

Recent results using semileptonic decays with LHCb

Antonio Romero Vidal on behalf of the LHCb collaboration

Instituto Galego de Física de Altas Enerxías (IGFAE),

Universidade de Santiago de Compostela, Spain

7th Edition of the Large Hadron Collider Physics Conference Puebla, Mexico, 20-25 May 2019

Semileptonic *B* decays at the LHC

- B mesons copiously produced at LHCb: large B production cross-section.
- Also, large number of $\Lambda_{\rm b}{}^{\rm 0}$, $B_{\rm s}{}^{\rm 0}$ and $B_{\rm c}{}^{\rm +}$ hadrons produced.
- High branching fractions, B(B→Xℓν_ℓ)≃10%: tree level transition mediated by a W[±] boson in the SM.
- Theoretically clean: only **one hadronic current**, parameterised in terms

of scalar functions (form-factors).

- Partially reconstructed signal: difficult to reconstruct due to missing neutrino(s).
- No beam energy constraint (as in B-factories).

Semileptonic (SL) B decays provide powerful probes for:

- Testing the SM. SL B decays involving electrons and muons expected to be free of BSM contributions: Used to measure CKM parameters |V_{ub}| and |V_{cb}|.
- Searching for physics BSM: decays involving τ (semitauonic) sensitive to contributions BSM.

- Measurement of the charmed baryons lifetime using semileptonic decays. [PRL 121, 092003 (2018), LHCb-PAPER-2019-008]
- Determination of $|V_{ub}|/|V_{cb}|$ and search for the decay $B^- \rightarrow \mu^+ \mu^- \mu^- \nu_{\mu}$. [<u>Nature Physics 11 743-747 (2015)</u>, arXiv:1812.06004]
- Lepton Flavor Universality tests using semitauonic *B* decays.
 [PRL 115, 111803 (2015), PRL 120, 171802 (2018), PR D97, 072013 (2018), PRL 120, 121801 (2018)]

Charmed baryons lifetimes

- Lifetime of charmed baryons are known with **less precision** than charmed mesons.
- They can be used to test Heavy Quark Expansion (HQE).
- A lifetime **hierarchy** is expected: $\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$.
- Previous measurements **consistent** with this hierarchy.

Charmed baryons lifetimes

- Same method can be used to measure the lifetime of other charmed baryons:
 - $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ from $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+}\mu^{-}\nu_{\mu}X$ decays.
 - $\mathcal{Z}_{c}^{+} \rightarrow \boldsymbol{pK}^{-}\pi^{+}$ from $\mathcal{Z}_{b}^{0} \rightarrow \mathcal{Z}_{c}^{+}\mu^{-}\nu_{\mu}X$ decays.
 - $\Xi_c^0 \rightarrow pK^-K^-\pi^+$ from $\Xi_b^- \rightarrow \Xi_c^0\mu^-\nu_\mu X$ decays.

Charmed baryons lifetimes

NEW

Determination of |V_{ub} | / |V_{cb} |

Search for $B^- \rightarrow \mu^+ \mu^- \mu^- \nu_\mu$ decay

- Similar method used for $B^- \rightarrow \mu^+ \mu^- \nu_\mu$ decays: \Rightarrow fit to M_{corr} .
- Very suppressed decay with $BF \propto |V_{ub}|^2$.
- Theoretical prediction (vector-meson dominance):

 $\mathcal{B}(B^- \rightarrow \mu^+ \mu^- \mu^- \nu_\mu) \sim 1.3 \times 10^{-7} (PAN (2018) 81, 347).$

Prospects on $|V_{ub}|$ and $|V_{cb}|$

- $|V_{ub}|/|V_{cb}|$ from the ratio $B_s^0 \rightarrow K^+ \mu \nu$ to $B_s^0 \rightarrow D_s^+ \mu \nu$.
 - Precise form-factors calculation possible due to relatively large *s* quark mass.
 - Large $B_s^0 \rightarrow D_s^+ \mu \nu$ yield, but ...
 - Large feed-down from excited D_s meson decays with neutrals: $D_s^* \rightarrow D_s \gamma$.
 - $B_s^0 \longrightarrow K^+ \mu \nu$ signal rate ~1 order of magnitude smaller than $\Lambda_b^0 \longrightarrow p \mu^- \nu_{\mu}$.
- Good prospects to perform a differential measurement in many q² bins with $\Lambda_b^0 \rightarrow p \mu^- \nu_\mu$ decays. Requires larger data samples.
- Measurements in $B_{c}^{+} \rightarrow D^{0} \mu \nu$ decays can provide a competitive measurement of $|V_{ub}|$: 30,000 events expected at the end of LHCb Upgrade II (300 fb⁻¹).
- Expected ~1% precision in $|V_{ub}|/|V_{cb}|$ with LHCb Upgrade II dataset.

