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This paper presents a measurement of Z Z production with the ATLAS detector at the Large
Hadron Collider. The measurement is carried out in the final state with two charged leptons
and two neutrinos, using data collected during 2015 and 2016 in pp collisions at

√
s = 13

TeV, corresponding to an integrated luminosity of 36.1 fb−1. The integrated cross-sections
in the total and fiducial phase spaces are measured with an uncertainty of 7% and compared
with Standard Model predictions, and differential measurements in the fiducial phase space
are reported. No significant deviations from the Standard Model predictions are observed,
and stringent constraints are placed on anomalous couplings corresponding to neutral triple
gauge-boson interactions.
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1 Introduction

In the Standard Model (SM), the production of gauge boson pairs has a profound connection with the
non-Abelian nature of the electroweak (EW) theory and with the spontaneous breaking of the EW gauge
symmetry. In addition, a broad range of new phenomena beyond the SM (BSM) are predicted to reveal
themselves through diboson production. The study of diboson production probes a cornerstone of the
EW theory and possible BSM physics scenarios, and it constitutes a salient component of the physics
programme at the Large Hadron Collider (LHC). Among all the diboson processes, the production of two
on-shell Z bosons has the smallest cross-section, but is nevertheless quite competitive for measurements
and searches, because of its generally good signal-to-background ratio for the fully leptonic decay channels.
For instance, the Z Z process is a leading channel to search for anomalous neutral triple-gauge-boson
couplings (aTGCs) [1] and to study the off-shell production of the Higgs boson [2, 3].

Figure 1 shows representative Feynman diagrams for Z Z production at the LHC. The dominant process
is t-channel production with a quark and anti-quark initial state, hereafter denoted by the qqZ Z process.
Higher-order QCD corrections to the qqZ Z process are found to be sizeable [4], and two tree-level diagrams
concerning production of two Z bosons and one outgoing parton are shown. The gluon fusion process
(ggZ Z) includes two sub-processes, one with a fermion loop and the other involving a virtual Higgs boson.
Although the ggZ Z process only appears at O(α2

S), it nevertheless has a non-negligible contribution of
O(10%) to the total Z Z production rate due to the large gluon flux at the LHC. The s-channel production is
forbidden at the lowest order; however, the neutral TGCs can still acquire small values of O(10−4) in the
SM, due to the correction with a fermion loop [5]. The observation of aTGCs with larger values would hint
at the existence of new physics.
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Figure 1: Representative Feynman diagrams for Z Z production at the LHC: (a) lowest-order t-channel qqZ Z
production; (b) production of Z Z plus one parton through the qq̄ initial state; (c) production of Z Z plus one parton
through the qg initial state; (d) ggZ Z production with a fermion loop; (e) ggZ Z production involving an exchange of
a virtual Higgs boson; (f) s-channel production with aTGCs.

Measurements of Z Z production at the LHC have been carried out in two decay final states, one with
four charged leptons (4`) and the other with two charged leptons and two neutrinos (``νν). Using LHC
Run-1 and Run-2 data, multiple results [6–12] have been reported by the ATLAS and CMS experiments.
The most precise results to date have been obtained from the 4` channel using 13 TeV data [8, 12], where
the integrated production cross-section has been measured to a precision of 5% and the upper bound on
neutral aTGC parameters has been reduced to 10−3. The improved experimental precision has stimulated
theoretical calculations with a greater accuracy, and the next-to-next-to-leading-order (NNLO) QCD [4,
13–16] and next-to-leading-order (NLO) EW [17, 18] predictions have become available for the qqZ Z
process.

This paper presents a measurement of Z Z production using 36.1 fb−1 of data collected with the ATLAS
detector in pp collisions at

√
s = 13 TeV. This analysis is performed in the ``νν (` = e or µ) final state,

which has a larger branching fraction but suffers from higher background contamination in comparison
with the 4` channel. To ensure a good signal-to-background ratio, the experimental selection requires one
Z boson boosted against the other in the transverse plane, which results in a pair of high-pT isolated leptons
and significant missing transverse momentum (Emiss

T ). The ``νν channel thus offers higher data statistics
than the 4` channel for events with high-pT Z bosons, and offers competitive precision for integrated and
differential measurements, as well as good sensitivity to aTGCs.
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The dominant background arises from W Z production where the Z boson decays into a pair of charged
leptons. About 60% of the W Z events which contribute to the ``νν final state have the W boson decaying
leptonically (W → `ν orW → τν → `+3ν, ` = e or µ), where the final-state lepton escapes detection. The
remaining 40% W Z contribution is related to the W → τν decay with subsequent hadronic decays of the
τ-lepton. Another important background comes from the processes that genuinely produce the ``νν final
state but contain a lepton pair not originating directly from a Z-boson decay. This background, referred
to as the non-resonant-`` background, includes WW , top-quark (tt̄ and Wt), and Z → ττ production.
The production of a Z boson in association with jet(s) (Z + jets) also constitutes a potentially large
background source. The Z + jets events with large “fake” Emiss

T arise from heavy-flavour hadron decays
in the accompanying jet(s), from jet mismeasurements in certain regions of the detector, and from the
measurement resolution itself, owing to the additional pp collisions in the same or neighbouring proton
bunch crossings (pile-up). The Z Z → 4` process yields a small contribution when one lepton pair
misses detection, and it is considered as a background in this measurement. Finally, minor background
contributions are expected from three-boson production (VVV with V = W or Z) and production of
tt̄ accompanied by one or two vector bosons (tt̄V).

The integrated cross-section of Z Z production is measured in a fiducial phase space and then extrapolated
to a total phase space. The determination of the fiducial (σfid

ZZ→``νν) and total (σtot
ZZ) cross-sections is

obtained as shown in Eq. (1):

σfid
ZZ→``νν =

Nobs
ZZ

L × CZZ
, σtot

ZZ =
Nobs
ZZ

L × CZZ × AZZ × B
, (1)

where CZZ stands for an overall efficiency correction factor, AZZ is the fiducial acceptance, and B is the
branching fraction of the Z Z → ``νν (` = e, µ) decay. The signal yield Nobs

ZZ is determined through a fit to
the observed Emiss

T spectrum, which leads to improved sensitivity compared with a simple event-counting
method. The AZZ (CZZ ) factor is calculated as Nexp,fid

ZZ /Nexp,tot
ZZ (Nexp,det

ZZ /Nexp,fid
ZZ ), where Nexp,det

ZZ , Nexp,fid
ZZ ,

and Nexp,tot
ZZ correspond to the expected signal yields for the Z Z → ``νν final state after the detector-level

selection, in the fiducial region, and in the total phase space, respectively. The definitions of the total and
fiducial phase spaces are elaborated in Section 5. The simulated events arising from the Z Z → ττνν

decays with the subsequent τ → `νν decays of both τ-leptons are considered as signal events at detector
level but excluded in the fiducial measurements. Throughout this paper, “Z → ``” denotes the decays of a
Z boson or a virtual photon into a charged-lepton pair.

Furthermore, differential cross-sections are reported in the fiducial region for eight kinematic variables,
which are sensitive to effects from higher-order corrections and possible BSM physics. These variables
include the transverse momentum of the leading lepton (p`1

T ), the leading jet (pjet1
T ), the dilepton system

(p``T ), and the Z Z system (pZZ
T ), the transverse mass of the Z Z system (mZZ

T ),1 the absolute rapidity of the
dilepton system (|y`` |), the azimuthal angle difference between the two leptons (∆φ``), and the number of
jets (Njets). Since no significant deviations from the SM are observed, upper limits are placed on the aTGC
parameters [1], which typically manifest themselves as a signal excess growing rapidly as the partonic
centre-of-mass energy (

√
ŝ) increases. In this analysis, aTGCs are searched for using the p``T spectrum

in the fiducial region, motivated by the fact that p``T is correlated with
√

ŝ and has a good experimental
resolution.

