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1 Introduction

In this work, we study a product of null-integrated operators on the same null plane in a
conformal field theory (CFT) in d > 2 dimensions (figure 1):∫ ∞

−∞
dv1O1;v···v(u = 0, v1, ~y1)

∫ ∞
−∞

dv2O2;v···v(u = 0, v2, ~y2). (1.1)
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Here, we use lightcone coordinates

ds2 = −du dv + ~y2, ~y ∈ Rd−2. (1.2)

The operators are located at different transverse positions ~y1, ~y2 ∈ Rd−2, and their spin
indices are aligned with the direction of integration (the v direction). As an example, when
O1 and O2 are stress-tensors, (1.1) is a product of average null energy (ANEC) operators.
In [1], we established sufficient conditions for the existence of the product (1.1).

Such null-integrated operators arise naturally in “event shape” observables in collider
physics [2–6]. They also appear in shape variations of information-theoretic quantities
in quantum field theory [7–9], as generators of asymptotic symmetry groups [10], and in
studies of positivity and causality [1, 11–18]. We review event shapes and null-integrated
operators in section 2.

Each null-integrated operator is pointlike in the transverse plane Rd−2, so it is natural
to ask whether there exists an operator product expansion (OPE) describing the behavior
of the product (1.1) at small |~y12|:∫ ∞
−∞

dv1O1;v···v(u = 0, v1, ~y1)
∫ ∞
−∞

dv2O2;v···v(u = 0, v2, ~y2) ?=
∑
i

|~y12|δi−(∆1−1)−(∆2−1)Oi.

(1.3)

Here, the objects Oi have dimensions δi and the powers of |~y12| are fixed by dimensional
analysis.

The OPE for local operators is a powerful tool in CFT. It allows one to compute
correlation functions and to formulate the bootstrap equations [19, 20]. A similar OPE for
null-integrated operators (1.1) could have myriad applications. Thus, we would like to ask
whether (1.3) exists, whether it is convergent or asymptotic, and what the objects Oi are.

Hofman and Maldacena analyzed this question in N = 4 SYM and found the leading
terms in the small-|~y12| expansion where O1,O2 are stress tensors and currents [5]. At
weak-coupling, the leading objects are certain integrated Wilson-line operators. At strong
coupling, the leading objects can be described using string theory in AdS: they are certain
stringy shockwave backgrounds. What is the analog of these results in a general nonper-
turbative CFT? Can we extend the leading terms to a systematic convergent expansion?

There is a simple and beautiful argument for the existence of an OPE of local operators
in a nonperturbative CFT (see e.g. [21]): consider a pair of local operators O1,O2 in
Euclidean signature. We surround the operators with a sphere Sd−1 (assuming all other
operator insertions are outside the sphere) and perform the path integral inside the sphere.
This produces a state |Ψ〉 on the sphere. In a scale-invariant theory, |Ψ〉 can be expanded
in dilatation eigenstates

O1O2|0〉 = |Ψ〉 =
∑
i

|Oi〉. (1.4)

By the state-operator correspondence, these eigenstates are equivalent to insertions of local
operators at the origin |Oi〉 = Oi(0)|0〉. Thus (1.4) is the desired OPE.

– 2 –
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Figure 1. The local operators O1 and O2 are integrated along parallel null lines (blue) on the same
null plane. On the left, we show a conformal frame where the null plane is u = 0, and the operators
are at different transverse positions ~y1, ~y2 ∈ Rd−2. On the right, we show a conformal frame where
the null plane is future null infinity I + and the null-integrated operators are separated by an angle
θ12 on the celestial sphere. We give the relationship between θ12 and ~y12 in (1.10). Note that the
entire circle at spatial infinity is really a single point i0. Thus, the operators become coincident at
the beginnings and ends of their integration contours.

Unfortunately, this argument does not work for the product (1.1). There is no obvious
way to surround the null-integrated operators with an Sd−1 such that other operators are
outside the sphere. The structure of (1.3) suggests that perhaps we should surround the
null-integrated operators with an Sd−3 in the transverse space Rd−2. However there is no
obvious Hilbert space of states associated with such an Sd−3.1

Nevertheless, using different technology, we will show that a convergent OPE (1.3)
for null-integrated operators does exist in a general nonperturbative CFT. The objects
appearing on the right-hand side are the light-ray operators O±i,J defined in [23]. Each O±i,J
is obtained by smearing a pair of local operators in a special way in the neighborhood of
a light-ray. We review this construction in section 3.2. The matrix elements of O±i,J can
be computed via a generalization of Caron-Huot’s Lorentzian inversion formula [23, 24].
The spectrum of operators O±i,J is related to the spectrum of local operators by analytic
continuation in spin J ; i labels different Regge trajectories. In this work, we focus on
contributions to the OPE with low spin in the transverse d− 2-dimensional space (defined
in more detail below).2 These contributions are given by operators O±i,J with spin J =

1An older argument for the existence of the OPE exists due to Mack [22], relying on very different
methods. Mack shows that a product of operators acting on the vacuum O1O2|Ω〉 can be expanded in
a sum of single operators acting on the vacuum

∑
i
Oi|Ω〉. However, this result is insufficient for our

purposes. One reason is that acting with (1.1) on the vacuum immediately gives zero (as we will review
shortly). Instead, we would like to act on nontrivial states, and then the theorem of [22] does not apply.

2The generic transverse spin contributions will be derived in [25].

– 3 –
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Figure 2. Chew-Frautschi plot of neutral even-spin operators. Local operators are denoted by
black dots, gray dots denote shadow operators. Solid lines represent Regge trajectories. The low
transverse spin terms in the OPE

∫
dvTvv ×

∫
dvTvv are spin-3 light-ray operators on even-spin

Regge trajectories, shown here by red crosses.

J1 + J2 − 1. For example, if O1 = O2 = T , then J = 3 and the low-transverse spin
terms are given by the operators O+

i,3, see figure 2. Note that thanks to the selection rules,
these low-transverse spin contributions are sufficient to compute matrix elements of (1.1)
between appropriate low-spin states.3

Our strategy to establish the OPE (1.3) is as follows. First, in section 3.3 we decom-
pose the left-hand side of (1.3) into conformal irreps by smearing the transverse coordinates
~y1, ~y2, using harmonic analysis for the transverse conformal group SO(d − 1, 1). In sec-
tion 3.4, we focus on a single irrep and compute its matrix elements. Such matrix elements
can be written in terms of an integral of a double commutator. After some manipulation,
we express this integral as a linear combination of the generalized Lorentzian inversion
formula of [23], i.e. as a sum of matrix elements of O±i,J ’s. Thus, the original product of
operators is a sum of O±i,J ’s.

As an example, consider the case where O1 = φ1 and O2 = φ2 are scalars, so that
J1 + J2 − 1 = −1.4 Following the procedure above, we find the OPE5∫ ∞
−∞

dv1 φ1(0, v1, ~y1)
∫ ∞
−∞

dv2 φ2(0, v2, ~y2) = πi
∑
i

C∆i−1(~y12, ∂~y2)
(
O+
i,−1(~y2) + O−i,−1(~y2)

)
+ nonzero transverse spin. (1.5)

Here, Cδ(~y, ∂~y) is the same differential operator that appears in an OPE of local primary
3For example, in the case of O1 = O2 = T , interpreted as energy detectors in a conformal collider [5],

the low-transverse contributions described in this paper are sufficient to compute the matrix elements
of (1.1) between momentum eigenstates with total spin less than or equal to 4. This includes, in particular,
polarization-averaged expectation values, in which case the total spin of initial and final states is zero.

4According to the analysis of [1], a product of null-integrated scalars is only well-defined in theories with
Regge intercept J0 < −1. Here, we assume this is the case.

5A more precise expression involves an integral over ∆ instead of a sum over Regge trajectories. The
∆ contour can be deformed to pick up singularities in the ∆ plane. When these singularities are isolated
poles, we arrive at the sum of Regge trajectories (1.5). We discuss these points in section 5.2.
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scalars in d− 2 dimensions. It has an expansion

Cδ(~y, ∂~y) = |~y|δ−(∆1−1)−(∆2−1)
(

1 + ∆1 −∆2 + δ

2δ ~y · ∂~y + . . .

)
, (1.6)

where the coefficients are fixed by (d−2)-dimensional conformal invariance. The objects
O±i,−1 are light-ray operators associated to the i-th Regge trajectory, evaluated at spin
J = −1. The superscript ± is called the “signature” and it indicates the transformation
properties of the light-ray operator under a combination of CRT and Hermitian conjugation.
The “nonzero transverse spin” terms consist of derivatives of higher-spin light-ray operators
Oi,J with J > −1, and will be explained in [25].

In section 3.4.4, we generalize (1.5) to arbitrary Lorentz representations for O1,O2.
The light-ray operators on the right-hand side have spin J = J1 + J2 − 1, where J1, J2 are
the spins of O1,O2.6 For example, when O1,O2 are the stress tensor, we have a sum of
spin-3 light-ray operators∫

dv1Tvv(0, v1, ~y1)
∫
dv2Tvv(0, v2, ~y2) = πi

∑
s=±

∑
λ,a

∑
i

D(a),s
∆i−1,λ(~y12, ∂~y2)Os

i,J=3,λ,(a)(~y2)

+ higher transverse spin. (1.7)

Here, λ is an SO(d − 2) representation encoding spin in the transverse plane, s = ± is a
signature, (a) labels conformally-invariant three-point structures, and D(a),s

δ,λ is a differential
operator that generalizes Cδ.

In equation (1.7), the representation λ is restricted to traceless-symmetric transverse
spins that can appear in the conventional OPE of local operators Tµν × Tρσ. Specifically,
these are the representations λ ∈ {•, , , , }. The “higher transverse spin”
terms refer to operators with transverse representation λ not included in this set. They
will be explained in [25]. Higher transverse spin terms do not contribute to any of the
example observables we study in section 7.