Tests of LFU using SL B decays

- In the SM, amplitudes for processes involving e, μ, τ must be identical up to effects depending on lepton mass: Lepton Flavor Universality (LFU).
- Observation of violations of LFU would be a sign for new physics (NP).

 $\frac{1}{2} \frac{v}{c} \frac{v}{c} P^{(*)} + B_q \left\{ \begin{array}{c} b \\ a \end{array} \right\}$

$$R(D^{(*)}) = \frac{\mathcal{B}(B^0 \to D^{(*)}\tau\nu)}{\mathcal{B}(B^0 \to D^{(*)}\mu\nu)}$$

 R(D^(*)) very clean SM prediction due to partial cancellation of form factors uncertainties in the ratio.

	R _{SM} (D)	R _{SM} (D*)
PRD94 (2016) 9, 094008	0.299 ± 0.003	
PRD95 (2017) 11, 115008	0.299 ± 0.003	0.257 ± 0.003
JHEP 1711 (2017) 061		0.260 ± 0.008
JHEP 1712 (2017) 060	0.299 ± 0.004	0.257 ± 0.005

[PRD 85 094025 (2012)]

B_q{ b

R(D^{*}) with $\tau^- \rightarrow \mu^- \nu_\mu \nu_\tau$ decays

- *циср*
- R(D^{*}) measured using B⁰ \rightarrow D^{*-} $\tau^+\nu_{\tau}$ decays with $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ and D^{*-} \rightarrow D⁰(\rightarrow K π) π^- .
- **Approximation** needed to estimate the B momentum p_B.
 - B boost along z >> boost of decay products in B rest frame.

 $(\gamma \beta_z)_B = (\gamma \beta)_{D^* \mu} \Longrightarrow (p_z)_B = \frac{m_B}{m(D^* \mu)} (p_z)_{D^* \mu}$

- ~8% resolution on p_B enough to preserve signal and background discrimination.
- R(D*) obtained from 3D template fit to m_{miss}^2 , E_{μ}^* and q^2 :

• Largest systematic uncertainties are the size of simulated samples and $\mu \leftrightarrow \pi$ misID.

R(D^{*}) with $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$ decays

- R(D^{*}) measured using B⁰ \rightarrow D^{*-} $\tau^+\nu_{\tau}$ decays with $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$ and D^{*-} \rightarrow D⁰(\rightarrow K π) π^- .
- $B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+$ used as normalisation mode.

$$R(D^*) = \frac{N_{sig}}{N_{norm}} \times \frac{\varepsilon_{norm}}{\varepsilon_{sig}} \times \frac{1}{\mathcal{B}(\tau \to \pi^+ \pi^+ \pi^- (\pi^0) \nu_{\tau})} \times \left(\frac{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^+ \pi^-)}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})}\right)_{ext}$$

- Most abundant background B→D^{*-}π⁺π⁻π⁺X suppressed by requiring a significant displacement between the τ and B vertices.
- Main **remaining background** due to **B** \rightarrow **D**^{*}**DX** decays, with D \rightarrow $\pi^+\pi^-\pi^+X$ (D lifetime).
- This doubly-charmed background can be controlled using control samples:
 - $D_s^- \rightarrow \pi^- \pi^+ \pi^-$, $D^- \rightarrow K^+ \pi^- \pi^-$ and $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$.
- $B \rightarrow D^*$ -DX decays further suppressed using a **BDT** (includes kinematic+isolation variables).

R(D^{*}) with $\tau^- \rightarrow \pi^- \pi^+ \pi^- v_\tau$ decays

- Signal yield extracted from a **3D fit** to q^2 , τ decay time and **BDT**: $N_{sig} = 1296 \pm 86$.
- Normalisation yield from a fit to $M(D^{*-}\pi^{+}\pi^{-}\pi^{+})$ invariant mass: $N_{norm} = 17080 \pm 143$.

Recently, HFLAV provided separated averages for B⁰ and B⁺ semileptonic decays:

 $\mathcal{B}(B^0 \to D^{*-} \ell^+ \nu_{\ell}) = (5.05 \pm 0.02 \pm 0.14) \times 10^{-2}$ $\mathcal{B}(B^+ \to \overline{D}^{*0} \ell^+ \nu_{\ell}) = (5.66 \pm 0.07 \pm 0.21) \times 10^{-2}$

 $R(D^*)$ changes to $\Rightarrow R(D^*) = 0.280 \pm 0.018 \pm 0.029$

New updated result closer to SM prediction (<1 σ)

$R(J/\psi)$ with $\tau^- \rightarrow \mu^- v_\mu v_\tau$ decays

- Goal: measurement of $R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau \nu)}{\mathcal{B}(B_c^+ \to J/\psi \mu \nu)}$ using $\tau^- \to \mu^- \nu_\mu \nu_\tau$ decays.
- Only possible at LHCb (B_c^+ only at LHC).
- Same reconstruction (p_B) method as in muonic R(D^{*}) measurement.
- $R(J/\psi)$ obtained from a 3D template fit to B_c^+ decay time, m_{miss}^2 and $Z(E_{\mu}^*,q^2)$. Form-

factors obtained from a sample enriched in normalisation decays.