1 mZZ
T =

√√√[√
m2
Z
+

(
p``T

)2
+

√
m2
Z
+

(
Emiss
T

)2
]2

−
��� ®pT`` + ®Emiss

T

���2
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2 ATLAS detector

The ATLAS detector [19–21] is a large multi-purpose detector with a forward–backward symmetric
cylindrical geometry and nearly 4π coverage in solid angle.2 It consists of an inner tracking detector
surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon
spectrometer incorporating three large superconducting toroidal magnets each having eight coils assembled
radially and symmetrically around the beam axis.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range |η | < 2.5. A high-granularity silicon pixel detector covers the vertex region and
usually provides four measurements per track. The pixel detector is followed by a silicon microstrip tracker
which usually provides four measurement points per track. These silicon detectors are complemented by a
transition radiation tracker, which enables radially extended track reconstruction and improved momentum
measurements up to |η | = 2.0. The transition radiation tracker also provides electron identification
information based on the fraction of hits (typically 30 hits in total) above a high-energy threshold designed
for optimal electron–pion separation.

The calorimeter system covers the pseudorapidity range |η | < 4.9. Within the region |η | < 3.2,
electromagnetic calorimetry is provided by barrel and endcap lead/liquid-argon (LAr) sampling calorimeters,
with an additional thin LAr presampler covering |η | < 1.8, to correct for energy loss in material upstream
of the calorimeters. Hadronic calorimetry is provided by a steel/scintillating-tile calorimeter, segmented
into three barrel structures within |η | < 1.7, and two copper/LAr hadronic endcap calorimeters. The solid
angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimised for
electromagnetic and hadronic measurements, respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by superconducting air-core toroids. The field integral
of the toroids ranges between 2.0 and 6.0 T·m across most of the detector. A set of precision chambers
covers the region |η | < 2.7 with three layers of monitored drift tubes, complemented by cathode strip
chambers in the first measurement layer of the forward region, where the background is highest. The muon
trigger system covers the range |η | < 2.4 with resistive-plate chambers in the barrel, and thin-gap chambers
in the endcap regions.

A two-level trigger system [22] is used to select events for offline analysis. The first-level trigger
is implemented in hardware and uses a subset of the detector information. This is followed by the
software-based high-level trigger, reducing the event rate to about 1 kHz.

3 Data and simulation

This measurement utilises data collected by the ATLAS detector during the 2015 and 2016 data-taking
periods. The data were recorded with a combination of single-lepton triggers, picking up events containing
either an isolated lepton above a low-pT threshold or a high-pT lepton without any isolation requirement.
The lower pT threshold for the isolated electron (muon) trigger ranges from 24 (20) to 26 GeV depending

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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on the instantaneous luminosity. The higher pT threshold is 50 (60) GeV for the electron (muon) case over
all the data-taking periods. Signal events satisfying the event selection described in Section 4 are expected
to have an overall trigger efficiency of 98%.

Monte Carlo event simulation was deployed to model the signal and various background processes
(summarised in Table 1). In the determination of integrated cross-sections, the AZZ and CZZ factors
as well as the Emiss

T shape for the Z Z signal process were obtained from simulation. The background
contributions were either predicted by simulation or estimated in data with the assistance of simulation.

The qqZ Z process was modelled with Powheg-Box v2 [23–26] interfaced to Pythia8.186 [27] for
modelling of the parton showering, hadronisation and underlying event (UEPS). The NLO matrix-element
(ME) calculation set both the factorisation (µF) and renormalisation (µR) scales to the invariant mass of the
Z Z system (mZZ ), and used the NLO CT10 [28] parton distribution function (PDF). The UEPS algorithm
used a set of tuned parameters called the AZNLO tune [29]. The production cross-sections as a function of
mZZ were corrected to NNLO QCD and NLO EW accuracies in the total phase space. The QCD K-factors
were derived using the MATRIX program [13], which computes the NNLO cross-section using the same
QCD scales and the NNLO CT10 PDF [30]. The EW correction was applied using K-factors provided by
the authors of Ref. [17]. The QCD correction is about +10% for the entire mZZ spectrum, while the EW
correction is about −4% at low mZZ but has a larger impact at high mZZ , which cancels out the positive
QCD correction for mZZ around 500 GeV. An alternative sample was generated with Sherpa2.2.2 [31]
using the NNLO NNPDF3.0 PDF [32] and the same choice of QCD scales. The Sherpa generator and its
associated UEPS algorithm has NLO QCD accuracy for inclusive observables and extended QCD precision
for events with one or more outgoing partons (NLO for up to one parton, LO for two and three partons).

The ggZ Z events were simulated with the LO gg2vv3.1.6 [33, 34] generator using the NNLO CT10 PDF,
and then interfaced to Pythia8.186 using the A14 tune [35]. The production cross-section was corrected to
NLO QCD accuracy using a K-factor of 1.7 reported in Ref. [36]. An alternative modelling was provided
by Sherpa2.1.1 [37] with the NLO CT10 PDF, which extended the LO QCD calculation to events with one
parton. Both generators used mZZ/2 for the QCD scales, and they incorporated both the fermion-loop and
the Higgs processes, together with the interference between the two.

To study the effects of aTGCs, an additional sample for the SM qqZ Z process was generated at NLO in
QCD using Sherpa2.1.1 with the NLO CT10 PDF. The simulated sample was interfaced to a parton-level
program [1] following the procedures detailed in Ref. [38], and then event-by-event weights reflecting
the relative change in the cross-sections due to any aTGCs were computed. A parameterisation of aTGC
contributions as a function of any kinematic variable can be derived with this information. This procedure
was adopted in the previous Z Z measurements [6–8].

Production of Z Z → 4` events was modelled in the same way as the signal events. The diboson background
processes W Z and WW were generated with Powheg-Box v2 using the NLO ME calculation and the NLO
CT10 PDF, and then interfaced to Pythia8.186 with the AZNLO tune. An alternative W Z sample was
produced with Powheg-Box v2 interfaced to Herwig++ [39], for the study of UEPS uncertainties. The
interference between the WW and Z Z processes in the ``νν final state was found to be negligible [18] and
was therefore not considered in this analysis. Both the tt̄ and Wt events were simulated at NLO in QCD
with Powheg-Box v2 [40, 41] and interfaced to Pythia6.428 [42], and the production cross-sections were
corrected to NNLO QCD precision [43, 44]. Sherpa2.2.1 with the NNLO NNPDF3.0 PDF was used to
model the Z + jets process. The production cross-section for the Z + jets process was calculated with NNLO
QCD precision, while the simulation has NLOQCD precision for events with zero, one and two partons, and
provided a LO QCD description for events with three to five partons. The rare VVV background, consisting
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Process Generator Simulation accuracy Cross-section accuracy