In section 6 we find that the light-ray OPE also carries information about contact terms
in the ~y1 → ~y2 limit. These contact terms are important in at least two aspects. First they
are a part of the physical information present in event shape observables. Second, they
arise in commutators of null-integrated operators [10], leading to an interesting algebra.

1.1 Commutators and superconvergence

Our analysis does not assume or require that null-integrated operators commute. Indeed,
we can write an expression for a commutator of null-integrated operators using the OPE.
For example, the commutator of ANEC operators is given by the odd-signature terms
in (1.7),[∫

dv1Tvv(0, v1, ~y1),
∫
dv2Tvv(0, v2, ~y2)

]
= πi

∑
λ,a

∑
i

D(a),−
∆i−1,λ(~y12, ∂~y2)O−i,J=3,λ,(a)(~y2)

+ higher transverse spin. (1.8)
6For the definition of J in general representations, see appendix B.
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In [1], we showed that a commutator of ANEC operators vanishes if J0 < 3, where J0 is the
Regge intercept of the theory, and furthermore J0 ≤ 1 in unitary CFTs. It is interesting to
understand how vanishing occurs on the right-hand side of (1.8). Note that the operators
on the right-hand side are light-ray operators with spin 3 and odd signature. We show in
section 4.1 that if J0 < 3, such operators must be null integrals of local spin-3 operators.7

However, local spin-3 operators are not allowed in the T×T OPE by conservation conditions
and Ward identities [26].8 Thus, the commutator vanishes.

As we explain in section 4.1, this argument generalizes to establish vanishing of a
commutator of null-integrated operators whenever J1 +J2 > J0 + 1. It turns out that even
if local operators with signature (−1)J1+J2−1 and spin J1 + J2 − 1 do appear in the local
O1×O2 OPE, they do not survive in the light-ray OPE. This provides another (somewhat
circuitous) way to derive the commutativity conditions of [1]. An exception can occur
at vanishing transverse separation ~y12 = 0. In that case, the commutator may contain
contact terms, which can be computed by our light-ray OPE formula. As an example, in
section 6.1, we describe how to compute contact terms in a commutator of null-integrated
nonabelian currents (assuming J0 < 1), reproducing results of [10].

Vanishing of the commutator of ANEC operators means that the odd-signature terms
in (1.7) disappear, and the OPE of ANEC operators can be simplified to a sum of even-
signature light-ray operators.

Despite the fact that local spin-3 operators are not allowed in the T × T OPE, we can
try to compute their OPE data with the Lorentzian inversion formula. This is equivalent
to evaluating matrix elements of the right-hand side of (1.8). The result must be zero.
However, if we plug the OPE in a different channel (the “t-channel”) into the inversion
formula, we obtain sums that are not zero term by term. The conditions that these sums
vanish are precisely the “superconvergence” sum rules of [1]. As we explain in section 4.3,
in this language it is simple to argue that (suitably-smeared) superconvergence sum rules
have a convergent expansion in t-channel blocks.

1.2 Celestial blocks and event shapes

An important application of the light-ray OPE is to event shapes [2–6]. For example, to
compute a two-point event shape, we place a pair of null-integrated operators (“detectors”)
along future null infinity (right half of figure 1) and evaluate a matrix element in a momen-
tum eigenstate |O(p)〉. By applying the OPE (1.5), we obtain a sum of matrix elements of
individual light-ray operators O±i,J in momentum eigenstates |O(p)〉,

C∆i−1(~y12, ∂~y2)〈O(p)|O±i,J(~y2)|O(p)〉. (1.9)

The quantity (1.9) is fixed by conformal symmetry up to a constant. It plays a role for
event shapes analogous to the role that conformal blocks play in the usual OPE expansion

7This justifies an assumption made in [10].
8Similar arguments apply to the higher-transverse spin terms, which are derivatives of light-ray operators

with odd-integer J > 3 [25].

– 6 –



J
H
E
P
0
1
(
2
0
2
1
)
1
2
8

of local 4-point functions. It is proportional to a function of a single cross-ratio

ζ = 1− cos θ12
2 = ~y 2

12
(1 + ~y 2

1 )(1 + ~y 2
2 )
∈ [0, 1], (1.10)

where θ12 is the angle between detectors on the celestial sphere. We have also written ζ in
terms of the transverse positions ~y1, ~y2 in the conventions of [5]. In an event shape, ζ → 0
is the collinear limit, while ζ → 1 corresponds to back-to-back detectors. We call (1.9) a
“celestial block”.

In section 5, we compute celestial blocks by solving an appropriate conformal Casimir
equation. For example, when O is a scalar, the result is9

f∆1,∆2
∆ (ζ) = ζ

∆−∆1−∆2+1
2 2F1

(∆− 1 + ∆1 −∆2
2 ,

∆− 1−∆1 + ∆2
2 ,∆ + 1− d

2 , ζ
)
.

(1.11)

Note that f∆1,∆2
∆ becomes a pure power ζ

∆−∆1−∆2+1
2 in the collinear limit ζ → 0.

The light-ray OPE thus yields an expansion for two-point event shapes in celestial
blocks. For example, using (1.5) and superconformal symmetry [29, 30], an energy-energy
correlator (EEC) in N = 4 SYM can be written as

〈E(~n1)E(~n2)〉ψ(p) = (p0)2

8π2 FE(ζ),

FE(ζ) =
∑
i

p∆i

4π4Γ(∆i − 2)
Γ(∆i−1

2 )3Γ(3−∆i
2 )

f4,4
∆i

(ζ) + 1
4(2δ(ζ)− δ′(ζ)), (1.12)

where ∆i runs over dimensions of Regge trajectories at spin J = −1, and p∆i
are squared

OPE coefficients of operators in the 105 representation of SO(6) in the O20′ ×O20′ OPE,
analytically continued to spin J = −1. The state ψ(p) carries momentum p = (p0, 0, 0, 0)
and is created by acting with an O20′ operator on the vacuum. The angle between energy
detectors is cos θ = ~n1 · ~n2, and ζ is defined by (1.10). The coupling-independent contact
terms 1

4(2δ(ζ)− δ′(ζ)) are related to the contribution of protected operators to the EEC.
Thus, (1.12) expresses the EEC in N = 4 SYM in terms of OPE data. This formula

holds nonperturbatively in both the size of the gauge group Nc and the ’t Hooft coupling
λ. In section 7, we check it against previous results at weak and strong coupling and
find perfect agreement. Using known results for leading-twist OPE data in N = 4 SYM,
we use (1.12) to make new predictions for the small-angle limit of N = 4 energy-energy
correlators through 4 loops (NNNLO).

We conclude in section 8 with discussion and future directions. In appendix A we
summarize our notation, in appendix B we review general representations of orthogonal
groups, and in appendix C we clarify some points about analytic continuation in spin.
Appendices D, E and F contain details of the calculations described in the main text.

9Celestial blocks are an analytic continuation of the boundary conformal blocks studied in [27, 28].
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Note added. During the last stages of this work we learned about [31] and [32] which
have some overlap with our analysis. Let us briefly describe the results of [31] and [32] in
relation to our work.

In [31] the EEC in N = 4 SYM was analyzed using the Mellin space approach of [6].
We analyze N = 4 SYM in section 7. It was shown in [31] how the back-to-back ζ → 1
limit of the EEC is captured by the double light-cone limit of the correlation function
studied in [33]. It led to the derivation of (F.1) and identification of the coefficient function
H(a) with a certain spin-independent part of the three-point functions of large spin twist-2
operators. We do not analyze ζ → 1 limit of the EEC in a generic CFT in the present paper.
Similarly, a leading small angle asymptotic of the EEC in N = 4 SYM, the small ζ limit
of (7.97), was rederived in [31].10 Based on (7.97), the four-loop small angle asymptotic
was worked out in [31], we do it in section 7.7. This represents the leading small-angle
asymptotic of our complete, non-perturbative OPE formula (1.12).

In [32] a factorization formula describing the small ζ → 0 limit for the EEC was derived
in a generic massless QFT, conformal or asymptotically free, in terms of the time-like data
of the theory. The authors [32] applied their results to QCD, N = 1, and N = 4 SYM,
in particular they analyzed the effects of a non-zero β-function which goes beyond our
considerations in the present paper. In the conformal case of N = 4 SYM which is relevant
to our analysis, the leading small-angle asymptotic was derived in [32] through three loops.

In addition, both [31, 32] emphasized the importance of contact terms in the EEC
(we compute these using the OPE in section 6.2), the way to compute them from the
small angle and back-to-back limits, see appendix F, and their importance to the Ward
identities (7.17), (7.18). In particular, [31, 32] checked that the N = 4 SYM NLO result [34]
satisfies Ward identities, we do this in section 7.5.4. In [31] it was also checked that the
NNLO result [35] satisfies Ward identities, which we do in section 7.6.

2 Kinematics of light-ray operators and event shapes

We begin our analysis by laying out the kinematical properties of light-ray operators and
event shapes. We discuss symmetries of Lorentzian CFTs, and show how light-ray operators
and event shapes are constrained by them. Along the way, we review technical tools such
as the embedding space formalism and the light transform which are essential to the main
computations of this paper.

2.1 Null integrals and symmetries

Let us begin by examining the symmetries of a product of light-ray operators (1.1). This
analysis will already give a hint why the objects O±i,J appear in the OPE.

Firstly, consider a boost

(u, v, ~y) → (λ−1u, λv, ~y), λ ∈ R+. (2.1)

Each null-integrated operator
∫
dviOi;v···v has boost eigenvalue 1−Ji, where 1 comes from

the measure dvi and −Ji comes from the lowered v-indices. Thus, the product (1.1) has
10We reported (7.97) to G. Korchemsky in September 2018.
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boost eigenvalue (1− J1) + (1− J2) = 1− (J1 + J2 − 1). In other words, it transforms like
the null integral of an operator with spin J1 + J2 − 1 [5].