- $B_c^+ \rightarrow J/\psi \mu \nu$ (normalisation), $B_c^+ \rightarrow \psi(2S) \mu \nu$, $B_c^+ \rightarrow J/\psi D(\rightarrow \mu \nu X) X$.
- Hadron misidentified as a muon.
- combinatorial background (J/ ψ and μ not from same B).
- Systematic uncertainties dominated by knowledge of form-factors and the size of the simulation samples.

Summary on R(X_c)

New R(D)/R(D*) combined measurement by Belle using SL tagging available in arXiv:1904.08794

- LHCb can perform measurements of LFU not accessible at Belle II:
 - $R(\Lambda_{c}^{(*)}), R(J/\psi), R(D_{s}^{(*)})$
- Production fractions and efficiencies used to extrapolate the uncertainties.
- Precision in R(X_c) about 2-3% at the end of the Upgrade II.
- Sensitivity to angular observables need to be studied.

Conclusions

- Study of semileptonic B decays at LHCb very challenging due to the missing neutrinos and no beam-energy constraint.
- Semileptonic b-hadron decays used to determine charmed baryons lifetimes.
- $|V_{ub}|/|V_{cb}|$ can be measured using channels and techniques complementary to those of B-factories.
- LHCb is able to perform measurements on semitauonic B decays using $\tau \rightarrow \mu \nu \nu$ and $\tau^+ \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$ decays. Different systematics.
- $R(J/\psi)$ measured for the first time (first evidence of $B_c^+ \rightarrow J/\psi \tau v$).
- Measurements of $R(\Lambda_c^{(*)})$, $R(J/\psi)$ and $R(D_s^{(*)})$ only possible at LHCb.
- LHCb aim to measure R(D) and R(D^{*}) with 2-3% precision.

BACKUP

Systematics muonic R(D*)

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\bar{B}^0 \to D^{*+}(\tau^-/\mu^-)\bar{\nu}$ form factors	0.6
$\bar{B} \to D^{*+}H_c (\to \mu\nu X')X$ shape correction	s 0.5
$\mathcal{B}(\bar{B} \to D^{**} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B} \to D^{**} \mu^- \bar{\nu}_{\mu})$	0.5
$\bar{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\bar{B} \to D^{**} (\to D^{*+} \pi) \mu^- \bar{\nu}_{\mu}$ form factors	0.3
$\bar{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form factors	0.2
$\mathcal{B}(\tau^- o \mu^- \bar{\nu}_\mu \nu_\tau)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

Systematics hadronic R(D^{*})

Contribution	Value in $\%$
$\mathcal{B}(\tau^+ \to 3\pi\overline{\nu}_{\tau})/\mathcal{B}(\tau^+ \to 3\pi(\pi^0)\overline{\nu}_{\tau})$	0.7
Form factors (template shapes)	0.7
au polarization effects	0.4
Other τ decays	1.0
$B \to D^{**} \tau^+ \nu_{\tau}$	2.3
$B_s^0 \to D_s^{**} \tau^+ \nu_{\tau}$ feed-down	1.5
$D_s^+ \to 3\pi X \text{ decay model}$	2.5
D_s^+, D^0 and D^+ template shape	2.9
$B \to D^{*-}D^+_s(X)$ and $B \to D^{*-}D^0(X)$ decay model	2.6
$D^{*-}3\pi X$ from B decays	2.8
Combinatorial background (shape + normalization)	0.7
Bias due to empty bins in templates	1.3
Size of simulation samples	4.1
Trigger acceptance	1.2
Trigger efficiency	1.0
Online selection	2.0
Offline selection	2.0
Charged-isolation algorithm	1.0
Normalization channel	1.0
Particle identification	1.3
Signal efficiencies (size of simulation samples)	1.7
Normalization channel efficiency (size of simulation samples)	1.6
Normalization channel efficiency (modeling of $B^0 \to D^{*-} 3\pi$)	2.0
Form factors (efficiency)	1.0
Total uncertainty	9.1

$|V_{ub}|/|V_{cb}|$ with Λ_b^0

Events selected with $q^2 > 7 \text{ GeV}^2$ (pµv_µ) and $q^2 > 15 \text{ GeV}^2$ ($\Lambda_c^+ \mu \nu_{\mu}$) (both q^2 solutions above cut). Highest rate, best resolution (\sim 1GeV²) and most precise Lattice calculations.

Result:

- LHCb can perform measurements of LFU not accessible at Belle II:
 - $R(\Lambda_{c}^{(*)}), R(J/\psi), R(D_{s}^{(*)})$
- Production fractions and efficiencies used to extrapolate the uncertainties.
- Precision in R(X_c) about 2-3% at the end of the Upgrade II.
- Sensitivity to angular observables need to be studied.