qqZ Z
Powheg-Box v2 + Pythia8.186 NLO QCD NNLO QCD + NLO EW

Sherpa2.2.2 NLO QCD 0-1p, LO QCD 2-3p

ggZ Z
gg2vv3.1.6 + Pythia8.186 LO QCD NLO QCD

Sherpa2.1.1 LO QCD 0-1p

qqZ Z (aTGCs) Sherpa2.1.1 NLO QCD 0-1p, LO QCD 2-3p

W Z
Powheg-Box v2 + Pythia8.186 NLO QCD
Powheg-Box v2 + Herwig++

WW Powheg-Box v2 + Pythia8.186 NLO QCD

qqZ Z → 4` Powheg-Box v2 + Pythia8.186 NLO QCD NNLO QCD + NLO EW

ggZ Z → 4` gg2vv3.1.6 + Pythia8.186 LO QCD NLO QCD

Z + jets Sherpa2.2.1 NLO QCD 0-2p, LO QCD 3-5p NNLO QCD

tt̄ Powheg-Box v2 + Pythia6.428 NLO QCD NNLO QCD

Wt Powheg-Box v2 + Pythia6.428 NLO QCD NNLO QCD

VVV Sherpa2.1.1 NLO QCD

tt̄V MadGraph5_aMC@NLO + Pythia8.186 LO QCD NLO QCD

Table 1: Summary of Monte Carlo event simulation tools with their theoretical accuracy for each process, where
“p” stands for parton(s). For the first two signal processes and the W Z process, the first (second) row describes
the baseline (alternative) simulation. The theoretical accuracy of the normalisation used for the total production
cross-section of each process is shown in the last column.

of WWW , WW Z , W Z Z and Z Z Z processes, was modelled with Sherpa2.1.1 with NLO QCD precision.
MadGraph5_aMC@NLO [45] interfaced to Pythia8.186 was used to generate the tt̄V background events
that account for tt̄W , tt̄Z and tt̄WW production processes. The tt̄V process was calculated at LO QCD
accuracy, and its production cross-section was corrected to NLO QCD precision [45].

Generated events were then processed through the ATLAS detector simulation [46] based on GEANT4 [47]
to emulate the response of the detector to the final-state particles. Pile-up was simulated with Pythia8.186
using the A2 tune [48] and overlaid on simulated events to mimic the real collision environment. The
distribution of the average number of interactions per bunch crossing in the simulation was weighted to
reflect that in data. Simulated events were processed with the same reconstruction algorithms as for the
data. Furthermore, the lepton momentum scale and resolution, and the lepton reconstruction, identification,
isolation and trigger efficiencies in the simulation were corrected to match those measured in data.

4 Selection of ``νν events

This analysis selects a detector signature with a pair of high-pT isolated electrons (ee) or muons (µµ) and
large Emiss

T . The ee and µµ channels are combined to obtain the final results. The event selection strategy
was optimised to cope with the large background contamination. The selection requirements lead to a
highly boosted Z boson back-to-back with the missing transverse momentum vector ( ®Emiss

T ). Backgrounds
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are further reduced by removing events with extra leptons or any jets containing b-hadrons (“b-jets”).
Therefore, a precise understanding of the overall reconstruction and selection of leptons, jets, and Emiss

T is
required in this measurement.

Events are first required to have a collision vertex associated with at least two tracks each with pT > 0.4
GeV. The vertex with the highest scalar p2

T sum of the associated tracks is referred to as the primary
vertex.

Electrons are reconstructed from energy deposits in the EM calorimeter matched to a track reconstructed in
the ID. The electron identification imposes selections on the number of hits in the ID and requirements
on a likelihood discriminant, built from variables related to EM calorimeter shower shapes, track–cluster
matching, track quality, and transition radiation [49]. Electrons must satisfy the “medium” identification
criterion [49], which is about 90% efficient for electrons with pT ≈ 40 GeV. Candidate electrons must have
pT > 7 GeV and pseudorapidity |η | < 2.47. Muons are reconstructed by combining all the hits associated
with a pair of matched tracks reconstructed in the ID and MS, taking into account the energy loss in the
calorimeter. Muons are identified by requiring a sufficient number of ID and MS hits, and good consistency
between the ID and MS track measurements as well as good combined fit quality [50], and they must satisfy
the “medium” identification criterion [50], which has an overall efficiency of 96%. Candidate muons
are required to have pT > 7 GeV and |η | < 2.5. To further suppress misidentified lepton and cosmic-ray
background contributions, the absolute value of the longitudinal impact parameter of leptons with respect
to the primary vertex must be smaller than 0.5 mm, and the transverse impact parameter divided by its
error must be less than 5 (3) for electrons (muons). In addition, the “loose” isolation criteria defined
in Refs. [49, 50] are applied. The isolation selection imposes requirements on both the track-based and
calorimeter-based isolation variables, and varies as a function of pT to maintain a uniform efficiency above
98% for prompt leptons.

Jets are reconstructed with the anti-kt algorithm [51] with radius parameter R = 0.4, using as input
positive-energy topological clusters in the calorimeters [52–54]. The jet energy scale is calibrated using
simulation and further corrected with in situ methods [53]. Candidate jets must have pT > 20 GeV and
|η | < 4.5. Additional requirements using the track and vertex information inside a jet [55] are applied for
jets with pT < 60 GeV and |η | < 2.5 to suppress pile-up contributions. Candidate b-jets (pT > 20 GeV and
|η | < 2.5) are identified with an algorithm providing 85% signal efficiency and a rejection factor of 33
against light-flavour jets [56].

Leptons and jets may be close to each other or overlapping, even after implementing the full set of object
selections. The appearance of such overlapping objects may lead to ambiguities in the event selection
and in the energy measurement of the physics objects. A common procedure in the ATLAS experiment,
as detailed in Ref. [57], is applied to resolve the ambiguities. This requirement helps to suppress the
occurrence of two “problematic” scenarios, one with energy measurement of electrons biased due to nearby
jets, and the other with a jet producing non-prompt muons through meson decays in flight.

The ®Emiss
T vector is computed as the negative of the vector sum of transverse momenta of all the leptons

and jets, as well as the tracks originating from the primary vertex but not associated with any of the leptons
or jets (“soft-term”) [58]. The soft-term is computed in a way minimising the impact of pile-up in the
Emiss
T reconstruction.

Candidate events are preselected by requiring exactly two selected electrons or muons with opposite
charges and pT > 20 GeV. The leading lepton is further required to have pT > 30 GeV, well above the
threshold of the single-lepton triggers. To suppress the W Z background, events containing any additional
lepton satisfying the “loose” rather than “medium” identification requirement, in addition to the other
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Figure 2: The Emiss
T distributions after the preselection for the ee (left) and µµ (right) channels. The expectation

is derived from simulation and the hashed band accounts for the statistical and experimental uncertainties. The
experimental uncertainties are described in Section 7. The last bin in the distributions contains the overflow events.
The arrows indicate that the differences between the data and the expectation in some bins exceed the y-axis scope of
the bottom plots. The “other” background corresponds to the VVV and tt̄V processes.

requirements, are rejected. The dilepton invariant mass (m``) is required to be in the range between 76 and
106 GeV, which largely reduces the contamination from the non-resonant-`` background. Figure 2 shows
the observed and expected Emiss

T spectra after imposing the above requirements (“preselection”). The
fractional experimental uncertainties in the expected spectra increase as a function of Emiss

T in the region
dominated by the Z + jets process, as a result of the asymmetric migration effects along the steeply falling
Emiss
T distribution and the large jet-related uncertainty for Z + jets events at high Emiss

T . The top-quark
processes with genuine Emiss

T dominate the high Emiss
T region. For Emiss

T around 200 GeV, top-quark events
generally contain less jet activity than Z + jets events: this leads to correspondingly smaller experimental
uncertainties. The experimental uncertainties are elaborated in Section 7. The data sample after the
preselection is dominated by the Z + jets and non-resonant-`` processes. To suppress these backgrounds, a
further selection based on Emiss

T and event topology is applied.

