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Abstract We present accurate QCD predictions for the
transverse momentum (p⊥) spectrum of electroweak gauge
bosons at the LHC for 13 TeV collisions, based on a con-
sistent combination of a NNLO calculation at large p⊥ and
N3LL resummation in the small p⊥ limit. The inclusion of
higher order corrections leads to substantial changes in the
shape of the differential distributions, and the residual per-
turbative uncertainties are reduced to the few percent level
across the whole transverse momentum spectrum. We exam-
ine the ratio of p⊥ distributions in charged- and neutral-
current Drell–Yan production, and study different prescrip-
tions for the estimate of perturbative uncertainties that rely on
different degrees of correlation between these processes. We
observe an excellent stability of the ratios with respect to the
perturbative order, indicating a strong correlation between
the corresponding QCD corrections.

1 Introduction

The differential spectrum of electroweak gauge bosons, mea-
sured via their leptonic decays, is among the most prominent
observables at the LHC.

Owing to the outstanding precision of their experimental
measurement [1–14], such observables allow for a precise
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extraction of some of the Standard Model (SM) parameters –
such as the W boson mass [13], or parton densities [15–18] –
as well as for the calibration of widely used event generators
and analysis tools. For this reason, an accurate theoretical
understanding of such observables is paramount to exploit
the precise data and perform meticulous tests of the SM.

Inclusive and differential distributions for neutral and
charged Drell–Yan (DY) production with lepton pair invari-
ant mass M are nowadays known with very high precision.
The total cross section is known fully differentially in the
Born phase space up to NNLO [19–27], while differential
distributions in transverse momentum p⊥ were recently com-
puted up to NNLO both for Z - [28–33] andW -boson [34–36]
production. In the DY distributions, electroweak corrections
become important especially at large transverse momenta,
and they have been computed to NLO accuracy in [37–40].

In kinematical regimes dominated by soft and collinear
radiation, the fixed-order perturbative series for the differen-
tial p⊥ distribution is affected by large logarithmic terms of
the form αn

s L
2n−1/p⊥, with L ≡ ln(M/p⊥), which must be

resummed to all orders for a reliable theoretical prediction.
In such regimes, the perturbative (logarithmic) accuracy is
defined in terms of the logarithm of the cumulative cross
section � as

ln (�(p⊥)) ≡ ln

(∫ p⊥

0
dp′⊥

d�(p′⊥)

dp′⊥

)

=
∑
n

{
O

(
αn

s L
n+1

)
+ O (

αn
s L

n) + . . .
}
. (1)
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One refers to the dominant terms αn
s L

n+1 as leading log-
arithmic (LL), to terms αn

s L
n as next-to-leading logarith-

mic (NLL), toαn
s L

n−1 as next-to-next-to-leading logarithmic
(NNLL), and so on. The resummation of the p⊥ spectrum of
SM bosons has been studied in a multitude of theoretical for-
mulations throughout the years [41–51], and the current state
of the art for phenomenological studies at the LHC reaches
N3LL accuracy [51–54].

In this article, we reach a new milestone in the theo-
retical description of transverse momentum distributions in
both neutral and charged DY production, aiming for per-
cent level precision throughout the full kinematical range.
This is achieved by matching the fixed-order NNLO QCD
predictions with the N3LL resummation of large logarith-
mic corrections. We adopt the momentum-space formula-
tion of Refs. [49,51], in which the resummation is per-
formed by generating the QCD radiation by means of a
Monte Carlo (MC) algorithm. All the necessary ingredi-
ents for the N3LL p⊥ resummation have been computed in
Refs. [55–61]. The combined framework enables fully dif-
ferential N3LL+NNLO predictions for distributions that take
proper account of the fiducial volume definitions used in the
experimental measurements.

The article is organised as follows. In Sect. 2 we briefly
review the computation of the NNLO differential distri-
butions in DY-pair production with the parton-level code
NNLOJET, as well as the resummation for the p⊥ distributions
using the computer program RADISH. Section 3 describes our
results for 13 TeV LHC collisions. Finally, Sect. 4 contains
our conclusions.