Another important symmetry is CRT, which is an anti-unitary symmetry taking

(u, v, ~y) → (−u,−v, ~y). (2.2)

Combining CRT with Hermitian conjugation, we obtain a linear map on the space of
operators. It is easy to check that(

(CRT)
∫ ∞
−∞

dvOi;v···v(0, v, ~y)(CRT)−1
)†

= (−1)Ji
∫ ∞
−∞

dvOi;v···v(0, v, ~y). (2.3)

We call the eigenvalue with respect to the combination of CRT and Hermitian conjugation
the “signature” of the operator. Applying CRT and Hermitian conjugation to (1.1), we
find[∫ ∞

−∞
dv1O1;v···v(0, v1, ~y1),

∫ ∞
−∞

dv2O2;v···v(0, v2, ~y2)
]

has signature (−1)J1+J2−1 (2.4){∫ ∞
−∞

dv1O1;v···v(0, v1, ~y1),
∫ ∞
−∞

dv2O2;v···v(0, v2, ~y2)
}

has signature (−1)J1+J2 , (2.5)

where [ , ] and { , } denote a commutator and anticommutator, respectively. The extra
minus sign in the commutator appears because Hermitian conjugation reverses operator
ordering.

It often happens (under circumstances described in [1] and discussed in section 4.1)
that the commutator (2.4) vanishes. For example, a commutator of ANEC operators on
the same null plane vanishes. For simplicity, suppose that the commutator vanishes. In this
case, the product (1.1) is the same as the anticommutator (2.5). Thus, (1.1) transforms
like the null-integral of an operator with spin J1 + J2 − 1 and signature (−1)J1+J2 . An
integrated local operator can never have these quantum numbers. This shows that the
OPE (1.3) cannot be computed by simply performing the usual OPE between O1 and O2
inside the integral.

2.2 Review: embedding formalism and the Lorentzian cylinder

It is instructive to re-derive the selection rule J = J1 + J2 − 1 in a different way, using
conformal transformation properties of null-integrated operators. These properties are
easiest to understand in the embedding formalism [19, 36–42].

In the embedding formalism, Minkowski space is realized as a subset of the projective
null cone in Rd,2. Let us choose coordinatesX = (X+, X−, Xµ) = (X+, X−, X0, · · · , Xd−1)
on Rd,2, with metric

X ·X = −X+X− − (X0)2 + (X1)2 + · · ·+ (Xd−1)2. (2.6)

The projective null cone is the locus X · X = 0, modulo positive rescalings X ∼ λX

(λ ∈ R+). This space is topologically S1 × Sd−1. Lorentzian CFTs live on the universal
cover of the projective null cone M̃d, which is topologically R× Sd−1 — sometimes called
the Lorentzian cylinder. The conformal group S̃O(d, 2) is the universal cover of SO(d, 2).
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p

T p

i0 i0

i+

i−

Md

M̃d

Figure 3. Minkowski patch Md (blue, shaded) inside the Lorentzian cylinder M̃d in the case of
2 dimensions. Spacelike infinity ofMd is marked by i0 and future/past infinity are marked by i±.
The dashed lines should be identified. The point T p is obtained from p by shooting light-rays in
all possible future directions (dotted lines) and finding the first point where they converge.

Minkowski space corresponds to the locus X = (X+, X−, Xµ) = (1, x2, xµ) ∈ Rd,2,
where x ∈ Rd−1,1. Spatial infinity i0 is obtained by taking x→∞ in a spacelike direction
and rescaling X so it remains finite, yielding Xi0 = (0, 1, 0). Timelike infinity i± corre-
sponds to Xi± = (0,−1, 0). (Note that future and past infinity i± correspond to the same
embedding-space vector, but they are distinguished on the universal cover of the projec-
tive null cone.) Finally, null infinity corresponds to the points XI±(σ, z) = (0,−2σ, z),
z = (±1, ~n), where ~n ∈ Sd−2 is a point on the celestial sphere and σ is retarded time.

The Lorentzian cylinder M̃d is tiled by Minkowski “patches” (figure 3). To every
point p ∈ M̃d, there is an associated point T p obtained by shooting light rays in all
future directions from p and finding the point where they converge in the next patch. In
embedding coordinates, T takes X → −X. For example, T takes spatial infinity i0 to
future infinity i+. We sometimes write p+ ≡ T p and p− ≡ T −1p.

To describe operators with spin, it is helpful to introduce index-free notation. Given
a traceless symmetric tensor Oµ1···µJ (x), we can contract its indices with a future-pointing
null polarization vector zµ to form

O(x, z) ≡ Oµ1···µJ (x)zµ1 · · · zµJ . (2.7)

When Oµ1···µJ (x) is an integer-spin local operator, O(x, z) is a homogeneous polynomial
of degree J .

In the embedding formalism, the operator O(x, z) gets lifted to a homogeneous function
O(X,Z) of coordinates X,Z ∈ Rd,2, subject to the relations X2 = X · Z = Z2 = 0 [42]. It
is defined by

O(X,Z) = (X+)−∆O
(
x = X

X+ , z = Z − Z+

X+X

)
, (2.8)
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where ∆ is the dimension of O. The advantage of O(X,Z) is that conformal transforma-
tions act linearly on the coordinates X,Z. Note that O(X,Z) has gauge invariance

O(X,Z) = O(X,Z + βX), (2.9)

and homogeneity

O(λX,αZ) = λ−∆αJO(X,Z). (2.10)

The operator O(x, z) on Rd−1,1 can be recovered by the dictionary

O(x, z) = O
(
X = (1, x2, x), Z = (0, 2x · z, z)

)
. (2.11)

Index-free notation and the procedure of lifting operators to the embedding space
can be generalized to arbitrary representations of the Lorentz group. We describe this
construction in appendix B.

2.3 Review: the light transform

Null-integrated operators like those in (1.1) can be understood in terms of a conformally-
invariant integral transform called the “light-transform” [23]. In embedding-space language,
the light-transform is defined by

L[O](X,Z) ≡
∫ ∞
−∞

dαO(Z − αX,−X). (2.12)

This transform is invariant under S̃O(d, 2) because (2.12) only depends on the embedding-
space vectors X,Z. It respects the gauge redundancy (2.9) because a shift Z → Z+βX can
be compensated by shifting α→ α+ β in the integral. The initial point of the integration
contour in (2.12) is X, since Z − (−∞)X is projectively equivalent to X. Furthermore, if
O(X,Z) has homogeneity (2.10), then its light-transform has homogeneity

L[O](λX,αZ) = λ−(1−J)α1−∆L[O](X,Z). (2.13)

Thus, L[O] transforms like a primary at X with dimension 1− J and spin 1−∆:

L : (∆, J)→ (1− J, 1−∆). (2.14)

Note that the light-transform naturally gives rise to operators with non-integer spin.
In Minkowski coordinates, L becomes

L[O](x, z) =
∫ ∞
−∞

dαO(Z − αX,−X)
∣∣∣∣ X=(1,x2,x)
Z=(0,2x·z,z)

=
∫ ∞
−∞

dα (−α)−∆−JO
(
X − Z

α
,Z

)∣∣∣∣ X=(1,x2,x)
Z=(0,2x·z,z)

=
∫ ∞
−∞

dα (−α)−∆−JO
(
x− z

α
, z

)
. (2.15)
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In the second line above, we used gauge invariance (2.9) to shift −X → −X−(Z−αX)/α =
−Z/α and then homogeneity (2.10) to pull out factors of (−α). In the third line, we
used (2.11). The integration contour in (2.15) starts at x when α = −∞ and reaches the
boundary of Minkowski space when α = 0. The correct prescription there is to continue
the contour into the next Poincare patch to the point T x ∈ M̃d. The expression (2.15)
makes it clear that L[O] converges whenever ∆ + J > 1, as long as there are no other
operators at x or T x.11 Note that L[O](x, z) is not a polynomial in z and thus cannot be
written in terms of an underlying tensor with 1−∆ indices.

For any local operator O satisfying ∆+J > 1, the light-transform L[O] annihilates the
vacuum |Ω〉. The reason is that if L[O]|Ω〉 did not vanish, then it would be a primary state
with spin 1 − ∆ /∈ Z≥0, which is not allowed in a unitary CFT [43]. One can also verify
that L[O]|Ω〉 = 0 by deforming the α contour in the complex plane inside a Wightman
correlation function [23].

Let us now return to the boost selection rule J = J1 + J2 − 1 from section 2.1. To
recover the setup of that section, we can set

X0 = −(0, 0, 1
2 ,

1
2 ,
~0) ∈ I −,

Z0 = (1, ~y2, 0, 0, ~y), (2.16)

where ~0, ~y ∈ Rd−2. Note that these satisfy the conditions X2
0 = X0 · Z0 = Z2

0 = 0. The
light-transform becomes

L[O](X0, Z0) =
∫ ∞
−∞

dαOv···v(u = 0, v = α, ~y), (2.17)

Thus, we should think of
∫
dvOv···v as a primary operator associated to the point X0 at

past null infinity.
Consider now a product of null-integrated operators

L[O1](X0, Z0)L[O2](X0, Z
′
0) =

∫ ∞
−∞

dv1O1;v···v(0, v1, ~y1)
∫ ∞
−∞

dv2O2;v···v(0, v2, ~y2). (2.18)

This is a product of primaries associated to the same point X0 at past null infinity (with
different polarization vectors Z0, Z

′
0). Thus, the dimension of the product (assuming it is

well-defined) is the sum of the dimensions: (1− J1) + (1− J2) = 1− (J1 + J2 − 1).12 This
11More precisely, L[O] converges as an operator-valued tempered distribution when ∆ +J > 1. To define

L[O](x, z) as a distribution, we must show how to smear it against a test function,
∫
ddxf(x)L[O](x, z).