Candidate events are required to have Emiss
T > 110 GeV and VT/ST > 0.65, where VT is the magnitude

of the vector sum of transverse momenta of selected leptons and jets, and ST is the scalar pT sum of the
corresponding objects. The variable VT/ST was found to be less sensitive to jet experimental uncertainties
than similar variables such as Emiss

T /ST. To further reduce the impact of jet energy scale uncertainties, the
calculation of VT and ST uses “hard jets” which are required to have pT > 25 GeV for the central region
(|η | < 2.4) and pT > 40 GeV for the forward region (2.4 < |η | < 4.5). The Emiss

T cut suppresses the Z + jets
contamination by many orders of magnitude, and the residual Z + jets events, which have large fake Emiss

T ,
are further suppressed by the VT/ST requirement. As the consequence of the combined Emiss

T and VT/ST
requirement, the Z + jets process only constitutes a small fraction of the total background after the full
selection.

Additional selection criteria based on angular variables are imposed to ensure the desired detector signature,
which helps to further reject the Z + jets and non-resonant-`` background events. The azimuthal angle
difference between the dilepton system and ®Emiss

T , ∆φ( ®p``T ,
®Emiss

T ), must be larger than 2.2 radians, and the
selected leptons must be close to each other, with the distance ∆R`` =

√
(∆φ``)2 + (∆η``)2 < 1.9. Finally,

events containing one or more b-jets are vetoed to further suppress the tt̄ and Wt backgrounds. The full
event selection is summarised in Table 2. Figure 3 gives the observed and simulated spectra for VT/ST,
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Step Selection criteria

Two leptons Two opposite-sign leptons, leading (subleading) pT > 30 (20) GeV

Jets pT > 20 GeV, |η | < 4.5, and ∆R > 0.4 relative to the leptons

Third-lepton veto No additional lepton with pT > 7 GeV

m`` 76 < m`` < 106 GeV

Hard jets pT > 25 GeV for |η | < 2.4, pT > 40 GeV for 2.4 < |η | < 4.5

Emiss
T and VT/ST Emiss

T > 110 GeV and VT/ST > 0.65

∆R`` ∆R`` < 1.9

∆φ( ®p``T ,
®Emiss

T ) ∆φ( ®p``T ,
®Emiss

T ) > 2.2 radians

b-jet veto N(b-jets) = 0 with b-jet pT > 20 GeV and |η | < 2.5

Table 2: Event selection criteria for the ``νν signature.

∆R`` , ∆φ( ®p``T ,
®Emiss

T ), and the number of b-jets, where each plot is made with the implementation of all the
cuts prior to the cut on that variable, according to the cut sequence in Table 2.

5 Total and fiducial phase spaces

The definitions of the total and fiducial phase spaces are summarised in Table 3. The total phase space is
defined as in Ref. [8] for the Z Z → 4` measurement, requiring 66 < m``,mνν < 116 GeV (` = e or µ),
where the leptons and neutrinos originate from the Z-boson decays. The four-momenta of the leptons are
defined at Born level, i.e. before any QED final-state radiation.

The fiducial phase space is defined with a set of criteria very close to that of the detector-level event
selection (Table 2). This strategy helps to reduce the amount of phase-space extrapolation in the fiducial
measurements and therefore minimises the theoretical uncertainties of the results. The criteria are applied
to “particle-level” physics objects, which are reconstructed from stable final-state particles, prior to their
interactions with the detector. For electrons and muons, QED final-state radiation is partly recovered
by adding to the lepton four-momentum the four-momenta of surrounding photons not originating from
hadrons within an angular distance ∆R < 0.1 (dressed leptons). Particle-level jets are built with the anti-kt
algorithm with radius parameter R = 0.4, using all final-state particles as the input (excluding muons and
neutrinos). As shown in Table 3, the selection requirements for the fiducial phase space closely follow
those in Table 2. The ®Emiss

T vector is defined as the sum of transverse momenta of the two neutrinos from
the Z-boson decays. This measurement requires large Emiss

T , which has a detector resolution of around
10 GeV [58] in the phase space considered here. To accommodate the majority of the events selected at
detector level, the Emiss

T threshold is therefore lowered to 90 GeV in the fiducial region. The efficiency of
the b-jet veto is found to be 98% in the fiducial region and consistent between the Powheg+Pythia8 and
Sherpa generators. No requirement is made on the number of b-jets in the fiducial selection.
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Figure 3: The VT/ST, ∆R`` , ∆φ( ®p``T ,
®Emiss

T ), and the number of b-jets distributions for the combination of ee and µµ
channels with the implementation of all the cuts in Table 2 prior to the cut on that variable. The expectation is
derived from simulation and the hashed band accounts for the statistical and experimental uncertainties. The first bin
in the distribution of ∆φ( ®p``T ,

®Emiss
T ) (bottom left) contains the underflow events. The arrow in the VT/ST distribution

indicates that the difference between the data and the expectation exceeds the y-axis scope of the bottom plot. The
“other” background corresponds to the VVV and tt̄V processes.

Table 4 gives the expected signal yields at detector level, the AZZ and CZZ factors, and the predicted
cross-sections. The qqZ Z and ggZ Z processes have similar final-state kinematic distributions and their
AZZ and CZZ factors are similar. The corresponding factors for the total Z Z process are averaged from
that for the two sub-processes, weighted by the respective cross-sections. The cross-section predictions
for the total phase space are corrected for the branching fraction of the Z Z → ``νν decays, 1.35% with
a negligible uncertainty, obtained from Refs. [59, 60]. The expected fiducial and total cross-sections,
σ

exp,fid
ZZ→``νν and σ

exp,tot
ZZ , are calculated from simulation, including the higher-order corrections detailed in

Section 3. The total uncertainties in these predictions are also provided in Table 4, and the procedures used
to derive these uncertainties are described in Section 7.

6 Background estimation

After the event selection, the overall signal-to-background ratio is about 1.7. The W Z and non-resonant-``
backgrounds account for 72% and 21% of the total background contribution, respectively, and are estimated
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Total phase space
Born-level leptons (ee or µµ)
66 < m``,mνν < 116 GeV

Fiducial phase space

Dressed leptons (e or µ): pT > 7 GeV, |η | < 2.5
Jets: pT > 20 GeV, |η | < 4.5
Reject leptons if overlapping with a jet within ∆R < 0.4
Two leptons with leading (subleading) pT > 30 (20) GeV
76 < m`` < 106 GeV
Emiss
T > 90 GeV and VT/ST > 0.65
∆φ( ®p``T ,

®Emiss
T ) > 2.2 radians and ∆R`` < 1.9

Table 3: Definitions of the total and fiducial phase spaces for the Z Z → ``νν signal.