2 Setup of the calculation

In this section we give a brief overview of the computational
setup, and describe the ingredients of both the fixed order
(Sect. 2.1) and the resummed (Sect. 2.2) calculations.

2.1 Fixed order

For the calculation of the DY process, we consider the off-
shell production of either a pair of charged leptons (mediated
by both a Z boson and a virtual photon) or a charged lepton
and a neutrino (mediated by W± bosons), in association with
partonic jets. The jet requirement is replaced by a lower cut on
the transverse momentum of the pair, that acts as an infrared
regulator of the fixed-order calculation, hence preventing the
radiation from being entirely unresolved.

The NNLO QCD predictions for neutral and charged DY
production have been obtained in Refs. [28–36]. Relative
to the LO distribution, in which the leptonic system recoils
against a single parton, the NNLO calculation receives con-
tributions from configurations with two extra partons (RR:

double-real corrections [62–66]), with one extra parton and
one extra loop (RV: real-virtual corrections [62,63,67–70])
and with no extra partons but two extra loops (VV: double-
virtual corrections [71–74]). Each of the three contributions
is separately infrared divergent either in an implicit man-
ner from phase-space regions where the partonic radiation
becomes unresolved (soft and/or collinear), or in a explicit
manner from infrared poles in virtual loop corrections. Only
the sum of the three contributions is finite.

We perform the calculation using the parton-level gen-
erator NNLOJET, which implements the antenna subtraction
method [75–77] to isolate infrared singularities and to enable
their cancellation between different contributions prior to the
numerical phase-space integration. The NNLO calculation
can be structured as

σNNLO
X+jet =

∫
ΦX+3

(
dσ RR

NNLO − dσ S
NNLO

)

+
∫

ΦX+2

(
dσ RV

NNLO − dσ T
NNLO

)

+
∫

ΦX+1

(
dσ VV

NNLO − dσU
NNLO

)
. (2)

The antenna subtraction terms, dσ
S,T,U
NNLO , are constructed

from antenna functions [75,78–82] to cancel infrared singu-
larities between the contributions of different parton multi-
plicities. The integrals are performed over the phase space
ΦX+1,2,3 corresponding to the production of the colour
singlet in association with one, two or three partons in
the final state. The integration over the final-state phase
space is fully differential such that any infrared-safe observ-
able O can be studied through differential distributions as
dσNNLO

X+jet /dO.
The matching of the above NNLO prediction to a

resummed calculation in the small p⊥ limit is computation-
ally very challenging. At small p⊥, both the matrix elements
and the subtraction terms grow rapidly in magnitude due
to the presence of un-cancelled infrared singularities. This
results in large numerical cancellations between them that
ultimately challenge the stability of the final prediction. The
finite remainder of such cancellations needs to be numer-
ically stable in order to be consistently combined with a
resummed calculation and extrapolated to the limit p⊥ → 0.
The stability of NNLOJET in this extreme regime has been
tested thoroughly against the expansion of the N3LL resum-
mations in Refs. [52,53], where it is shown that the NNLO
calculation can be reliably obtained down to very small p⊥
values.

The residual infrared (logarithmic) divergences that per-
sist in the p⊥ → 0 limit are cancelled by combining the fixed-
order computation with a resummed calculation, where the
logarithms in the fixed-order prediction are subtracted and
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replaced by the sum of the corresponding enhanced terms to
all orders in perturbation theory. This procedure is discussed
in the following Sect. 2.2.

2.2 Resummation and matching

The resummation is performed in momentum space by means
of the method formulated in Refs. [49,51] and implemented
in the computer code RADISH. In this approach, the factori-
sation properties of the QCD matrix elements in the soft and
collinear limits are exploited to devise a numerical proce-
dure to generate the radiation at all perturbative orders. This
allows for the resummation of the large logarithmic terms in
a fashion that is similar in spirit to a Monte Carlo generator.
A detailed technical description of the method can be found
in Refs. [49,51], and the formulae up to N3LL accuracy are
collected in Ref. [53] (Sect. 3 and Appendix B).