We do so by integrating the light-transform by parts
∫
ddx(T −1L)[f ](x, z)O(x, z). This makes it clear

that L[O] converges whenever L[f ] converges for any test function f . This again leads to the condition
∆ + J > 1.

12Ordinarily in CFT, we do not consider a product of operators at coincident points. Instead, we place
them at separated points and study the singularity as they approach each other, for example

φ1(x)φ2(0) ∼
∑
k

x∆k−∆1−∆2φk(0). (2.19)

The dimensionful factor x∆k−∆1−∆2 allows the scaling dimension ∆k to be different from ∆1+∆2. However,
if the coincident limit x→ 0 is nonsingular, the only operators that survive the limit must obey the selection
rule ∆k = ∆1 + ∆2.
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I +

I −

i+

i−

i0

Figure 4. A one-point event shape [44]. The detector O = OEHT is integrated along a null line
(blue) along future null infinity, starting at spatial infinity i0 and ending at future timelike infinity
i+. (Note that the circle at spatial infinity is really a single point.) The red wavy lines indicate
energy propagating from the interior of Minkowski space out to null infinity, created by the insertion
of the source φ1(p).

is the same as the dimension of the light-transform of an operator with spin J1 + J2 − 1.
Hence, we have recovered the selection rule from section 2.1.

The relationship between this argument and the one in section 2.1 is that the dilatation
generator that measures dimension around the point X0 is the same as the boost generator
discussed in section 2.1.

An important observation is that the product (2.18) transforms like a primary operator
at the point X0. This is because both factors L[O1](X0, Z0) and L[O2](X0, Z

′
0) are killed

by the special conformal generators that fix X0. (Alternatively, we can simply observe
that (2.18) is a homogeneous function of X0 on the null cone in the embedding space,
which again implies that it transforms like a primary.) Thus, when we consider the OPE
expansion of (2.18) in the limit Z0 → Z ′0, the only terms appearing will be other primary
operators at the point X0.

2.4 Review: event shapes and the celestial sphere

The symmetries of light-ray operators on a null plane are easiest to understand when
we take the null plane to be I +. This corresponds to choosing the embedding-space
coordinates

X∞ = (0, 1, 0),
Z∞(z) = (0, 0, z), (2.20)

where z ∈ Rd−1,1 is a future-pointing null vector. The integration contour for the light-
transform now lies inside I +, running from i0 to i+ along the z direction (figure 4).
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The operator L[O](∞, z) ≡ L[O](X∞, Z∞(z)) transforms like a primary inserted at
spatial infinity, which means it is killed by momentum generators

[Pµ,L[O](∞, z)] = 0. (2.21)

Consequently, its matrix elements with other operators are translationally-invariant, for
example

〈Ω|φ2(x2)L[O](∞, z)φ1(x1)|Ω〉 = f(x1 − x2). (2.22)

(Throughout this work, we use φ to denote scalar operators and O to denote operators in
general Lorentz representations.) Thus, it is natural to go to momentum space,

〈φ2(q)|L[O](∞, z)|φ1(p)〉 = (2π)dδd(p− q)f̃(p), (2.23)

where

|φi(p)〉 ≡
∫
ddx eip·xφi(x)|Ω〉. (2.24)

Note that |φi(p)〉 vanishes unless p is inside the forward lightcone p > 0, by positivity of
energy.13 We often abuse notation by writing

〈φ2(p)|L[O](∞, z)|φ1(p)〉 = f̃(p), (2.25)

where it is understood that we have stripped off the momentum-conserving factor
(2π)dδ(d)(p+ q).

More generally, we can consider a product of light-transforms along I +, inserted
between momentum eigenstates

〈φ2(p)|L[O1](∞, z1) · · ·L[On](∞, zn)|φ1(p)〉. (2.26)

Following [45], we call such matrix elements “event shapes”. This terminology comes from
interpreting (2.26) as the expectation value of a product of “detectors” O1, · · · ,On in a
“source” state |φ1(p)〉 and “sink” state 〈φ2(p)|. The detectors sit at points on the celestial
sphere and are integrated over retarded time to capture signals that propagate to null
infinity.

In addition to being translationally-invariant, L[O](∞, z) transforms in a simple way
under d-dimensional Lorentz transformations SO(d− 1, 1): they act linearly on the polar-
ization vector z. The Lorentz group in d-dimensions is the same as the Euclidean conformal
group on the (d−2)-dimensional celestial sphere. Indeed, we can think of z ∈ Rd−1,1 as an
embedding-space coordinate for the celestial sphere Sd−2. Furthermore, L[O](∞, z) is ho-
mogeneous of degree 1−∆ in z, due to (2.13). Thus, L[O](∞, z) transforms like a primary
operator on the celestial sphere with dimension δ = ∆− 1.

13It is sometimes hard to keep track of signs in Lorentzian signature, so let us explain this point. Ignoring
position-dependence for simplicity, we have φ(t) = eiHtφ(0)e−iHt. The minus sign is in the right-hand
exponential e−iHt because that operator generates Schrodinger time-evolution. Acting on the vacuum, we
obtain eiHtφ(0)|Ω〉, which is a sum of positive-imaginary exponentials eiEt. To get a nonzero result under
the Fourier transform, we must multiply by e−iEt, which is contained in the factor eip·x.
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In the previous coordinates (2.16), the group SO(d − 1, 1) acted by conformal trans-
formations on the transverse direction ~y. The coordinates ~y are stereographic coordinates
on Sd−2. Thus, we have proven the claim from section 2.1 that

∫
dvOv···v transforms as a

primary in the transverse space.

The event shape (2.26) is similar to a correlator of operators with dimensions δi = ∆i−1
in a Euclidean (d−2)-dimensional CFT. However, the presence of a timelike momentum p

breaks the Lorentz group further to SO(d−1). In the language of (d−2)-dimensional CFT,
this is similar to the symmetry-breaking pattern that occurs in the presence of a spherical
codimension-1 boundary or defect [27, 28]. This fact will play an important role in section 5.
We can choose a center-of-mass frame p = (p0, 0, . . . , 0) and write zi = (1, ~ni) with ~ni ∈
Sd−2. The dependence on p0 is fixed by dimensional analysis, so we can additionally set
p0 = 1. The event shape then becomes a nontrivial function of dot-products ~ni · ~nj .

In addition to respecting symmetries, event shapes are useful for studying positivity
conditions. For example, consider the average null energy operator E = 2L[T ], where Tµν
is the stress tensor. E is positive-semidefinite [5, 7, 12]. To test this, we could compute the
expectation value of E in several different states (primaries and descendents at different
points, etc.) and then aggregate the resulting positivity conditions. However, it is sufficient
to study event shapes 〈Oi(p)|E|Oj(p)〉 for the following reason. The Hilbert space of a CFT
is densely spanned by states of the form

∑
i

∫
ddxfi(x)Oi(x)|Ω〉, (2.27)

where Oi are primary operators and fi(x) are test functions. Positivity of E is thus equiv-
alent to the statement that for any collection of test functions fi(x),

∑
i,j

∫
ddx1d

dx2f
∗
i (x1)fj(x2)Kij(x1 − x2) ≥ 0, (2.28)

where

Kij(x1 − x2) ≡ 〈Ω|Oi(x1)E(∞, z)Oj(x2)|Ω〉. (2.29)

This is the same as saying that Kij(x1 − x2) is a positive-semidefinite integral kernel.
To determine whether a kernel is positive-semidefinite, we should compute its eigenvalues
and check that they are positive. Because Kij(x1 − x2) is translation-invariant, it can be
partially diagonalized by going to Fourier space. Thus, E is positive-semidefinite if and
only if its one-point event shapes are positive-semidefinite.
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2

2−

1

1−

3

3+

Figure 5. The causal relationship between points 2 > 3 > 1− used in (2.32). The lightcone of 2 is
drawn in gray and the lightcone of 1 in purple.

2.4.1 1-point event shapes

As an example, let us compute a one-point event shape 〈φ2|L[O]|φ1〉, where O has dimen-
sion ∆ and spin J , and φ1, φ2 are scalars. We start from the Wightman function14

〈0|φ2(x2)O(x3, z3)φ1(x1)|0〉

= (2V3,12)J

(x2
12 + iεx0

21)
∆1+∆2−∆−J

2 (x2
13 + iεx0

31)
∆1−∆2+∆+J

2 (x2
32 + iεx0

23)
∆2−∆1+∆+J

2

, (2.30)

where

V3,12 ≡
z3 · x13x

2
23 − z3 · x23x

2
13

x2
12

. (2.31)

In (2.30), we have written the iε prescription appropriate for the given operator ordering.
This is obtained by introducing small imaginary parts x0

i → x0
i − iεi with ε2 > ε3 > ε1

in the same order as the operators appearing in the Wightman function. We often omit
explicit iε’s, restoring them only when necessary during a computation. In these cases, the
iε prescription should be inferred from the ordering of the operators in the correlator.

The light-transform of (2.30) is [23]

〈0|φ2(x2)L[O](x3, z3)φ1(x1)|0〉

= L(φ1φ2[O])(2V3,12)1−∆

(x2
12)

∆1+∆2−(1−J)−(1−∆)
2 (x2

13)
∆1−∆2+(1−J)+(1−∆)

2 (−x2
23)

∆2−∆1+(1−J)+(1−∆)
2

(2 > 3 > 1−),

(2.32)
14We use the same conventions for two- and three-point structures as [23]. These include some extra

factors of 2J that ensure that three-point structures glue together into a conventionally-normalized confor-
mal block. These conventions are convenient when discussing inversion formulas. We also use correlators
〈0| · · · |0〉 in the fictitious state |0〉 to indicate functions whose form is fixed by conformal invariance (as
opposed to correlators in a physical theory). See appendix A for a summary of our notation.
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where

L(φ1φ2[O]) ≡ −2πi Γ(∆ + J − 1)
Γ(∆+∆1−∆2+J

2 )Γ(∆−∆1+∆2+J
2 )

. (2.33)

This indeed has the form of a conformally-invariant three-point function with an operator
with dimension 1 − J and spin 1 −∆. The notation i > j means “xi is inside the future
lightcone of xj”. Below, we will also use the notation i ≈ j to indicate that xi is spacelike
from xj . We have written (2.32) in the kinematics 2 > 3 > 1− (figure 5), where all the
quantities in parentheses are positive. This time, we have left the iε prescription implicit.