Z Z qqZ Z ggZ Z

ee µµ ee µµ ee µµ

Signal yield

220 ± 15 229 ± 15

(± 2 stat ± 7 exp (± 2 stat ± 7 exp 194 ± 12 202 ± 12 25 ± 15 26 ± 16

± 13 theory) ± 13 theory)

CZZ - (54.7 ± 1.7)% (56.6 ± 1.7)% (53.1 ± 1.8)% (55.5 ± 2.2)%

σ
exp,fid
ZZ→``νν 22.4 ± 1.3 fb 18.8 ± 1.0 fb 2.6 ± 0.8 fb

AZZ - (5.3 ± 0.1)% (5.3 ± 0.3)%

σ
exp,tot
ZZ 15.7 ± 0.7 pb 13.9 ± 0.4 pb 1.8 ± 0.6 pb

Table 4: Predictions for the signal yields at detector level, for the CZZ and AZZ coefficients defined in Eq. (1), and
for the cross-sections in the fiducial and total phase spaces. The first column gives the corresponding predictions for
the total Z Z process, combined from those shown separately for the qqZ Z and ggZ Z sub-processes. The errors
include both the statistical and systematic uncertainties (see Section 7). The statistical, experimental, and theoretical
uncertainties are also shown separately for the combined signal yields.

from control regions in data. The Z + jets background is largely suppressed, yielding a relative contribution
of only 4%, and is estimated from data. Finally, the small remaining contributions from other processes,
amounting in total to 3% of the total background, are estimated from simulation. The various background
estimates and their uncertainties are described below.

To estimate the dominant resonant background from W Z production, a control region enriched in W Z
events, with a purity of 90%, is defined using the preselection criteria, except that a third lepton with
pT > 20 GeV and satisfying the medium identification criteria is required. Several further selections such
as VT/ST > 0.3, b-jets veto, and mW

T > 60 GeV, where mW
T is constructed from the third lepton’s transverse

momentum and the ®Emiss
T vector,3 are applied to suppress non-W Z contributions. A normalisation factor

( fWZ ) is calculated in the control region as the number of observed events in data, subtracting the non-W Z

3 mW
T =

√
2p`TEmiss

T [1 − cos∆φ( ®p`T, ®E
miss
T )]
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contributions estimated from simulation, divided by the predicted W Z yield. The factor fWZ is found to be
1.26 ± 0.04 (stat), which is consistent with a recent W Z measurement [61], performed within a broader
fiducial phase space and using a recent calculation of the W Z total cross-section at NNLO in QCD [62,
63]. The statistical uncertainty of the data in the control region leads to a 3% uncertainty in the W Z
estimate in the signal region. The systematic uncertainty is evaluated for the ratio of the W Z predictions
in the signal and control regions. The experimental uncertainty in this ratio is 3.5%, and the theoretical
uncertainty is 3.3%, calculated as the sum in quadrature of the PDF, scale, and UEPS uncertainties. The
non-W Z contribution in the control region is less than 10%. The uncertainty related to the subtraction of
the non-W Z contribution, estimated by imposing cross-section uncertainties for all the relevant processes,
is found to be about 2%. The total uncertainty in the W Z estimate is about 6%. The kinematic distributions
are estimated from simulation, with both the experimental and theoretical uncertainties considered.

To estimate the non-resonant-`` background, includingWW , top-quark (tt̄ andWt), and Z → ττ production,
a control region dominated by the non-resonant-`` processes (with a purity above 95%) is defined with all
the event selection criteria in Table 2, except that the final state is required to contain an opposite-sign eµ
pair. The non-resonant-`` contribution in the ee (µµ) channel is calculated as one half of the observed
data yield after subtracting the contribution from the other background processes in the control region,
and then corrected for the difference in the lepton reconstruction and identification efficiencies between
selecting an eµ pair and an ee (µµ) pair. The lepton efficiency correction is derived as the square root
of the ratio of the numbers of µµ and ee events in data after the preselection. The choice of deriving
the correction after preselection minimises the resulting statistical uncertainty. The total uncertainty in
the non-resonant-`` estimate is about 16%, including the statistical uncertainty of the data in the control
region (14%) and the method bias estimated from simulation (7%). The kinematic distributions for the
non-resonant-`` background estimate in the signal region are predicted with simulation, and the assigned
systematic uncertainty covers the experimental uncertainty in the simulated shape as well as the difference
between data and simulation in the control region.

Figure 4 gives two examples of comparing data and predictions in the W Z and non-resonant-`` background
control regions. The left-hand figure is the mW

T distribution in the W Z control region, where the
normalisation factor fWZ is applied to the W Z simulation and good agreement between the observed and
predicted shapes is found. The right-hand figure is the Emiss

T distribution in the non-resonant-`` control
region, where the WW and top-quark (tt̄ and Wt) production processes are dominant. Both the statistical
and experimental uncertainties are included in the hashed bands in these figures.

A data-driven method is used to estimate the Z + jets background. This method defines three independent
regions (labelled as B, C and D) which are enriched in Z + jets events and are not overlapping with the
signal region (labelled as A). The data yields after subtracting the non-Z contributions in these regions
(nB, nC and nD) are used to predict the Z + jets contribution in the signal region (nA), calculated as
nC × nB/nD. The main assumption of the method is that nA/nC = nB/nD . The control region definitions
are optimised to ensure that this assumption is valid within uncertainties evaluated from simulation. The
control regions are defined using the preselection requirements plus the b-jets veto. A further requirement
of Emiss

T > 30 GeV and VT/ST > 0.2 is imposed to remove the low-Emiss
T phase space which is far away

from the signal region. The Emiss
T and VT/ST variables are expected to have a small correlation with the

topological variables, so the various requirements to define the control regions are grouped together, such
that the correlations between regions are minimised. Specifically, two Boolean variables are defined as,
α = “Emiss

T > 110 GeV and VT/ST > 0.65” and β = “∆φ( ®p``T ,
®Emiss

T ) > 2.2 radians and ∆R`` < 1.9”. The
four regions are then defined as follows:

• Region A: α = TRUE and β = TRUE
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Figure 4: Distributions in the control regions (CR), of mW
T for the W Z CR (left) and of Emiss

T for the non-resonant-``
CR (right). The data are compared with the predictions from simulation, where the W Z contribution is scaled by the
normalisation factor of 1.26 described in the text. The last bin in the distributions contains the overflow events. The
hashed bands include both the statistical and experimental uncertainties. The “other” background corresponds to the
VVV and tt̄V processes.

• Region B: α = FALSE and β = TRUE

• Region C: α = TRUE and β = FALSE

• Region D: α = FALSE and β = FALSE

Regions B and D are dominated by the Z + jets process (with a purity greater than 95%), while its relative
contribution in region C is only 70% because the tt̄ contribution in this phase space region remains large.
The derived Z + jets contribution is corrected for the closure factor (nA/nC × nD/nB) estimated from
simulation. This factor is found to be 0.9 and has a relative uncertainty of 48%, consisting of the statistical
(40%), experimental (22%), and methodology uncertainties (15%). The experimental uncertainty in the
closure factor is dominated by jet energy scale and resolution. The methodology uncertainty covers the
variations obtained by changing the Emiss

T and VT/ST thresholds in the low-Emiss
T removal requirement

by 40%. The Z + jets estimation is also subject to the statistical uncertainty of the data (5%) and the
subtraction of non-Z contributions in the control regions (5%). The non-Z subtraction uncertainty is
driven by the modelling uncertainty for the main non-Z process in region C (tt̄ production), which is
about 10–20% for Emiss

T above 100 GeV [64]. The total uncertainty on the Z + jets estimate is about 50%.
The kinematic distributions for the Z + jets background in the signal region are derived from the data in
region C, together with a systematic uncertainty assigned in a way similar to that described above for the
non-resonant-`` background.