In order to have a reliable prediction across the whole p⊥
spectrum, the fixed-order and resummed predictions must be
consistently combined through a matching procedure. The
matching is performed in such a way that it reduces to the
resummed calculation at small p⊥, while reproducing the
fixed-order prediction at large transverse momentum. At a
given perturbative order, one can adopt various schemes that
differ from one another by terms beyond the considered order.
In the present analysis we adopt the multiplicative scheme
formulated in Refs. [53,83], in which the matching is per-
formed at the level of the cumulative distribution (1) as fol-
lows:

�N3LL
match(p⊥) = �N3LL(p⊥)

�N3LL
asym.

[
�N3LL

asym.

�N3LO(p⊥)

�N3LL
exp. (p⊥)

]
N3LO

,

(3)

where �N3LL
exp. denotes the expansion of the resummation

formula �N3LL to O(α3
s ) (N3LO), and the whole squared

bracket in Eq. (3) is expanded to N3LO. It should be recalled
that O(α3

s ) corresponds to N3LO in the total (i.e. p⊥-
integrated) cross section and in any cumulative distribution,
while being NNLO in the fixed-order p⊥-differential cross
section.

In the above equation,�N3LO is the cumulative fixed-order
distribution at N3LO, i.e.

�N3LO(p⊥) = σN3LO
tot −

∫ ∞

p⊥
dp′⊥

d�NNLO(p′⊥)

dp′⊥
, (4)

where σN3LO
tot is the total cross section for the charged or neu-

tral DY processes at N3LO, and d�NNLO/dp′⊥ denotes the
corresponding NNLO p⊥-differential distribution obtained
with NNLOJET. Both of these quantities are accurate toO(α3

s ).
Since the N3LO inclusive cross section for DY production is

currently unknown, we approximate it with the NNLO cross
section [19–27] in the following. This approximation impacts
only terms at N4LL order, and is thus beyond the accuracy
considered in this study.

Finally, the quantity �N3LL
asym. is defined as the asymptotic

(p⊥ � M) limit of the resummed cross section

�N3LL(p⊥) −−−−→
p⊥�M

�N3LL
asym. . (5)

This prescription ensures that, in the p⊥ � M limit, Eq. (3)
reproduces by construction the fixed-order result, while in
the p⊥ → 0 limit it reduces to the resummed prediction.
The detailed matching formulae can be found in Appendix
A of Ref. [53].

In the next section, we will also report matched predictions
at lower perturbative orders, NNLL + NLO and NLL + LO,
that are obtained from the following matched cumulative dis-
tributions

�NNLL
match (p⊥) = �NNLL(p⊥)

�NNLL
asym.

[
�NNLL

asym.

�NNLO(p⊥)

�NNLL
exp. (p⊥)

]
NNLO

,

(6)

�NLL
match(p⊥) = �NLL(p⊥)

�NLL
asym.

[
�NLL

asym.

�NLO(p⊥)

�NLL
exp. (p⊥)

]
NLO

. (7)

The above matching schemes guarantee that in the large-
p⊥ limit the matched cumulative cross sections reproduce,
by construction, the following total cross sections

�N3LL
match(p⊥) −−−−→

p⊥�M
σNNLO

tot ,

�NNLL
match (p⊥) −−−−→

p⊥�M
σNNLO

tot ,

�NLL
match(p⊥) −−−−→

p⊥�M
σNLO

tot . (8)

We stress once more that the �N3LL
match reproduces the NNLO

total cross section at large p⊥ since the N3LO result for
the inclusive DY process is currently unknown. The nom-
inal accuracy of the predictions is unaffected by this choice.

The final normalised distributions that will be reported in
Sect. 3 are obtained by differentiating Eqs. (3), (6) and (7),
and dividing by the respective total cross sections of the right
hand side of Eq. (8).

