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Abstract

We discuss a class of Dark Matter (DM) models that, although inherently strongly coupled, appear weakly
coupled at small-energy and fulfill the WIMP miracle, generating a sizable relic abundance through the
standard freeze-out mechanism. Such models are based on approximate global symmetries that forbid
relevant interactions; fundamental principles, like unitarity, restrict these symmetries to a small class, in
such a way that the leading interactions between DM and the Standard Model are captured by effective
operators up to dimension-8. The underlying strong coupling implies that these interactions become
much larger at high-energy and represent an interesting novel target for LHC missing-energy searches.

1 Introduction and motivations

Studies of processes with missing energy at the LHC constitute an important part of the Dark Mat-

ter (DM) research program, that aims at unravelling possible non-gravitational interactions between the

Standard Model (SM) and the dark sector. Information from the LHC would be particularly useful for

light DM, mDM . 10 GeV, below the threshold for direct detection experiments. In this case, the WIMP

miracle seems to provide a convincing hint that light DM originates from weakly coupled dynamics.

Indeed, parameterizing the thermally-averaged annihilation cross section as

〈σvrel〉 ∼
α2

DM

m2
DM

(1)

with mDM, αDM the DM mass and coupling to the Standard Model (SM) fields, we find for the relic

density

ΩDMh
2 ≈ 10−26 cm3/s

〈σvrel〉
≈ 0.1

(
0.1

αDM

)2( mDM

10 GeV

)2

. (2)
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A weak coupling αDM � 1 reproduces the observed value ΩDMh
2 ≈ 0.1. Note that, for simplicity, we limit

the present discussion to s-wave annihilation. Annihilation in p-wave would imply in eq. (1) the presence of

the suppression factor v2
rel due to the relative velocity of the two annihilating particles, roughly vrel ∼ 1/3

at freeze-out temperature. In this contribution we want to explore how solid this indication is and study

the viability of light DM associated with a new strong, yet perturbative, coupling which we call g∗ . 4π.

The core aspect of our analysis is approximate symmetries, which forbid relevant (renormalizable) SM-

DM interactions, but allow irrelevant (non-renormalizable) interactions of dimension D. Referring to M

as the physical scale suppressing the latter, the amplitude for 2→ 2 annihilation, would scale as

αDM ∼
g2
∗

4π

(
E

M

)D−4

, (3)

where E denotes the collision energy. At low energies E � M , such as those relevant at freeze-out, the

interaction of eq. (3) appears weak, despite their strongly coupled nature at high-energy: this reconciles

an underlying strong coupling with the WIMP miracle. For instance, for D=6, considering that in the

relevant non-relativistic limit E ∼ mDM,

ΩDMh
2 ≈ 0.1

(
4π

g∗

)4 (
5 GeV

mDM

)2 (
M

3 TeV

)4

, (4)

showing that even an extremely strongly coupled system g∗ ≈ 4π, can reproduce the observed relic

abundance, as long as the mediator scale M is in the multi-TeV region. At high-energy E . M , DM

interacts strongly with itself and with the SM, eq. (3). This is in fact very appealing for the LHC which,

operating at high-energy, has direct access to the strongly coupled regime. Moreover, in this regime, the

signal from the strongly coupled sector is expected to be strong, and dominate over the LHC irreducible

backgrounds (such as jZ → jνν). For this reason, because large effects can be obtained even for E .M ,

DM from a strongly coupled sector provides one of the few examples where the use of a DM Effective

Field Theory (EFT) is well motivated even to parametrize LHC DM searches - a topic that has received

enormous attention in recent years (see refs. 1, 2, 3) and the literature that followed).

In this contribution we will use symmetry arguments to discuss all structured scenarios where DM

is strongly coupled, but fulfills the WIMP miracle. This work in based on 4, 5). After identifying the

relevant symmetries, we use simple power counting rules to build the EFT describing the physics of these

scenarios at collider energies, both in the case where DM is a scalar or a fermion. We will see that, in some

cases, the EFT for strongly coupled DM differs substantially from the original DM EFT of refs. 1, 2, 3).