The Z Z → 4`, VVV and tt̄V(V) backgrounds are estimated from simulation, and their contributions have
a total uncertainty of 10–20%, including both the theoretical cross-section [8, 65, 66] and the experimental
uncertainties.
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7 Systematic uncertainties

The measurement results and predictions are subject to theoretical and experimental uncertainties, as
well as uncertainties related to the background estimation. The background uncertainties are explained
in Section 6. The statistical uncertainties of the simulated samples for both the signal and background
processes are also taken into account wherever applicable. The systematic uncertainty sources for the
signal process are detailed below.

The theoretical uncertainties for the dominant qqZ Z signal sub-process are estimated with the
Powheg+Pythia8 generator, since only the total cross-section has been calculated to NNLO QCD and
NLO EW accuracies. The theoretical uncertainties originate from the PDF choice, the missing higher-order
QCD calculation, and the UEPS modelling. The PDF uncertainty is calculated as the 68% confidence-level
eigenvector uncertainty [28] of the nominal PDF used in the simulation. The uncertainty due to the QCD
calculation, also referred to as the “scale” uncertainty, covers the variations of predictions from changing
the QCD renormalisation and factorisation scales. The QCD scales are varied independently by factors
ranging from one half to two, which in total yields seven different scale choices including the nominal
one. The UEPS uncertainty is taken as the difference in the predictions between the Herwig++ and the
default showering programs. The fractional theoretical uncertainty in AZZ for the qqZ Z process is about
1.8%, while the overall uncertainties in the cross-section predictions in the total and fiducial phase spaces
are about 3% and 5%, respectively. The Sherpa generator is used to cross-check the nominal predictions,
and the AZZ factors from Powheg and Sherpa are consistent with each other within the uncertainty. The
CZZ predictions from the two generators are found to be consistent within the statistical uncertainty of 1%,
and in this measurement, the theoretical uncertainty in CZZ is neglected.

The understanding of the p``T spectrum in the fiducial phase space is crucial for the study of aTGCs, and
the predictions from the two generators differ by up to 10% for p``T around 300 GeV, which is slightly
above the theoretical uncertainty of the Powheg prediction. The Powheg prediction with the K-factors
applied has better precision in terms of the EW calculation, while the Sherpa generator is expected to
give a better description of Z Z production with extra QCD radiation. Finally, an uncertainty is applied
to the p``T prediction, as the sum in quadrature of the theoretical uncertainty estimated with Powheg and
the difference between Powheg and Sherpa, which is about 5% for p``T around 150 GeV and increases to
about 11% for p``T above 250 GeV.

A constant 30% uncertainty is assigned to the total ggZ Z cross-section prediction, which covers the
uncertainties concerning the NLO K-factor [36] and the potential missing higher-order contributions [67].
The AZZ predictions for the ggZ Z process from the gg2vv and Sherpa generators are found to be
consistent, and the AZZ uncertainty is estimated with Sherpa and found to be 4.6%. The theoretical
uncertainty in CZZ is neglected for the ggZ Z process.

The major experimental uncertainties originate from the luminosity uncertainty, the momentum scale and
resolution of leptons and jets, and the lepton reconstruction and selection efficiencies [49, 50, 53, 68].
Smaller experimental uncertainties are also considered, which include uncertainties due to the trigger
selection efficiency, the b-jet identification efficiency, the calculation of the Emiss

T soft-term, and the variation
of the average number of interactions per bunch crossing (hereafter referred to as pile-up uncertainty).
The pile-up uncertainty covers the uncertainty on the ratio between the predicted and measured inelastic
cross-section in the fiducial volume defined by MX > 13 GeV where MX is the mass of the hadronic
system [69]. Overall, the total experimental uncertainty on CZZ is 3.1%, dominated by the jet and lepton
components. The uncertainty in the combined 2015+2016 integrated luminosity is 2.1%. It is derived,
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AZZ CZZ

qqZ Z ggZ Z ee µµ

Stat. 1.0% 1.1% Stat. 0.6% 0.6%
Electron 2.0% -PDF 0.8% 3.5%
Muon - 1.9%

Scale 1.4% 2.0% Jet 2.0% 2.0%
UEPS 0.1% 2.0% Soft 0.9% 1.1%
Total 1.9% 4.6% Total 3.1% 3.1%

Table 5: Fractional uncertainties for AZZ and CZZ , with the contributions from the various sources, theoretical only
for AZZ and experimental only for CZZ . The uncertainties in AZZ for the qqZ Z and ggZ Z sub-processes are given
in different columns. The uncertainties in CZZ for the ee and µµ channels of the inclusive Z Z process are given in
separate columns. The total uncertainties in AZZ and CZZ are given in the last rows, respectively. The “Soft” term
includes the Emiss

T soft-term and the pile-up uncertainties.

following a methodology similar to that detailed in Ref. [70], and using the LUCID-2 detector for the
baseline luminosity measurements [71], from calibration of the luminosity scale using x–y beam-separation
scans.

The fractional uncertainties in AZZ and CZZ are summarised in Table 5. In this analysis, the theoretical
uncertainties are treated as uncorrelated between the qqZ Z and ggZ Z processes, while the experimental
uncertainties are considered as fully correlated across the relevant processes and final-state channels.

8 Integrated cross-section results

Table 6 lists separately for the ee and µµ channels the observed data yields and the expectations for the
signal and background contributions after the final selection. Figure 5 shows for the combined ee and µµ
channels the observed and expected Emiss

T distributions, which are in good agreement.

The integrated fiducial and total cross-sections (σfid
ZZ→``νν and σ

tot
ZZ ) are determined by binned maximum-

likelihood fits to the Emiss
T distributions. As shown in Figure 5, the signal-to-background ratio increases

as Emiss
T becomes larger. The use of Emiss

T improves the precision of the measured fiducial cross-section
relatively by 5% compared with the case where no kinematic information is used.

The expected yield in each channel i and in each Emiss
T bin j is given by:

N i j
exp = σ

fid
ZZ→``νν × L × Ci

ZZ × f i jZZ + N i j
bkg = σ

tot
ZZ × B × L × Ai

ZZ × Ci
ZZ × f i jZZ + N i j

bkg,

where L is the integrated luminosity, N i j
bkg the expected background yield, B the branching fraction for

the Z Z → ``νν decay (` = e or µ), and f i jZZ is the fraction of signal events in bin j with respect to the
total distribution. The number of events follows a Poisson distribution in each bin, and the systematic
uncertainties are treated as Gaussian nuisance parameters, θk , in the fit. For each source of systematic
uncertainty, k, a single nuisance parameter is used for all the processes and channels where this uncertainty

16



ee µµ

Data 371 416
Signal
qqZ Z 194 ± 3 ± 12 202 ± 3 ± 12
ggZ Z 25.1 ± 0.3 ± 7.7 26.4 ± 0.3 ± 8.1
Backgrounds
W Z 92.9 ± 3.0 ± 4.8 100.7 ± 3.2 ± 5.2
Non-resonant-`` 25.5 ± 3.4 ± 1.8 31.5 ± 4.2 ± 2.2
Z + jets 4.7 ± 0.2 ± 2.3 5.9 ± 0.3 ± 2.8
Z Z → 4` 3.8 ± 0.2 ± 0.3 4.2 ± 0.2 ± 0.3
Others 0.87 ± 0.03 ± 0.17 0.87 ± 0.03 ± 0.17
Background expected 128 ± 5 ± 6 143 ± 5 ± 6
Total expected 347 ± 5 ± 15 372 ± 6 ± 16

Table 6: Observed data yields and expected signal and background contributions, shown separately for the ee and
µµ channels. The errors shown for the expected yields correspond to the statistical and systematic contributions
in that order. The expected background and signal+background yields are shown in the last two rows, where the
uncertainties are computed as the sum in quadrature of those from the individual processes.
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Figure 5: Observed and expected Emiss
T distributions after the final selection for the combined ee + µµ channel before

the fit procedure. The error bars on the data points correspond to the data statistical uncertainties, and the hashed
band for the prediction includes both the statistical uncertainties of the simulation and the systematic uncertainties.
The “other” background corresponds to the VVV and tt̄V processes.

matters. The statistical uncertainty due to the limited size of simulated samples is treated as uncorrelated
among bins and channels. The binned likelihood function is built over all bins as follows:
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Lumi. Electron Muon Jet
Total Data stat. Total syst. 2.2% 1.2% 1.1% 2.1%
7.0% 5.5% 4.3% W Z Non-resonant-`` Z + jets Sim. stat.