We should now take x3 to spatial infinity. Keeping track of iε prescriptions, we find

〈0|φ2(x2)L[O](∞, z)φ1(x1)|0〉 = L(φ1φ2[O]) eiπ∆2(−2z · x12 + iε)1−∆

(−x2
12 + iεx0

12)
∆1+∆2−(1−J)+(1−∆)

2

. (2.34)

This is indeed translation-invariant. It is straightforward to compute the Fourier transform∫
ddxeipx

(−2x · z + iε)1−∆

(−x2 + iεx0)
∆1+∆2−(1−J)+(1−∆)

2

= F̂∆1+∆2−(1−J),1−∆(−2p · z)1−∆(−p2)
∆1+∆2−(1−J)−(1−∆)−d

2 θ(p), (2.35)

where

F̂∆,J ≡
e−iπ

∆
2 2d+1−∆π

d+2
2

Γ(∆+J
2 )Γ(∆+2−d−J

2 )
. (2.36)

The theta function θ(p) ≡ θ(−p2)θ(p0) restricts p to lie in the forward lightcone. Overall,
the one-point event shape is given by∫

ddx eip·x〈0|φ2(0)L[O](∞, z)φ1(x)|0〉

= 2d−∆1−∆2−J+3π
d
2 +2eiπ

∆2−∆1−J
2 Γ(J + ∆− 1)(−2p · z)1−∆(−p2)

∆1+∆2+∆+J−2−d
2 θ(p)

Γ(J+∆+∆1−∆2
2 )Γ(J+∆−∆1+∆2

2 )Γ(J−∆+∆1+∆2
2 )Γ(J+∆+∆1+∆2−d

2 )
.

(2.37)

Note that this is consistent with dimensional analysis in p, homogeneity in z, and Lorentz
invariance. In [1] we describe an algorithm for computing more general one-point event
shapes.

2.4.2 2-point event shapes

A two-point event shape is constrained by dimensional analysis, homogeneity, and Lorentz
invariance to take the form

〈φ4(p)|L[O1](∞, z1)L[O2](∞, z2)|φ3(p)〉 = (−p2)
∆1+∆2+∆3+∆4−4−d

2 θ(p)
(−2z1 · p)∆1−1(−2z2 · p)∆2−1GO1O2(ζ), (2.38)
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where GO1O2(ζ) is a function of the cross-ratio

ζ ≡ (−2z1 · z2)(−p2)
(−2p · z1)(−2p · z2) = 1− ~n1 · ~n2

2 . (2.39)

ζ takes values between 0 and 1. In the last step of (2.39) we evaluated ζ in a center-of-
mass frame where p = (p0,~0) and zi = (1, ~ni). The limit ζ → 0 corresponds to the detector
directions z1 and z2 becoming parallel, which is described by the light-ray-light-ray OPE
discussed in section 3. The limit ζ → 1 corresponds to the detectors becoming back-to-back
in the frame of p.

3 The light-ray-light-ray OPE

This section constitutes the technical heart of the paper in which we derive the light-ray
OPE. The result is an expansion for

L[O1](x, z1)L[O2](x, z2) (3.1)

as z1 → z2. Conceptually, the derivation proceeds with the following logic. The prod-
uct (3.1) is a primary in the sense that it is annihilated by Kµ when x = 0, but it does not
transform in an irreducible representation of the Lorentz group. One begins by decompos-
ing this product into partial waves of the Lorentz group by integrating against a suitable
kernel in z1, z2. The product (3.1) can be recovered from these partial waves. The problem
is thus reduced to finding a relation between these partial waves and light-ray operators.
This in turn is achieved by computing the partial waves for the matrix elements

〈Ω|O4(x4)L[O1](x, z1)L[O2](x, z2)O3(x3)|Ω〉, (3.2)

and observing that the resulting formula is exactly equivalent to a special case of the
Lorentzian inversion formula [23, 24]. Since the Lorentzian inversion formula computes
matrix elements of light-ray operators, this establishes the desired relationship.

3.1 Summary of computation

Since the details of the full computation are rather lengthy, here we summarize the key
steps before proceeding with its entirety. Our summary will be schematic. We omit details
and illustrate calculations using diagrams (which do not capture some subtleties).

The first step is to decompose (3.1) into irreducible representations of the conformal
group. As discussed in section 2.3, (3.1) transforms like a primary at the point x with
scaling dimension (1−J1) + (1−J2). However, it does not transform irreducibly under the
Lorentz group SO(d− 1, 1) that fixes x. The appropriate set of irreducible representations
are principal series representations labeled by δ ∈ d−2

2 +iR. To obtain such a representation,
we smear the polarizations z1, z2 against a kernel tδ15

Wδ(x, z0) ∝
∫
Dz1Dz2L[O1](x, z1)L[O2](x, z2)tδ(z1, z2, z0)

=
∫
dx1dx2Dz1Dz2Lδ(x1, z1, x2, z2;x, z0)O1(x1)O2(x2), (3.3)

15The actual kernel can also depend on a finite-dimensional representation λ of SO(d−2), but we suppress
that detail here for simplicity.
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where Dz is a measure on the projective null cone defined in (3.37). We write tδ explicitly
in (3.58).

On the second line of (3.3), we implicitly defined a kernel Lδ that combines the light
transforms with smearing in z1, z2. We can represent Lδ pictorially by

Lδ

1

2

OL =

1

2

OL

L

L

tδ
. (3.4)

The incoming arrows labeled 1 and 2 indicate that Lδ acts on the representations of O1,O2.
The outgoing arrow labeled OL indicates that Lδ produces an object transforming with
the quantum numbers of L[O], i.e. (1−J, 1−∆) where O has dimension and spin (∆, J) =
(δ + 1, J1 + J2 − 1). On the right-hand side, the boxes labeled L take the light-transform
of O1 and O2. Then, we split each representation into two lines; the solid blue line denotes
the Minkowski position xi of the representation, and the dashed red line denotes the null
polarization zi — equivalently, the position on the celestial sphere. The reason for this
split is to accommodate for the next two operations, which act only on either Minkowski
or celestial coordinates. The blue triangle represents making the points xi coincident. The
red three-point kernel represents smearing polarization vectors with tδ.

The next step is to compute matrix elements of Wδ. Because a light-transformed
operator kills the vacuum, we have

〈Ω|O4WδO3|Ω〉 =
∫
dx1dx2Dz1Dz2Lδ〈Ω|O4O1O2O3|Ω〉

=
∫
dx1dx2Dz1Dz2Lδ〈Ω|[O4,O1][O2,O3]|Ω〉. (3.5)

The appearance of the double commutator suggests that we could relate the matrix ele-
ments of Wδ to the Lorentzian inversion formula. To see this relation, first note that by
conformal invariance we have

〈Ω|O4WδO3|Ω〉 = Ab(δ)〈0|O4L[O]O3|0〉(b) , (3.6)

where 〈0|O4OO3|0〉(b) are conformally-invariant three-point structures for the given repre-
sentations, and in (3.6) we have their light-transforms. The different structures have a label
b, and summation over b is implicit. Diagrammatically, we can express (3.5) and (3.6) as

OL
1

2

4

3

LδdDisc[g] = Ab(δ)×
OL

4

3

b L
O

, (3.7)

where “dDisc” indicates the double-commutator.
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The function Ab(δ) contains the matrix elements we are interested in. To extract it,
we pair with a dual structure (the pairing will be defined in (3.45))

Ab(δ) =
(
〈Ω|O4WδO3|Ω〉, (〈0|O4L[O]O3|0〉(b))−1

)
. (3.8)

The dual structure (〈0|O4L[O]O3|0〉(a))−1 is the one that satisfies


OL

4

3

b L
O

,

4

3

L
O

a
OL

−1


= δba . (3.9)

We denote the operation of inverting a structure by an enclosing green circle,
−1

, sug-
gestively labeled by a green inverse (−1). In pictorial language, (3.8) is

Ab(δ) =
OL

1

2

4

3

LδdDisc[g] b

−1

L . (3.10)

This is a four-point pairing between the double-commutator and a particular conformal
block, as can be seen by cutting along the lines of the operators 1, 2, 3, and 4:

Ab(δ) =



4

3

dDisc[g]

1

2

,
OL

1

2

4

3

b

−1

LLδ


·

(3.11)

– 20 –



J
H
E
P
0
1
(
2
0
2
1
)
1
2
8

The generalized Lorentzian inversion formula [23] also has this form,

C+
ab(∆, J) + C−ab(∆, J)

=



4

3

dDisc[g]

1

2

,

1

2

4

3

b

−1

La

−1

L ×
OL


.

(3.12)

Here, the cross represents the formation of a conformal block from a pair of three-point
structures by summing over descendent operators and dividing by their norms. The norms
are computed using a two-point structure, which in this case is 〈L[O]L[O]〉−1, defined
in (3.46).

Therefore, we can relate Ab(δ) to C±ab(δ+ 1, J1 + J2− 1) by relating the two conformal
blocks in (3.11) and (3.12),

OL

1

2

4

3

b

−1

LLδ = γa

1

2

4

3

b

−1

La

−1

L ×
OL

.