2 Analysis and results

So, what symmetries are compatible with irrelevant operators only? For scalars a well-known example is

the shift symmetry associated with Nambu–Goldstone bosons (NGBs) from strong dynamics, like QCD

pions. In this case the leading interactions appear at D=6 or D=8. For Dirac fermions, on the other hand,

chiral symmetry and the absence of gauge interactions are enough to guarantee D ≥ 6. Alternatively, for

Majorana fermions (in analogy with NGBs), non-linearly realized supersymmetry (SUSY) ensures that

D ≥ 8. Indeed the leading interactions of Goldstini from spontaneously broken SUSY only exhibit higher-

derivative interactions in the limit where all other SUSY particles are heavy 6). We will discuss these

examples in detail below, but first we want to answer the question of whether, beyond these examples,

we can find an infinite set of symmetries such that the low-energy amplitude is suppressed by higher

and higher powers of energy, i.e. where D ≥ 10 constitute the only interactions allowed in the limit of
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Table 1: Building blocks for the effective Lagrangian with different SSB patterns. Dots denote higher
order terms in 1/f .

G/H φ daµ εaµ
U(1)
Z2

φ ∈ R ∂µφ
f 0

SU(2)
U(1) φ ∈ C (1 + |φ|2

f2 + ...)
∂µφ
f

φ†↔∂ µφ
f2 + ...

SO(6)
SO(5) Hi, φ ∈ R

(
1+ |φ|

2

f2 + |H|
2

f2 + ...
)
∂µφ
f

H†↔∂ µH
f2 + ...

exact symmetry. As a matter of fact the answer is negative. Fundamental principles based on analyticity,

unitarity and crossing symmetry of the 2→ 2 amplitude provide strict positivity constraints for some of

the coefficients of D=8 operators 7). This implies that generally there is no limit in which a symmetry

that protects operators with four fields and D ≥ 10, forbidding D ≤ 8, can be considered exact. So

the complete set of scenarios with a naturally light strongly coupled DM, that however appears weakly

coupled at small E (and therefore fulfills the WIMP miracle) is given by the above examples and is

captured by operators of D ≤ 8.

In the following, we shall focus on the case of scalar DM. Naturally light scalars originate as

pseudo-NGBs of the spontaneously symmetry breaking (SSB) pattern G/H. If the sector responsible for

SSB is strong, NGB interactions become strong at high-E. These scenarios are particularly interesting in

association with the hierarchy problem 8, 9, 10, 11, 12, 13, 14), but also independently from it 15, 16).

Qualitatively different cases of interest can be identified, depending on the particular group structure

being considered and the interplay with Higgs physics. First, a light scalar DM can be associated with

an abelian U(1) → Z2 breaking pattern, while a light composite Higgs originates from e.g. G/H =

SO(5)/SO(4) 17). Alternatively, the DM originates from a non-abelian, e.g. SU(2) → U(1) or larger,

symmetry breaking patterns 8, 13, 15, 14). Finally, both the Higgs and DM can arise together from

a non-factorizable group G, such as SO(6)/SO(5) 18, 9, 10, 12). The very power of EFTs is that, at

low-E, large groups of theories fall in the same universality classes: in our case the generic EFTs that we

will now build to describe the above-mentioned scenarios can be matched to any model with approximate

symmetries. In all these cases, the NGB interactions are described by the CCWZ construction: the light

degrees of freedom φa are contained in the coset representative U = exp(iφata/f) ∈ G/H and appear in

the Lagrangian only through the building blocks daµ and εAµ in U−1∂µU = idaµt
a + iεAµT

A, where ta(TA)

are the broken (unbroken) generators in G, f is the analog of the pion decay constant and is related

to the mass and couplings of resonances from the (strong) sector that induces SSB through the naive

dimensional analysis estimate f = M/g∗. Table 1 shows some specific examples. Under a transformation

g ∈ G, U → gUh(φ, g)−1, where h(φ, g) ∈ H. Then dµ ≡ daµt
a and ε ≡ εAµT

A transform under G

respectively in the fundamental representation of H and shift as a connection, so that Dε
µ ≡ ∂µ + iεµ is

the covariant derivative. With these ingredients, the low energy Lagrangian describing the canonically

normalized light scalars only, is simply Leff = M2f2L
(
daµ/fM,Dε

µ/M
)
, with the additional requirement

of invariance under the unbroken group H: this automatically guarantees also G invariance.