1.6% 1.6% 0.4% 0.7%

Table 7: Relative contributions to the measured combined fiducial cross-section from the main sources of uncertainty
after the fit procedure. The total uncertainty includes the data statistical and systematic components. For the
systematic uncertainty, the individual sources of a similar nature are grouped together for simplicity. “Sim. stat.”
indicates the uncertainty source corresponding to the limited size of the simulation samples for the signal and
background processes.

Measured Predicted

σfid
ZZ→``νν [fb]

ee 12.2 ± 1.0 (stat) ± 0.5 (syst) ± 0.3 (lumi) 11.2 ± 0.6

µµ 13.3 ± 1.0 (stat) ± 0.5 (syst) ± 0.3 (lumi) 11.2 ± 0.6

ee + µµ 25.4 ± 1.4 (stat) ± 0.9 (syst) ± 0.5 (lumi) 22.4 ± 1.3

σtot
ZZ [pb] Total 17.8 ± 1.0 (stat) ± 0.7 (syst) ± 0.4 (lumi) 15.7 ± 0.7

Table 8: Measured and predicted integrated cross-sections in the fiducial and total phase spaces, together with
the breakdown of their uncertainties. The luminosity uncertainty is quoted separately from the other systematic
uncertainties. The measurements are also shown separately for the ee and µµ channels in the case of the fiducial
cross-section.

L(σ, ®θ) =
∏
i

∏
j

Pois(N i j
obs |N

i j
exp(σ, ®θ)) ×

∏
k

Gaus(θk),

where N i j
obs is the observed data yield in each bin.

Table 7 summarises the main sources of uncertainty in the measured combined fiducial cross-section, where
individual sources of a similar nature are grouped together. The statistical and total systematic uncertainties
in the measurement are of similar sizes. Table 8 shows the measured fiducial cross-sections, separately for
each channel and for their combination, together with the breakdown of their uncertainties. The ee and
µµ channel cross-sections are compatible within their respective statistical uncertainties. The measured
combined fiducial cross-section has a total uncertainty of 7%, which is significantly better than the previous
measurement [7], and comparable in size to that obtained in the Z Z → 4` channel [8, 12]. Table 8 also
shows the combined measured total cross-section, as well as the predictions for the cross-sections, as taken
from Table 4. The combined measurement is about 13% higher than the prediction, which is not significant
given the size of the measurement and prediction uncertainties.
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9 Differential cross-section results

Differential cross-sections are measured in the fiducial phase space by counting data events observed
in each bin of the observables of interest, after subtracting the expected background contribution, and
correcting for the detector effects with the unfolding procedure, chosen here to be the iterative Bayesian
unfolding method of Ref. [72]. The unfolding process takes into account fiducial corrections (correcting
for events outside the fiducial phase space but passing the detector-level selections), bin-to-bin migrations
due to detector resolution, and detector inefficiencies. An optimal number of two iterations is used for this
analysis, as a balance between the size of the statistical uncertainty in the measurement and residual biases
from the method. The residual bias is in almost all bins below 1%, as estimated by comparing the results
obtained using different prior distributions (constant, expected, observed) in the unfolding process.

The experimental uncertainties for the measurement results are evaluated by varying the response matrices
for the unfolding according to the ±1σ effects of each uncertainty source, and by comparing the resulting
unfolded results with the nominal one. The background uncertainties are considered at the stage of the
background subtraction. The statistical uncertainty of the data is estimated by repeating the unfolding
procedure with 2000 sets of pseudo-data and then taking the root mean square of the deviations of the
resulting spectra from the data spectrum. The response matrices are also subject to the statistical uncertainty
of the simulated samples, which is estimated using a similar approach.

Figures 6 and 7 present the measured differential cross-sections for the eight observables of interest defined
in Section 1. The binning for each variable is chosen to minimise the bin-to-bin migrations while preserving
a sufficient number of events per bin. The Njets spectrum is measured only for hard jets as defined in
Section 4, and the pjet1

T distribution is obtained in the fiducial phase space of events containing at least one
hard jet. The predictions from Powheg+gg2vv and Sherpa are also shown in Figures 6 and 7, and are
found to be in agreement with the measurements within uncertainties. The electroweak production of Z Z
associated with two jets is not taken into account in the predictions due to its negligible contribution. The
differential measurements are largely dominated by the statistical uncertainty on the data, but the systematic
uncertainties contribute significantly in certain regions of phase space. As an example, the uncertainties
from the various sources for the differential measurement of the p``T distribution are listed in Table 9.

Comparing with the Run-1 results of Ref. [7], this measurement is obtained from a larger dataset with
highly improved accuracy and for a wider range of observables.

10 Search for aTGCs

The search for aTGCs is carried out using the unfolded p``T distribution of Figure 6 in the fiducial phase
space. The contribution due to aTGCs is introduced using an effective vertex function approach [1]. It
includes two coupling parameters that violate charge-parity (CP) symmetry, f γ4 and f Z4 , as well as two
CP-conserving ones, f γ5 and f Z5 . The sensitivity range of this search is found to be within the unitarity
bounds, so no form factors [1] are applied to the coupling parameters in this analysis. Furthermore, the
coupling parameters are used to extract information about the dimension-eight operators of the effective
field theory [73].

The relative change in the SM production cross-section in each p``T bin is parameterised as a quadratic
function depending on the coupling parameters. The parameterisation for the qqZ Z process is derived from
simulation as described in Section 3, while the impact of the aTGCs is neglected for the ggZ Z process.
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Figure 6: The measured differential cross-sections for mZZ
T (top left), pZZ

T (top right), p``T (bottom left), and p`1
T

(bottom right) in the fiducial region. The hashed bands in light grey give the total uncertainty. Also shown are the
predictions as obtained from Sherpa (solid line) and Powheg+gg2vv (dashed line) with higher-order K-factors,
as described in Section 3. The last bin in the four distributions is shown using a different x-axis scale for better
visualisation.

Since the sensitivity to possible aTGCs lies in the high-p``T region, only the bins with p``T > 150 GeV are
considered in the search. Figure 8 compares the measured p``T spectrum in this region of phase space to the
SM prediction alone and to the SM prediction augmented with aTGCs corresponding to different values of
the coupling parameters described above. The highest-p``T bins are required to contain a minimum of ten
observed events at the detector level, which arises from the fact that the limits on aTGCs derived from
the unfolded distribution rely on a Gaussian approximation for the statistical fluctuations from the data.
The total uncertainty in the measured cross-section in the last bin is about 40%, while the corresponding
SM prediction has an uncertainty of 15%. The sensitivity to aTGCs is thus still limited by the statistical
uncertainty of the data.