(3.13)

Both conformal blocks are obtained by gluing three-point structures. The structure ap-
pearing on the right is the same for both blocks, so we only need to relate the structures
on the left,

1

2

Lδ
OL

= γa

1

2

a

−1

L
OL

. (3.14)

The inverse of the cross on the right-hand side of (3.13) is integration against a two-
point structure.16 Here, the two-point structure is indicated by a dot on the left-hand
side of (3.14). The operation of integrating against a two-point structure is a Lorentzian
shadow transform, which changes the quantum numbers from (1−J, 1−∆) (labeled as OL

with an outgoing arrow) to (J + d− 1,∆− d+ 1) (labeled as OL with an ingoing arrow).
16The correct two-point structure is actually 〈L[O]L[O]〉−1, but this detail is not reflected in the diagrams

for the sake of simplicity.
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Thus, we can compute γa by pairing both sides of (3.14) with the structure
〈O4L[O]O3〉(a),

γa =

1

2

Lδa

OL
L =


1

2

Lδa
OL

L
OL

,
OLOL

 .

(3.15)

Here, we rearranged our diagram into a pairing of two-point structures. Finally, we must
compute the bubble diagram on the right-hand side. After substituting the definition
of Lδ (3.4), we obtain an expression involving a triple light transform of the three-point
structure a,

1

2

a
OL

L
OL tδ

L
+

L −
. (3.16)

The superscripts L± are related to a subtlety not captured in the diagrams. The double-
discontinuity produces additional θ-functions in the expression for the block on the right-
hand side of (3.11). On the left-hand side of (3.14), these theta functions modify the kernel
Lδ so that the light-transforms become “half light-transforms” L±, i.e. null integrals over
semi-infinite lines. These are what appear in (3.16).17

It turns out that the result of (3.16), and therefore also γa, is remarkably simple. In
section 3.4.4, we conjecture a formula for it in the case of an arbitrary three-point structure
〈0|O1OO2|0〉(a) of operators in arbitrary representations. Putting everything together, we
obtain

Ab(δ) = γa(C+
ab(δ + 1, J1 + J2 − 1) + C−ab(δ + 1, J1 + J2 − 1)), (3.17)

which can be written

〈Ω|O4WδO3|Ω〉 = −γa〈Ω|O4
(
O+
δ+1,J1+J2−1(a) + O−δ+1,J1+J2−1(a)

)
O3|Ω〉. (3.18)

This argument needs to be modified in a subtle way for the “higher transverse spin” terms
in the light-ray OPE. We explain briefly how this modification arises below, and give more

17If we took three full light-transforms of a time-ordered three-point structure in an appropriate causal
configuration, we would get two pieces, one of which would be the object appearing in (3.16), and the other
would differ by a permutation.
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detail in [25]. Equation (3.18) expresses matrix elements of the smeared product Wδ in
terms of matrix elements of light-ray operators. The smearing can be undone by suitably
integrating over δ,

〈Ω|O4L[O1](x, z1)L[O2](x, z2)O3|Ω〉 =
∫
dδ Cδ(z1, z2, ∂z)〈Ω|O4Wδ(x, z)O3|Ω〉

+ higher transverse spin, (3.19)

where Cδ is a differential operator. Lifting this to an operator equation, we have

L[O1](x, z1)L[O2](x, z2)

= −
∫
dδ γaCδ(z1, z2, ∂z)

(
O+
δ+1,J1+J2−1(a)(x, z) + O−δ+1,J1+J2−1(a)(x, z)

)
,

+ higher transverse spin. (3.20)

Finally, the δ-contour can be closed to the right, picking up a sum over light-ray operators,
as discussed in section 5.2.

3.2 Review: light-ray operators and the Lorentzian inversion formula

Let us now proceed with the detailed computation. The objects that will ultimately ap-
pear in the OPE expansion of L[O1](x, z1)L[O2](x, z2) are light-ray operators [23]. In this
section, we collect some facts about these operators that will be needed below.

For simplicity, consider first the case where O1 = φ1 and O2 = φ2 are scalars. Light-
ray operators are defined by starting with a bi-local object that transforms as a primary
under the conformal group S̃O(d, 2),

O±∆,J(x, z) =
∫
ddx1d

dx2K
±
∆,J(x1, x2, x, z)φ1(x1)φ2(x2). (3.21)

The object O±∆,J has dimension 1 − J and spin 1 − ∆, which are the quantum numbers
of the light-transform of an operator with dimension ∆ and spin J . The ± sign is the
signature, which is the eigenvalue under a combination of CRT and Hermitian conjugation,
as discussed in section 2.1.

The object O±∆,J is meromorphic in ∆ and J and has poles of the form

O±∆,J(x, z) ∼ 1
∆−∆±i (J)

O±i,J(x, z). (3.22)

Its residues O±i,J are light-ray operators. Light-ray operators are analytic continuations in
spin of light-transforms of local operators. When J is a nonnegative integer, we have

O(−1)J
i,J = f12Oi,JL[Oi,J ], J ∈ Z≥0. (3.23)

Here, Oi,J is a spin-J operator appearing in the φ1 × φ2 OPE with coefficient f12Oi,J , and
i labels different Regge trajectories. Note that the even-signature light-ray operators O+

i,J

are analytic continuations in J of light-transformed even-spin operators, while O−i,J are
analytic continuations in J of light-transformed odd-spin operators.
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Matrix elements of light-ray operators can be computed via a Lorentzian inversion
formula. Let φ3, φ4 be primary scalars for simplicity. A time-ordered correlator involving
the object O±∆,J is given by

〈φ4O±∆,J(x, z)φ3〉Ω = −C±(∆, J)〈0|φ4L[O](x, z)φ3|0〉. (3.24)

We use the shorthand notation that φi is at position xi unless otherwise specified. We also
use the notation from [23] where correlators in the state |Ω〉 are physical, while correlators
in the state |0〉 are conformally-invariant structures for the given representations. The
structure on the right-hand side of (3.24) is the light-transform of the standard three-point
structure for two scalars and a spin-J operator, analytically continued in J ,

〈0|φ4L[O](x0, z0)φ3|0〉

= L(φ3φ4[O]) (2V0,34)1−∆

(x2
34)

∆3+∆4−(1−J)−(1−∆)
2 (x2

30)
∆3+(1−J)−∆4+(1−∆)

2 (−x2
40)

∆4+(1−J)−∆3+(1−∆)
2

.
(3.25)

The coefficient L(φ3φ4[O]) is given in (2.33).
In (3.24), the time-ordering acts on φ1, φ2 inside O±∆,J . Thus the object O±∆,J is not

really an operator. However, its singularities as a function of ∆ come only from the region
where φ4 acts on the future vacuum and φ3 acts on the past vacuum, so upon taking
residues, we obtain a genuine operator

〈Ω|φ4O±i,J(x, z)φ3|Ω〉 = Res
∆=∆±i (J)

〈φ4O±∆,J(x, z)φ3〉Ω

= − Res
∆=∆±i (J)

C±(∆, J)〈0|φ4L[O](x, z)φ3|0〉. (3.26)

The coefficient function C±(∆, J) is given by Caron-Huot’s formula [24]

C±(∆, J) = κ∆+J
4

[∫ 1

0

∫ 1

0

dzdz

z2z2

∣∣∣∣z − zzz

∣∣∣∣d−2
dDisct[g(z, z)]G∆̃i

J+d−1,∆−d+1(z, z)

±
∫ 0

−∞

∫ 0

−∞

dzdz

z2z2

∣∣∣∣z − zzz

∣∣∣∣d−2
dDiscu[g(z, z)]Ĝ∆̃i

J+d−1,∆−d+1(z, z)
]
,

(3.27)

where

κ∆+J =
Γ(∆+J+∆1−∆2

2 )Γ(∆+J−∆1+∆2
2 )Γ(∆+J+∆3−∆4

2 )Γ(∆+J−∆3+∆4
2 )

2π2Γ(∆ + J)Γ(∆ + J − 1) . (3.28)

Here, we have defined a stripped four-point function g(z, z), which is a function of conformal
cross-ratios18

〈φ1φ2φ3φ4〉Ω = T∆i(xi)g(z, z)

T∆i(xi) ≡
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14
x2

24

)∆2−∆1
2

(
x2

14
x2

13

)∆3−∆4
2

. (3.29)

18We use the letter z both for future-pointing null vectors and for conformal cross-ratios. We hope that
this does not cause confusion.
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The t-channel double-discontinuity dDisct is defined by

−2dDisct[g](z,z)≡ 〈Ω|[φ4,φ1][φ2,φ3]|Ω〉
|T∆i(xi)|

=−2cos(πφ)g(z,z)+eiπφg	(z,z)+e−iπφg�(z,z),

φ= ∆2−∆1+∆3−∆4
2 , (3.30)

where g	 or g� indicates we should take z around 1 in the direction shown, leaving z held
fixed. Similarly,

−2dDiscu[g](z,z)≡ 〈Ω|[φ4,φ2][φ1,φ3]|Ω〉
|T∆i(xi)|

=−2cos
(
πφ′

)
g(z,z)+eiπφ′g�(z,z)+e−iπφ′g	(z,z),

φ′= ∆2−∆1+∆4−∆3
2 . (3.31)

where now g	 or g� indicates we should take z around −∞ in the direction shown, leaving
z held fixed.

Finally, G∆̃i
∆,J(z, z) denotes a conformal block for external scalars with dimensions

∆̃i ≡ d−∆i, exchanging an operator with dimension ∆ and spin J . In our conventions, it
behaves as z

∆−J
2 z

∆+J
2 for positive cross-ratios satisfying z � z � 1. Similarly, Ĝ∆̃i

∆,J(z, z) is
a solution to the Casimir equation that behaves like (−z)

∆−J
2 (−z)

∆+J
2 for negative cross-

ratios satisfying |z| � |z| � 1. In Caron-Huot’s formula (3.27), G and Ĝ appear with
dimension and spin swapped according to (∆, J)→ (J + d− 1,∆− d+ 1).

3.2.1 More general representations

Before generalizing to non-scalar O1,O2, we must establish some notation for conformal
representations. A primary operator O is labeled by a dimension ∆ and a representation
ρ of SO(d − 1, 1), which we can think of as a list of weights under the Cartan subalgebra
of SO(d− 1, 1).