Clearly DM cannot be an exact massless NGB: the global symmetry must be broken explicitly. We

keep track of this breaking by weighting interactions that violate the CCWZ construction with m2
φ/M

2;

an assumption that reflects to good extent the expectations in explicit models (see for instance 9)). We

further assume the most favorable case in which, to the extent possible, the SM itself is part of the

strong dynamics, as discussed in ref. 19), so that DM-SM interactions do not introduce further symmetry
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breaking effects (we discuss below cases where only some species take part in the new dynamics). This

implies in particular that we assume the new dynamics respects the SM (approximate) symmetries:

custodial symmetry, CP, flavor symmetry (broken only by the SM Yukawas) and baryon and lepton

numbers. Finally we assume the new dynamics can be faithfully described by a single new scale M and

coupling g∗. Compatibly with these assumptions, the most general Lagrangian at the leading D = 6

order in the 1/M expansion is,

6L
DMφ

eff = cVψ
g2
∗

M2
φ†

↔
∂ µφψ

†σ̄µψ+cdipB
g∗
M2

∂µφ
†∂νφB

µν+cSH
g2
∗

M2
|∂µφ|2 |H|2+c6 sH

g2
∗m

2
φ,H

M2
|φ|2 |H|2+c6 sψ

g2
∗yψ
M2
|φ|2ψψH

(5)

where each operator is weighed by the maximum coefficient that we can expect following the power-

counting rules associated with the above mentioned-symmetries. The scaling in powers of the coupling g∗
can be unambiguously determined from a bottom-up perspective by restoring ~ 6= 1 in the Lagrangian:

the coefficient ci of an operator Oi with n fields scales as ci ∼ (coupling)n−2. Similarly, at D=8, focussing

on operators that contribute to 2→ 2 scattering,

8LDMeff = C 6 sV
g2
∗m

2
φ

M4
|φ|2V aµνV aµν + CSψ

g2
∗yψ
M4
|∂µφ|2ψψH + CSV

g2
∗

M4
|∂µφ|2V aνρV a ρν + CSH

g2
∗

M4
|∂µφ|2|DνH|2(6)

+ CTV
g2
∗

M4
∂µφ†∂νφV aµρV

a ρ
ν +CTH

g2
∗

M4
∂µφ†∂νφD{µH

†Dν}H + CTψ
g2
∗

M4
∂µφ†∂νφψ†σ̄µDνψ , (7)

with V aµν = Bµν ,W
a
µν , G

a
µν for U(1)Y × SU(2)L × SU(3)C gauge bosons, and ψ, H the SM fermions and

Higgs. We use a notation based on left-handed Weyl fermions, which carry additional internal indices to

differentiate left-handed ψ and right-handed (ψc)† components of Dirac fermions; the Wilson coefficients

c, C, associated to the D = 6, 8 Lagrangians respectively, carry these indices, and are expected to be

O(1), unless otherwise stated, see table below.

Of course there are more operators that contribute to 2 → 2 scattering, but these can either be

eliminated through partial integration, field redefinitions (that eliminate operators proportional to the

equations of motion), Bianchi or Fierz identities, or they violate some of the linearly realized symmetries

that we assume (CP, custodial). For instance, operators antisymmetric in the Higgs field, such as

c�
�cust

H

g2
∗

M2
φ†

↔
∂ µφH

†
↔
DµH (8)

transform as (1,3) under custodial symmetry SU(2)L × SU(2)R: their coefficient is expected to be

generated first at loop level by custodial breaking dynamics, involving for instance g′, which satisfies the

required transformation rules c�
�cust

H ∼ g′2/16π2. On the other hand at D=8,

∂µφ†
↔
∂ ν∂µφH

†
↔
DνH , ∂µφ†

↔
∂ ν∂µφψ

†σ̄νψ , (9)

share the same symmetries (among the linearly and non-linearly realized ones that we have presented) as

operators in 6L
DMφ

eff and contribute to the same observables; for this reason their contribution is expected

to be always suppressed by ∼ E2/M2 � 1 in the amplitude and we neglect them (a similar logic was

followed in ref. 20) to argue that the Peskin-Takeuchi U -parameter can be neglected, since it shares the

same symmetries as the T parameter, but is higher-dimension).

Similarly, m2
φ|φ|2|H|4 and ∂µφ

†∂µφ|H|4 give a subleading (by a factor g2
∗v

2/M2 . 1) contribution

w.r.t. cSH and c 6 sH , in processes with 2 longitudinal vectors or Higgses and can only be distinguished in

processes with three or more external longitudinal vector bosons/Higgses. Finally, operators of the form

|φ|2×6LSMeff , where 6LSMeff is the D=6 SM Lagrangian (see ref. 21)) but also includes total derivatives, are
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generally further suppressed by m2
φ/M

2 and count as D=10 effects in our perspective. The important

novel aspect that is emphasized by our analysis and summarized in the Lagrangians eqs. (5,7) and table 1,

is the following. Both the D=6 and D=8 Lagrangians can be important, as symmetries can suppress

the expected leading interactions in favor of higher order ones. Indeed, as table 1 shows, the structures

cVψ vanishes for antisymmetry if DM has a single real degree of freedom (such as for the U(1)/Z2 and