Since the observation is consistent with the SM prediction, 95% confidence intervals (CIs) for the coupling
parameters are derived. The test statistic is based on a profile log-likelihood ratio [74], and the likelihood
function is described by a multivariate Gaussian distribution with the following form:
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Figure 7: The measured differential cross-sections for |y`` | (top left), ∆φ`` (top right), Njets (bottom left), and pjet1
T

(bottom right) in the fiducial region. The hashed bands in light grey give the total uncertainty. Also shown are the
predictions as obtained from Sherpa (solid line) and Powheg+gg2vv (dashed line) with higher-order K-factors, as
described in Section 3. The last bin in the distributions of Njets and pjet1

T is shown using a different x-axis scale for
better visualisation.

L =
1√

(2π)5 |C|
× exp(−1

2
(®x − ®µ)TC−1(®x − ®µ)) ×

∏
s

Gaus(θs),

where ®x represents the measured p``T spectrum, ®µ the expected one, and C is the expected covariance matrix
in the differential measurement, with the term |C| standing for the determinant of the covariance matrix.
Both ®x and ®µ have five elements, corresponding to the five p``T bins used in this search. The expectation ®µ
depends on the coupling parameters and a set of Gaussian nuisance parameters, θs, which encapsulate the
theoretical uncertainties in the prediction. The expected covariance matrix C is first derived by unfolding
the predicted SM spectrum at detector level and then modified to account for the fact that the prediction ®µ,
varied in the statistical test, differs from the SM prediction ®µ0 in the fiducial region in the case of non-zero
coupling parameters. The relative difference between ®µ and ®µ0 can be expressed using a vector ®k, with
k i = µi/µi0 for bin-i. Each matrix element Ci j is the sum of a statistical uncertainty component (Ci jstat) and
systematic uncertainty components arising from SM Z Z process (Ci jZZ−syst) and background contribution
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p``T range [GeV] 50–110 110–130 130–150 150–170 170–200 200–250 250–350 350–1000
Measured σ (fb) 9.3 6.6 3.6 2.1 2.5 2.0 1.1 0.4
Total unc. 17.7 % 13.6 % 15.2 % 18.6 % 18.6 % 17.6 % 24.9 % 40.5 %
Stat. unc. 14.7 % 11.1 % 14.0 % 17.7 % 16.0 % 16.9 % 23.4 % 39.4 %
Syst. unc. 7.0 % 4.5 % 5.0 % 4.3 % 3.9 % 4.6 % 4.6 % 5.5 %
Bkg. unc. 6.9 % 6.4 % 3.2 % 3.7 % 8.6 % 2.1 % 7.1 % 7.6 %
Sim. stat. 1.2 % 0.7 % 0.7 % 0.8 % 0.9 % 0.9 % 1.1 % 2.0 %
Electron 0.7 % 0.8 % 0.9 % 1.7 % 1.3 % 1.6 % 2.1 % 3.2 %
Muon 1.0 % 1.3 % 1.0 % 1.1 % 1.2 % 1.4 % 2.0 % 1.7 %
Jet 5.4 % 2.9 % 3.8 % 3.0 % 2.3 % 2.1 % 2.7 % 2.5 %
Soft 3.6 % 2.2 % 2.0 % 0.8 % 1.3 % 2.7 % 0.3 % 1.7 %
Luminosity 2.1 % 2.1 % 2.1 % 2.1 % 2.1 % 2.1 % 2.1 % 2.1 %

Table 9: Measured cross-sections and breakdown of uncertainties (%) for the unfolded p``T distribution in the fiducial
region. The top part of the table gives separately the three main contributions to the total uncertainty, arising
respectively from data statistics (labelled Stat.), background subtraction (labelled Bkg.), and other systematic
uncertainties (labelled Syst.). The bottom part of the table shows a more detailed breakdown of the third contribution
(Syst.). The “Soft” term includes the Emiss

T soft-term and the pile-up uncertainties.

f γ4 f Z4 f γ5 f Z5

Expected [×10−3] [−1.3, 1.3] [−1.1, 1.1] [−1.3, 1.3] [−1.1, 1.1]

Observed [×10−3] [−1.2, 1.2] [−1.0, 1.0] [−1.2, 1.2] [−1.0, 1.0]

Table 10: One-dimensional 95% confidence intervals for the aTGC parameters described in the text. The limits on
each parameter are derived with the other parameters set to zero.

(Ci jbkg−syst); the dependence of C on ®µ is implemented such that Ci jstat and C
i j
ZZ−syst scale with

√
k i × k j and

k i × k j , respectively.

The 95% CIs are derived by scanning the parameter space and using a frequentist method with the CLs
formalism [75]. In the first step, the one-dimensional CI for each aTGC parameter is derived with all other
parameters set to zero, and the results are shown in Table 10. These intervals are found to be more stringent
than those obtained from the Z Z → 4` channel based on the same ATLAS data sample [8]. In the second
step, two-dimensional CIs for each pair of coupling parameters are derived with the other two parameters
set to zero. Figure 9 presents the two-dimensional CI contours for the six possible pairs of aTGC coupling
parameters. Finally, in the context of effective field theories, a one-dimensional 95% CI can be placed
on the CP-even dimension-eight operator CB̄W/Λ4 [73]. This is obtained by extrapolating the results of
Table 10 following the conversion formula in Ref. [73]. A 95% CI of [−4.0, 4.0] in units of TeV−4 is set for
CB̄W/Λ4, which is improved by 30% with respect to the ATLAS results in the Z Z → 4` channel [8].
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Figure 8: Unfolded measured distribution of p``T for the bins with p``T > 150 GeV. The data are compared with the
SM prediction from Powheg+gg2vv with higher-order K-factors to which are added possible aTGC contributions
for different values of the strength of the coupling parameters defined in the text. The results are shown separately for
f Z4 (top left), f γ4 (top right), f Z5 (bottom left), and f γ5 (bottom right). The uncertainty band represents the theoretical
uncertainties in the SM predictions.
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Figure 9: Expected and observed regions excluded at 95% confidence level as a function of two aTGC parameters.
Confidence intervals for each pair of coupling parameters are derived with the other two parameters set to zero.
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11 Conclusion

This paper presents a measurement of Z Z production using the ``νν final state, based on 36.1 fb−1 of data
collected by the ATLAS detector at the LHC in pp collisions at

√
s = 13 TeV. The fiducial cross-section

of the combined ee and µµ channels is measured to be σfid
ZZ→``νν = 25.4 ± 1.4 (stat) ± 0.9 (syst) ± 0.5

(lumi) fb, in agreement with the SM prediction of 22.4 ± 1.3 fb. The integrated cross-sections in the total
and fiducial phase spaces are measured with a total uncertainty of 7%, which is significantly better than the
previous measurement using the 8 TeV data. The measured cross-sections are slightly larger than the SM
predictions, but the difference is not significant considering the measurement and prediction uncertainties.
Differential cross-sections are reported for eight different kinematic variables in the fiducial phase space,
and no significant deviation from the expectations is found. The measured p``T spectrum in the fiducial
phase space is used to set limits on aTGCs, and the obtained 95% confidence intervals for the aTGC
parameters are more stringent than those derived from the 4` channel.
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