When O is local, ρ is finite-dimensional. In this case, we define shadow and Hermitian
conjugate representations to have weights

Õ : (d−∆, ρR),
O† : (∆, (ρR)∗), (3.32)

where ρR denotes the reflection of ρ and (ρR)∗ is the dual of ρR. The conjugate shadow
representation Õ† has weights

Õ† : (d−∆, ρ∗), (3.33)

and thus admits a conformally-invariant pairing with O:∫
ddxO(x)Õ†(x), (3.34)

where the SO(d− 1, 1) indices of O(x) and Õ†(x) are implicitly contracted.
For continuous-spin operators, ρ is no longer finite-dimensional. It has weights ρ =

(J, λ), where J ∈ C is spin and λ is a finite-dimensional representation of SO(d − 2). We
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can think of J as the length of the first row of the Young diagram of ρ, while λ encodes
the remaining rows. Altogether, we specify the multiplet of O by a triplet (∆, J, λ).

Operators with non-integer J admit a different kind of conformally-invariant pairing∫
ddxDd−2zO(x, z)OS†(x, z). (3.35)

Here, OS† has weights

OS† : (d−∆, 2− d− J, λ∗). (3.36)

In (3.35), we implicitly contract the SO(d−2) indices in the representations λ and λ∗. The
measure Dd−2z is defined by

Dd−2z ≡ 2ddzδ(z2)θ(z0)
volR+

, (3.37)

where R+ acts by rescaling z. Note that Dd−2zO(x, z)OS†(x, z) is homogeneous of degree 0
in z, so that the integral is well-defined. Using the pairings (3.34) for integer-spin operators
and (3.35) for continuous-spin operators, we can construct conformally-invariant pairings
between two- and three-point structures, as we will see below.

In the diagrams in section 3.1 and below, we use an outgoing arrow labeled O to denote
a representationO, and an ingoing arrow labeledO to denote the dual representation, either
Õ† or OS† as appropriate to O. Joining lines represents the conformally-invariant pairing
appropriate for the representations.

When O1,O2 are not scalars, the OPE O1×O2 can contain operators O with weights
(∆, J, λ), where λ is nontrivial. In addition, O can appear with multiple tensor structures.
Physical three-point correlators are linear combinations of the possible structures, labeled
by indices a, b

〈O1O2O†〉Ω = f12O†(a)〈O1O2O†〉(a),

〈O3O4O〉Ω = f34O(b)〈O3O4O〉(b). (3.38)

(Sums over a, b are implicit.) Following the notation of [23] (see also appendix A), we use
the subscript Ω to distinguish physical correlators from conformally-invariant structures.

Thus, when O1,O2 are not scalars, O±∆,J gets generalized to have an additional SO(d−
2) representation label λ and structure label a: O±∆,J,λ(a). It has residues

O±∆,J,λ(a) ∼
1

∆−∆±i (J, λ)
Oi,J,λ(a), (3.39)

which for integer J and signature ± = (−1)J become light-transforms of local operators:

O(−1)J
i,J,λ(a) = f12O†

i,J,λ
(a)L[Oi,J,λ], J ∈ Z≥0. (3.40)
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Let O3,O4 be primary operators (not necessarily scalars). Three-point functions con-
taining O±i,J,λ(a) are given by

〈O4O±∆,J,λ(a)(x, z)O3〉Ω = −C±ab(∆, J, λ)〈0|O4L[O](x, z)O3|0〉(b),

〈Ω|O4O±i,J,λ(a)(x, z)O3|Ω〉Ω = − Res
∆=∆±i (J,λ)

C±ab(∆, J, λ)〈0|O4L[O](x, z)O3|0〉(b). (3.41)

(We suppress spin indices on O3,O4 and only indicate the x, z dependence of O.) The
coefficients C±ab(∆, J, λ) are given by the generalized Lorentzian inversion formula

C±ab(∆, J, λ) = −1
2πi

∫
4>1
2>3

ddx1 · · · ddx4

vol(S̃O(d, 2))
〈Ω|[O4,O1][O2,O3]|Ω〉

× T −1
2 T

−1
4

(
T2〈0|O2L[O†]O1|0〉(a)

)−1 (
T4〈0|O4L[O]O3|0〉(b)

)−1

〈L[O]L[O†]〉−1

± −1
2πi

∫
4>2
1>3

ddx1 · · · ddx4

vol(S̃O(d, 2))
〈Ω|[O4,O2][O1,O3]|Ω〉

× T −1
1 T

−1
4

(
T1〈0|O

†
2L[O†](x,−z)O†1|0〉(a)

)−1 (
T4〈0|O4L[O]O3|0〉(b)

)−1

〈L[O]L[O†]〉−1 .

(3.42)

A cartoon diagram for the first integral on the right hand side is given in (3.12). Let us
describe the ingredients in (3.42) in detail. Again, we use the shorthand notation that Oi
is at position xi. The integral is over a Lorentzian configuration where 4 > 1, 2 > 3, and
all other pairs of points are spacelike separated. In terms of cross-ratios, this is the same
as the integration region 0 < z, z < 1 in (3.27).

The object in the second line of (3.42) is schematic notation for a conformal
block obtained by merging the two three-point structures

(
T2〈0|O2L[O†]O1|0〉(a)

)−1
and(

T4〈0|O4L[O]O3|0〉(b)
)−1

, using the two-point structure 〈L[O]L[O†]〉−1. (It is not simply a
ratio of three-point and two-point structures.) The precise merging procedure is described
in [23] — it is essentially the usual procedure of summing over products of descendent
three-point functions to obtain a conformal block, generalized to continuous spin. We will
see some examples below. Pictorially, the block is

1

2

4

3

b

−1

La

−1

L ×
OL

. (3.43)
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The three-point structures making up the conformal block are defined by((
T2〈0|O2L[O†]O1|0〉(a)

)−1
, T2〈0|O2L[O†]O1|0〉(c)

)
L

= δca,((
T4〈0|O4L[O]O3|0〉(b)

)−1
, T4〈0|O4L[O]O3|0〉(d)

)
L

= δdb , (3.44)

where Ti is translation to the next Minkowski patch discussed in section 2.2. Here, (·, ·)L
is a conformally-invariant pairing defined by using (3.34) for O1,O2 and (3.35) for O:(

〈O1O2O〉, 〈Õ†1Õ
†
2O

S†〉
)
L

≡
∫

2<1
x≈1,2

ddx1d
dx2d

dxDd−2z

vol(S̃O(d, 2))
〈O1(x1)O2(x2)O(x, z)〉〈Õ†1(x1)Õ†2(x2)OS†(x, z)〉

= 1
22d−2 vol(SO(d− 2))

〈O1(e0)O2(0)O(∞, z)〉〈Õ†1(e0)Õ†2(0)OS†(∞, z)〉
(−2z · e0)2−d . (3.45)

The notation 1/ vol(S̃O(d, 2)), means that the integral should be gauge-fixed using the
Fadeev-Popov procedure. To obtain the last line, we used S̃O(d, 2) transformations to
gauge-fix x2 = 0, x1 = e0, x = ∞, where e0 is a unit-vector in the time direction. Finite-
dimensional Lorentz indices are implicitly contracted between the two three-point struc-
tures.

The two-point structure in the denominator of (3.42) is defined by(
〈L[O]L[O†]〉−1, 〈L[O]L[O†]〉

)
L

= 1. (3.46)

Here, 〈L[O]L[O†]〉 is the double light-transform of a time-ordered two-point structure. Even
though the light-transform of an operator annihilates the vacuum, the light-transform of
a time-ordered structure is delta-function supported. After light-transforming again, we
obtain a two-point structure that is nonzero at separated points. These details are explained
in [23]. The Lorentzian two-point pairing is given by

(〈OO†〉, 〈OSOS†〉)L
vol(SO(1, 1))2

≡
∫
x1≈x2

ddx1d
dx2D

d−2z1D
d−2z2

vol(S̃O(d, 2))
〈Oa(x1, z1)Ob†(x2, z2)〉〈OS

b (x2, z2)OS†
a (x1, z1)〉,

= 〈O
a(0, z1)Ob†(∞, z2)〉〈OS

b (∞, z2)OS†
a (0, z1)〉

22d−2 vol(SO(d− 2))
1

(−2z1 · z2)2−d . (3.47)

In the last line, we gauge-fixed x1 = 0, x2 =∞.
The last line of (3.42) includes a three-point structure that has been acted on by a

combination of CRT and Hermitian conjugation,

Oi
† ≡ ((CRT)Oi(CRT))† ,
x = (−x0,−x1, x2, · · · , xd−1),
z = (−z0,−z1, z2, · · · , zd−1). (3.48)

The role of this term is to ensure that O± has the correct signature ±1. We give more
details on this term in appendix C.
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3.3 Harmonic analysis on the celestial sphere

Consider a product of light-transforms of local operators, placed at the same spacetime
point

L[O1](x, z1)L[O2](x, z2). (3.49)

For simplicity, we take O1,O2 to be traceless symmetric tensors. Each light-transformed
operator has dimension 1 − Ji, and thus the product (3.49) transforms like an operator
with dimension (1− J1) + (1− J2) = 1− (J1 + J2 − 1) located at x.

We would like to additionally decompose (3.49) into irreducible representations of the
Lorentz group that fixes x. To do so, we can use harmonic analysis [46] (or “conglomera-
tion” [47]) for SO(d− 1, 1), treating it as a Euclidean conformal group in d− 2 dimensions.
Harmonic analysis for SO(d+ 1, 1) was reviewed in [48]. In this section, we collect some of
the needed ingredients from [48], replacing d→ d− 2.