We recall that the resummed calculation contains a Lan-
dau singularity arising from configurations where the radi-
ation is generated with transverse momentum scales k⊥ ∼
M exp {−1/(2β0αs)} (with αs = αs(M) and β0 = (11CA−
2 n f )/(12π)). In the predictions presented in the following,
we set the results to zero when the hardest radiation’s trans-
verse momentum reaches the singularity. For the leptonic
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invariant masses studied here, this procedure acts on radia-
tion emitted at very small transverse momentum that, due to
the vectorial nature of the observable [41,51], gives a very
small contribution to the spectrum. We however stress that
for a precise description of this kinematic regime, a thor-
ough study of the impact of non-perturbative corrections is
necessary.

3 Results at the LHC

In this section we report our numerical results for the neu-
tral and charged DY transverse momentum distributions at
N3LL+NNLO.

We consider pp collisions at a centre-of-mass energy of
13 TeV, and we use the NNLO NNPDF3.1 parton distri-
bution function set [15] with αs(MZ ) = 0.118. The parton
densities are evolved from a low scale Q0 ∼ 1 GeV forwards
with LHAPDF [84], which correctly implements the heavy
quark thresholds in the PDFs. All convolutions are handled
with theHoppet package [85]. In the results reported below,
we use the NNLO DGLAP evolution of the adopted PDF set
for all perturbative orders shown in the figures. Although
the NNLO corrections to the PDF evolution are formally of
order N3LL, we include them also in the NLL and NNLL
predictions in order to guarantee a consistent treatment of
the quark thresholds in the parton densities. We note that this
choice will lead to numerical differences in comparison to
other NLL and NNLL results shown in the literature.

We adopt the Gμ scheme with the electro-weak parame-
ters taken from the PDG [86], that is

MZ = 91.1876 GeV, MW = 80.379 GeV,

�Z = 2.4952 GeV, �W = 2.085 GeV,

GF = 1.1663787 × 10−5 GeV−2 . (9)

Moreover, we set the CKM matrix equal to the identity
matrix, and we have verified that this approximation is accu-
rate at the few-permille level. For both neutral-current and
charged-current DY we apply fiducial selection cuts that
resemble the ones used by ATLAS in previous analyses [4].

The final state for the neutral DY production is defined by
applying the following set of fiducial selection cuts on the
leptonic pair:

|p	±
⊥ | > 25 GeV, |η	±| < 2.5,

66 GeV < M		 < 116 GeV, (10)

where p	±
⊥ are the transverse momenta of the two leptons,

η	±
are their pseudo-rapidities in the hadronic centre-of-mass

frame, and M		 is the invariant mass of the di-lepton sys-
tem. The central factorisation and renormalisation scales are

chosen to be μR = μF =
√
M2

		 + |pZ⊥|2 and the central
resummation scale is set to Q = M		/2.

In the case of charged DY production, the fiducial volume
is defined as

|p	⊥| > 25 GeV, |/ET | > 25 GeV,

|η	| < 2.5, mT > 50 GeV, (11)

where /ET is the missing transverse energy vector and

mT =
√(|p	⊥| + |/ET |)2 − (|p	⊥ + /ET |)2

. (12)

The central factorisation and renormalisation scales are cho-
sen to be μR = μF =

√
M2

	ν + |pW⊥ |2 and the central resum-
mation scale is again set to Q = M	ν/2.

In both processes, we assess the missing higher-order
uncertainties by performing a variation of the renormalisation
and factorisation scales by a factor of two around their respec-
tive central values whilst keeping 1/2 ≤ μR/μF ≤ 2. In
addition, for central factorisation and renormalisation scales,
we vary the resummation scale Q by a factor of two in either
direction. The final uncertainty is built as the envelope of the
resulting nine-scale variation.