SO(6)/SO(5) cosets), so that in this case the leading DM-fermion interaction is given by the D=8

operator CTψ . On the other hand the structures c 6 sψ and cSH are unsuppressed only when the generators

associated with φ and H do not commute (such as in the SO(6)/SO(5) model 18, 9)), but will be further

suppressed by ∼ m2
φ,H/M

2 in other cases. In those cases the leading DM-Higgs interactions are the D=8

CSH and CTH . Finally, an important source of suppression is represented by the degree of compositeness of

the SM particles - either fermions or (transverse) gauge bosons. The most favorable situation is when the

SM particles are fully composite since in this case they feature an unsuppressed g∗ coupling to the strong

sector. On the contrary, if SM fermions and gauge bosons are elementary degrees of freedom, we expect a

suppression in the corresponding couplings, as shown in the first two rows of table 2. In models where the

DM dominantly couples to gluons only, the leading effects at high-energy, not suppressed by any small

parameters, are the D=8 CSV and CTV . We summarize in table 2 these and other such situations, where

some of the above operators are suppressed by additional small parameters (such as symmetry breaking

effects), and become therefore less interesting from the point of view of collider searches.

Table 2: × denotes suppression of a given EFT coefficient, according to specific properties of the micro-
scopic dynamics: ψelem denotes the limit where SM fermions are not composite, Velem denotes instead the
familiar case where the transverse polarizations of vectors are elementary (as opposed to strong multipolar

interactions 19)).

cVψ cdipB cSH c6 sH c6 sψ CS,TV CTψ
ψelem × × ×
Velem × ×
U(1)/Z2 × × × × ×
SU(2)/U(1) × × ×
SO(6)/SO(5) × ×

In Fig. 1 we compare the LHC reach (blue region) in the (g∗,M)-plane with relic density (RD)

expectations (green band) for D = 6 (e.g. DM as a PNGB of SU(2)/U(1)), showing that visible LHC

effects are compatible with a non-vanishing RD. Here the LHC constraints have been derived from the

data of ref. 22), imposing an additional cut in the centre-of-mass energy ŝ < M2. This cut, and the

representation in the (g∗,M)-plane, help us establishing consistency of the EFT assumption 23, 24).

Indeed, as M is lowered within the LHC kinematic region, the constraints rapidly deteriorate, since less

and less data remains available: this signals the fact that, in that region, our EFT assumptions are not

verified.

LHC constraints for the examples discussed above, where D=8 represent the leading effect at high-

E, are also shown in Fig. 1 with a dashed (red) curve. Notice that here, while the E-growing cross

sections implied by our symmetry structure clearly dominate at LHC energies M & E � mDM, they

might be comparable to symmetry breaking mDM-suppressed interaction at low-E, relevant at freeze-out.

In other words, the complementarity between different DM experiments is partially lost in this setup –

we discuss this issue further in 4, 5).
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Figure 1: Constraints on scalar DM with mDM = 5 GeV. Blue region: excluded by consistent LHC
constraints on D=6 operator cVψ in eq. (5) (e.g. pseudo-NGB DM from a non-abelian SSB pattern), and
comparison with the parameters where the RD is correctly reproduced with the same D=6 operator (solid
green). Red region: LHC constraints on D=8, CTψ in eq. (7) (e.g. one scalar DM from an abelian SSB).

3 Outlook

In Summary, we have discussed natural situations in which light DM originates from a strongly-coupled

sector but its interactions are small at low-energies because of approximate symmetries, that forbid

relevant interactions and allow only irrelevant (higher-derivative) ones. Prime principles dictate that

such symmetries are consistent only with D=6 and D=8 operators for 2 → 2 scattering. In this article

we have identified generic effective Lagrangians at these orders and introduced a power-counting that

captures the most well-motivated scenarios that can imply large effects in irrelevant interactions: scalar

DM as a PNGB.

These provide a class of models in which the LHC high-E reach plays an important rôle with respect

to other types of experiments (such as RD indications and direct detection) and contains genuinely

complementary information. Moreover, in these scenarios the DM EFT is not only consistent with

LHC analysis (due to the underlying strong coupling, as shown in fig. 1, but also necessary, as the

underlying dynamics is uncalculable. Our characterization provides a well-motivated context to model

missing transverse-energy distributions at the LHC, in mono-jet, mono-W,Z,γ or mono-Higgs searches,

with a handful of relevant parameters and yet a clear and consistent microscopic perspective. To the

question of what we have learned from LHC DM searches, these models provide one answer.
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