties obtained according
to the three prescriptions outlined above, respectively,
in comparison to the old state-of-the-art prediction at
NNLL+NLO. In the case of the Z/W+ ratio (shown in
the upper plot of Figure 4), we observe that the differ-
ent perturbative orders are very close to one another. The
results are compatible even within the uncertainty bands
obtained with the more aggressive error estimate, which
in some bins is sensitive to minor statistical fluctuations
due to the complexity of the NNLO calculation. This fea-
ture is strikingly evident in the case of the W−/W+ ratio
(lower figure), where the excellent convergence of the se-
ries seems to indicate that either a fully correlated scale
variation or the more conservative estimate of Eq. (14) is
perfectly justified.

Figure 5 shows the comparison of the same two ratios
(Z/W+ and W−/W+) to the NNLO result (green), and to
Pythia8. We observe that in both cases the N3LL+NNLO
calculation leads to an important reduction of the theory
uncertainty. In particular, even with the most conserva-
tive estimate of the theory error, our best prediction leads
to errors of the order of 5%, with the exception of the first
bin where the perturbative uncertainty is at the 10% level.
The kink around p⊥ ∼ 50 − 60 GeV in the Z/W+ ratio
(upper plot in Figure 5) is due to the different fiducial
selection cuts in the two processes. A change in the shape
of the distributions around this scale is indeed visible in
Figure 2, at slightly different p⊥ values for Z and W+

production, respectively, that is reflected in the structure
observed in Figure 5. We find a good agreement between
our best predictions at N3LL+NNLO and the Pythia8
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Monte Carlo in the small p⊥ region of the ratios. However,
the two predictions are not compatible within the quoted
theory uncertainties if the scales are varied in a fully cor-
related manner. On the other hand, for p⊥ & 40 GeV,
the Pythia8 result disagrees with the matched calcula-
tion. This behavior is not unexpected, since the nominal
perturbative accuracy of Pythia8 is well below any of the
matched calculations, and the AZ tune is optimised to de-
scribe the Z spectrum in the region p⊥ ≤ 50 GeV at
7 TeV.

4 Conclusions

In this work, we computed the transverse momentum dis-
tributions of electroweak gauge bosons at the LHC to
N3LL+NNLO accuracy in QCD. This calculation opens
up a new level of theoretical precision in the descrip-
tion of these observables. The new state-of-the-art predic-
tion is obtained by combining the NNLO results from the
NNLOjet program with the N3LL resummation performed
with RadISH. Our phenomenological study adopts fiducial
selection cuts similar to the setup adopted by ATLAS in
previous studies. The numerical results we presented are
made available in electronic format as additional material
alongside this manuscript.

We find that, in comparison to the fixed-order pre-
diction, the resummation effects become important for
p⊥ . 20 GeV. The effect of the N3LL+NNLO corrections
with respect to the previous NNLL+NLO prediction is
as large as ∼ 10%, and leads to significant shape distor-
tions as well as to a substantial reduction in the perturba-
tive uncertainty due to missing higher-order corrections.
In particular, the distributions considered in this article
are predicted with a residual uncertainty below the 5%
level across most of the p⊥ spectrum. We also compared
the results to the predictions obtained from the Pythia8
Monte Carlo with the AZ tune, that has been determined
using the ATLAS experimental data for the Z boson trans-
verse momentum at 7 TeV [3].

Finally, we examined the ratios of the Z to W+, and
W− to W+ distributions, which play an important role in
the W mass extraction at the LHC. We consider different
prescriptions for the estimate of perturbative uncertainties
that rely on different degrees of correlation between the
scales in the numerator and in the denominator. We find a
remarkable convergence of the predictions for the ratios at
different perturbative orders. This fact strongly indicates
that the class of processes considered in this study fea-
ture very similar perturbative corrections suggesting that
the perturbative sources of uncertainty are correlated to
a large extent.

There are, however, additional sources of perturbative
corrections to W± and Z production that we ignored in
our study. In particular, at the level of the residual theo-
retical errors obtained in our predictions, PDF theory un-
certainties [88, 89], QED corrections [90, 91], as well as a
careful study of the impact of mass effects [92–102] become
necessary. The correlation pattern between the uncertain-
ties due to such effects may well be different from what we

have observed in this paper, and a dedicated study must
be performed in order to reliably combine these effects
with the N3LL+NNLO predictions presented here.
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