3.1 Fiducial distributions

We start by showing, in Fig. 1, the comparison of the
Z and W± normalised distributions at NLL+LO (green),
NNLL+NLO (blue), and N3LL+NNLO (red) in the fiducial
volumes defined above. The lower inset of each panel of
Fig. 1 shows the ratio of all predictions to the previous state
of the art (NNLL+NLO), with the same colour code as in the
main panels. The difference between each prediction and the
next order is of O(αs), both in the large p⊥ region and in the
limit p⊥ → 0 where αs L ∼ 1.

In comparison to the NNLL + NLO result, we note that
the N3LL + NNLO corrections lead to important distortions
in the shape of the distributions, making the spectrum harder
for p⊥ � 10 GeV, and softer below this scale. The pertur-
bative errors are reduced by more than a factor of two across
the whole p⊥ range, and the leftover uncertainty is at the 5%
level. In general, we observe a good convergence of the per-
turbative description when the order is increased, although in
some p⊥ regions the N3LL + NNLO and the NNLL + NLO
bands overlap only marginally. This feature can be under-
stood by noticing that, as mentioned in Sect. 2.2, both pre-
dictions are normalised to the same NNLO total cross section.
Since at large p⊥ the NNLO corrections lead to an increase
in the spectrum of about 10%, by unitarity of the matching
procedure (that preserves the total cross section) this must
be balanced by an analogous decrease in the spectrum in
the region governed by resummation, as indeed observed in
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Fig. 1 Comparison of the normalised transverse momentum distribu-
tion for neutral and charged Drell–Yan pair production at NLL+LO
(green, dotted), NNLL + NLO (blue, dashed) and N3LL + NNLO (red,
solid) at

√
s = 13 TeV for the fiducial volume defined in the text. The

lower panel shows the ratio to the NNLL + NLO result

Fig. 2 Comparison of the normalised transverse momentum distribu-
tion for neutral and charged Drell–Yan pair production at NNLO (green,
dotted), NNLL + NLO (blue, dashed) and N3LL + NNLO (red, solid) at√
s = 13 TeV for the fiducial volume defined in the text. For reference,

the Pythia8 prediction in the AZ tune is also shown, and the lower
panel shows the ratio of each prediction to the Pythia8 result

123



  868 Page 6 of 10 Eur. Phys. J. C           (2019) 79:868 

Fig. 1. We stress, nevertheless, that the two orders are com-
patible within the quoted uncertainties.

In Fig. 2, we show the comparison among the NNLO
(green), the NNLL + NLO (blue), and N3LL+NNLO (red)
predictions, where the bands are obtained as discussed above.
Alongside these results, we also show the Monte Carlo pre-
dictions obtained using the Pythia8 generator [87] with
the AZ tune [3], that has been obtained from the Z -boson p⊥
distribution at 7 TeV. At 7 TeV and 8 TeV the above tune
is known to correctly describe the Z transverse momentum
spectrum within a few percent for p⊥ � 50 GeV [3], and
it has been employed in the extraction of the W -boson mass
by the ATLAS collaboration [13]. Although it is currently
unknown how this tune performs at 13 TeV in comparison to
the data, we use the Pythia8 prediction for reference in the
following plots. In particular, the lower inset of each panel
of Fig. 2 shows the ratio of all predictions to Pythia8. We
observe a reasonable agreement between the N3LL + NNLO
predictions and Pythia8 below 30 GeV, while it deterio-
rates for larger p⊥ values. This feature is particularly visible
in the case of W± production.

A comparison of the N3LL+NNLO band to the fixed-order
one shows that the resummation starts making a significant
difference for p⊥ � 20 GeV, while above this scale the
NNLO provides a reliable theoretical prediction. To further
quantify the relative impact of the non-singular contributions
in this region, we show in Fig. 3 the difference

ΔN3LL ≡ ( d�N3LL+NNLO/dp⊥ − d�N3LL/dp⊥)/σNNLO
tot

(13)

between the matched and the resummed predictions for the
Z and W± normalised distributions. In the lower panel of the
plot we show the relative size of ΔN3LL with respect to the
matched N3LL + NNLO result,ΔN3LL/(�N3LL+NNLO/dp⊥/

σNNLO
tot ). The non-singular contributions are somewhat larger

for W±; the relative size of ΔN3LL with respect to the
N3LL+NNLO result is smaller than 5% (10%) for Z (W±)
for p⊥ � 10 GeV, and becomes larger than 10% (20%) for
p⊥ > 20 GeV.

3.2 Ratio of Z/W and W−/W+ distributions

Another set of important quantities of interest are the ratios
of the above distributions, which play a central role in recent
extractions of the W -boson mass at the LHC [13]. When tak-
ing ratios of perturbative quantities one has to decide how to
combine the uncertainties in the numerator and denominator
to obtain the final error.

One option is to try to identify the possible sources of
correlation in the three processes considered here. From the
point of view of the perturbative (massless) QCD description

Fig. 3 Difference Eq. (13) between the matched and the resummed
predictions for the Z (green, dotted), W+ (blue, dashed) and W− (red,
solid) normalised distributions. The lower panel shows the ratio of
ΔN3LL to the N3LL + NNLO matched result

adopted in this study, one expects the structure of radiative
corrections to such reactions to be nearly identical. This is
certainly the case as far as resummation is concerned, since
it is governed by the same anomalous dimensions and all-
order structure in W and Z production. As a consequence, the
resummation scale should be varied in a correlated manner in
both predictions considered in the ratio. A similar argument
can be made regarding the renormalisation scale μR and the
factorisation scale μF .

However, an important difference between Z , W+, and
W− production lies in the different combination of partonic
channels probed by each process and, in particular, in the
sensitivity to different heavy quark thresholds in the PDFs at
small p⊥. Therefore, it is not clear whether a fully correlated
variation of the factorisation scale μF is physically justified.
A more conservative uncertainty prescription is to vary the
scales μR and Q in numerator and denominator in a fully
correlated way, while varying μF in an uncorrelated manner
within the constraint [36]

1

2
≤ xnum.

μF

xden.
μF

≤ 2 , (14)

where xμF is the ratio of the factorisation scale to its central
value. This corresponds to a total of 17 scale combinations.

Finally, for comparison we also consider the uncorrelated
variation of μR and μF in the ratio, while imposing

1

2
≤ xnum.

μ

xden.
μ

≤ 2 , (15)
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Fig. 4 Ratios of Z/W+ and W−/W+ normalised differential distri-
butions at NLL + LO (green, dotted), NNLL+NLO (blue, dashed) and
N3LL + NNLO (red, solid) at

√
s = 13 TeV. The three lower pan-

els show three different prescriptions for the theory uncertainty, as
described in the text

Fig. 5 Ratios of Z/W+ and W−/W+ normalised differential dis-
tributions at NNLO (green, dotted), NNLL+NLO (blue, dashed) and
N3LL + NNLO (red, solid) at

√
s = 13 TeV. For reference, the

Pythia8 prediction in the AZ tune is also shown, and the lower panels
show the ratio of each prediction to the latter
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where xμ is the ratio of the scale μ to its central value, with
μ ≡ {μR, μF }, together with a correlated variation of the
resummation scale Q. This recipe amounts to taking the enve-
lope of the predictions resulting from 33 different combina-
tions of scales in the ratio.

To examine the reliability of the above uncertainty
schemes, in Fig. 4 we analyse the convergence of the per-
turbative series for the ratios of distributions, by comparing
the results at NLL + LO (green), NNLL + NLO (blue), and
N3LL + NNLO (red). The three lower panels in each plot
show the theory uncertainties obtained according to the three
prescriptions outlined above, respectively, in comparison to
the old state-of-the-art prediction at NNLL + NLO. In the
case of the Z/W+ ratio (shown in the upper plot of Fig. 4),
we observe that the different perturbative orders are very
close to one another. The results are compatible even within
the uncertainty bands obtained with the more aggressive error
estimate, which in some bins is sensitive to minor statistical
fluctuations due to the complexity of the NNLO calculation.
This feature is strikingly evident in the case of the W−/W+
ratio (lower figure), where the excellent convergence of the
series seems to indicate that either a fully correlated scale
variation or the more conservative estimate of Eq. (14) is
perfectly justified.

Figure 5 shows the comparison of the same two ratios
(Z/W+ and W−/W+) to the NNLO result (green), and to
Pythia8. We observe that in both cases the N3LL + NNLO
calculation leads to an important reduction of the theory
uncertainty. In particular, even with the most conservative
estimate of the theory error, our best prediction leads to errors
of the order of 5%, with the exception of the first bin where the
perturbative uncertainty is at the 10% level. The kink around
p⊥ ∼ 50 − 60 GeV in the Z/W+ ratio (upper plot in Fig. 5)
is due to the different fiducial selection cuts in the two pro-
cesses. A change in the shape of the distributions around this
scale is indeed visible in Fig. 2, at slightly different p⊥ val-
ues for Z and W+ production, respectively, that is reflected
in the structure observed in Fig. 5. We find a good agree-
ment between our best predictions at N3LL + NNLO and the
Pythia8 Monte Carlo in the small p⊥ region of the ratios.
However, the two predictions are not compatible within the
quoted theory uncertainties if the scales are varied in a fully
correlated manner. On the other hand, for p⊥ � 40 GeV,
the Pythia8 result disagrees with the matched calculation.
This behavior is not unexpected, since the nominal perturba-
tive accuracy of Pythia8 is well below any of the matched
calculations, and the AZ tune is optimised to describe the Z
spectrum in the region p⊥ ≤ 50 GeV at 7 TeV.

4 Conclusions

In this work, we computed the transverse momentum dis-
tributions of electroweak gauge bosons at the LHC to
N3LL + NNLO accuracy in QCD. This calculation opens up
a new level of theoretical precision in the description of these
observables. The new state-of-the-art prediction is obtained
by combining the NNLO results from the NNLOJET pro-
gram with the N3LL resummation performed with RADISH.
Our phenomenological study adopts fiducial selection cuts
similar to the setup adopted by ATLAS in previous stud-
ies. The numerical results we presented are made available
in electronic format as additional material alongside this
manuscript.

We find that, in comparison to the fixed-order predic-
tion, the resummation effects become important for p⊥ �
20 GeV. The effect of the N3LL+NNLO corrections with
respect to the previous NNLL + NLO prediction is as large
as ∼ 10%, and leads to significant shape distortions as well
as to a substantial reduction in the perturbative uncertainty
due to missing higher-order corrections. In particular, the
distributions considered in this article are predicted with a
residual uncertainty below the 5% level across most of the
p⊥ spectrum. We also compared the results to the predictions
obtained from the Pythia8 Monte Carlo with the AZ tune,
that has been determined using the ATLAS experimental data
for the Z boson transverse momentum at 7 TeV [3].

Finally, we examined the ratios of the Z to W+, and W−
to W+ distributions, which play an important role in the W
mass extraction at the LHC. We consider different prescrip-
tions for the estimate of perturbative uncertainties that rely
on different degrees of correlation between the scales in the
numerator and in the denominator. We find a remarkable con-
vergence of the predictions for the ratios at different pertur-
bative orders. This fact strongly indicates that the class of
processes considered in this study feature very similar per-
turbative corrections suggesting that the perturbative sources
of uncertainty are correlated to a large extent.

There are, however, additional sources of perturbative cor-
rections to W± and Z production that we ignored in our
study. In particular, at the level of the residual theoretical
errors obtained in our predictions, PDF theory uncertain-
ties [88,89], QED corrections [90,91], as well as a careful
study of the impact of mass effects [92–102] become neces-
sary. The correlation pattern between the uncertainties due
to such effects may well be different from what we have
observed in this paper, and a dedicated study must be per-
formed in order to reliably combine these effects with the
N3LL+NNLO predictions presented here.
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