The SO(d− 1, 1) representations that will appear are d−2-dimensional operator repre-
sentations Pδ,λ with scaling dimension δ and finite-dimensional SO(d−2)-representation λ.
We write Pδ when λ is trivial. We can think of the null vectors zi ∈ Rd−1,1 as embedding-
space coordinates for the celestial sphere Sd−2. In this language, for example, we have a
celestial three-point structure

〈Pδ1(z1)Pδ2(z2)Pδ3(z3)〉 = 1

z
δ1+δ2−δ3

2
12 z

δ2+δ3−δ1
2

23 z
δ3+δ1−δ2

2
13

,

zij ≡ −2zi · zj . (3.50)

Here, Pδ are not physical operators — they label representations of SO(d−1, 1), and (3.50)
denotes the unique three-point structure (up to normalization) for the given representa-
tions. We will also use the notation [23]

P̃δ,λ ≡ P2−d−δ,λR , P̃†δ,λ ≡ P2−d−δ,λ∗ , (3.51)

where λR is the reflected representation and λ∗ is the dual representation to λ.19

We will be particularly interested in principal series representations of SO(d − 1, 1),
which have δ ∈ d−2

2 +iR. Their significance is that they furnish a complete set of irreducible
representations for decomposing objects that transform under SO(d − 1, 1).20 For exam-
ple, consider a function f(z1, z2) that transforms like a product of scalar operators with
dimensions δ1, δ2 on Sd−2. It can be decomposed into traceless-symmetric-tensor principal
series representations, i.e. representations where λ is the spin-j traceless symmetric tensor
representation of SO(d− 2). We denote these by Pδ,j .

19In odd dimensions, λR = λ. In even dimensions, λR is given by swapping the spinor Dynkin labels of λ.
20When d = 3, we can also have discrete-series representations appearing. We comment on the role of

such representations in section 5.2.
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Let us define the “partial wave”

Wδ,j(z) ≡ αδ,j
∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉f(z1, z2) (3.52)

= tδ,j f
...

1

2

Pδ,j
, (3.53)

where

αδ,j ≡
µ(d−2)(δ, j)S(d−2)

E (Pδ1Pδ2 [P̃†δ,j ])
(〈Pδ1Pδ2P̃

†
δ,j〉, 〈P̃

†
δ1
P̃†δ2Pδ,j〉)

(3.54)

and

tδ,j(z1, z2, z) = αδ,j〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉. (3.55)

The integration measure in (3.52) is given by (3.37). The quantities in (3.54)
are the Plancherel measure µ(d−2)(δ, j) for SO(d − 1, 1), a shadow transform factor
S

(d−2)
E (Pδ1Pδ2 [P̃δ,j ]), and a three-point pairing (〈Pδ1Pδ2P̃

†
δ,j〉, 〈P̃

†
δ1
P̃†δ2Pδ,j〉). Explicit def-

initions and formulas for all of these quantities are available in [48]. We will not need
them here, since these factors will ultimately cancel. The only formula we will need is the
“bubble” integral [48]

tδ,j

1

2

Pδ,j P†δ,j =
Pδ,j P†δ,j × vol SO(1, 1), (3.56)

which is

αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉〈Pδ1(z1)Pδ2(z2)P†δ,j(z
′)〉

= 〈Pδ,j(z)P†δ,j(z
′)〉 vol SO(1, 1). (3.57)

Here 〈Pδ,j(z)P†δ,j(z′)〉 is a two-point structure on the celestial sphere.21 The infinite factor
vol SO(1, 1) will cancel in all calculations below. In the notation of section 3.1, we have

tδ(z1, z2, z) = tδ,0(z1, z2, z). (3.58)

The function f(z1, z2) can be expanded in partial waves [46, 48]

f(z1, z2) =
∞∑
j=0

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiCδ,j(z1, z2, ∂z2)Wδ,j(z2). (3.59)

21Specifically, it is the two-point structure used to obtain the shadow factor S(d−2)
E in the definition

of αδ,j .
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The differential operator Cδ,j(z1, z2, ∂z) is defined by

Cδ,j(z1, z2, ∂z2)〈Pδ,j(z2)P†δ,j(z
′)〉 = 〈Pδ1(z1)Pδ2(z2)P†δ,j(z

′)〉, (3.60)

This is simply the d−2-dimensional version of the usual differential operator appearing in
an OPE of conformal primaries. Thus, (3.59) takes the form of an OPE in d−2 dimensions,
where we have a contour integral over the principal series δ ∈ d−2

2 + iR instead of a sum
over δ. The contour can sometimes be deformed to give a sum, as we will see below.

Several objects above carry indices, and we are leaving the contraction of indices be-
tween dual objects implicit. For example, Pδ,j(z) carries j traceless-symmetric indices for
the tangent bundle of Sd−2, and consequently Wδ,j(z) does too. The differential operator
Cδ,j also carries these indices, and they are contracted in (3.59).

When f(z1, z2) transforms like a product of more general operators in representations
Pδ1,λ1 and Pδ2,λ2 , then there can be multiple celestial three-point structures

〈P̃†δ1,λ1
(z1)P̃†δ2,λ2

(z2)Pδ,λ(z)〉(α), (3.61)

labeled by an index α. Consequently, the partial wave W (α)
δ,λ (z) and differential operator

Cδ,λ,α carry additional structure labels, and we have a more general expansion

f(z1, z2) =
∑
λ,α

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiCδ,λ,α(z1, z2, ∂z2)W (α)
δ,λ (z2). (3.62)

3.4 Light-ray OPE from the Lorentzian inversion formula

Applying (3.52) and (3.59) to the product (3.49), we have

L[O1](x, z1)L[O2](x, z2) =
∞∑
j=0

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiCδ,j(z1, z2, ∂z2)Wδ,j(x, z2), (3.63)

where the partial waves are given by

Wδ,j(x, z) = αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉L[O1](x, z1)L[O2](x, z2)

=
∫
ddx1d

dx2D
d−2z1D

d−2z2Lδ,j(x1, z1, x2, z2;x, z)O1(x1, z1)O2(x2, z2), (3.64)

and the kernel Lδ,j is given by

Lδ,j(x1, z1, x2, z2;x, z)

≡ αδ,j〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉

×
∫ ∞
−∞

dα1dα2 (−α1)−δ1−J1−1(−α2)−δ2−J2−1δ(d)
(
x− z1

α1
− x1

)
δ(d)

(
x− z2

α2
− x2

)
.

(3.65)

Here, we have defined δi = ∆i− 1. We are taking O1,O2 to be traceless symmetric tensors
for simplicity, so that the partial wave expansion (3.63) only includes traceless symmetric
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tensors of spin-j on the celestial sphere. We remove this restriction in section 3.4.4. We
can represent the kernel Lδ,j pictorially as:

Lδ,j

1

2

OL =

1

2

OL

L

L

tδ,j
. (3.66)

The blue solid and red dashed lines represent the Minkowski and celestial coordinates,
respectively. We will not need to plug in the definition of Lδ,j until the very end of our
computation, accordingly we will omit the blue and red lines until necessary.

Note that Lδ,j is nonvanishing for all j ∈ Z≥0. By contrast, the object O±∆,J,j(a)(x, z) is
only defined when j is such that operators with weights (∆, J, j) can appear in the O1×O2
OPE. For fixed O1,O2, this condition restricts j to a finite set. For example, if O1,O2 are
scalars, then only operators with j = 0 (i.e. traceless symmetric tensors of SO(d − 1, 1))
can appear in O1×O2. See section 3.4.4 for the rule that determines the allowed values of
j in the local operator OPE. Thus, the partial waves Wδ,j for higher values of j cannot be
related to O±∆,J,j itself. We show in [25] that they are related to derivatives of O±∆,J,j .

3.4.1 Matrix elements of Wδ,j

To determine Wδ,j(x, z), it suffices to study its matrix elements in states created by local
primary operators O3 and O4:

〈Ω|O4Wδ,j(x, z)O3|Ω〉

= αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉〈Ω|O4L[O1](x, z1)L[O2](x, z2)O3|Ω〉.

(3.67)

As usual, Oi is at point xi unless otherwise specified. Without loss of generality, let us
assume the causal relationships 4 > x > 3− (figure 6). Other causal relationships can be
obtained by analytic continuation in x, x3, x4.

Because L[Oi] annihilates the vacuum, we can write (3.67) as the integral of a double-
commutator

= αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉〈Ω|
[
O4,L[O1](x, z1)

][
L[O2](x, z2),O3

]
|Ω〉

=
∫
ddx1d

dx2D
d−2z1D

d−2z2Lδ,j(x1, z1, x2, z2;x, z)θ(4 > 1)θ(2 > 3)

× 〈Ω|
[
O4,O1(x1, z1)

][
O2(x2, z2),O3

]
|Ω〉. (3.68)

In the last line, we introduced θ-functions θ(4 > 1)θ(2 > 3) that remove the regions
where x1 is spacelike from x4 and x2 is spacelike from x3. They are redundant because
commutators vanish at spacelike separation. However, they will play an important role
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1

x

x+

2

3

3−

4

Figure 6. We study a configuration where 4 > x > 3−. Points 1 and 2 are integrated over distinct
null lines from x to x+ (blue and purple). The diamond formed by the past null cone of 4 and
future null cone of 3− is indicated in gray.

later, so we include them. Pictorially, we have

OL
1

2

4

3

Lδ,jg =
OL

1

2

4

3

Lδ,jdDisc[g] .

(3.69)

To avoid visual clutter, we will omit theta functions in our diagrams.

The fact that (3.68) is the integral of a double commutator suggests that we should
relate it to the Lorentzian inversion formula. In fact, the proof of the generalized Lorentzian
inversion formula in [23] proceeds from an expression similar to (3.68). We now follow the
steps of that derivation.

First note that conformal invariance implies

〈Ω|O4Wδ,j(x, z)O3|Ω〉 = Ab(δ, j)〈0|O4L[O](x, z)O3|0〉(b), (3.70)

where O has quantum numbers (∆, J, λ) = (δ+ 1, J1 + J2− 1, j), 〈0|O4OO3|0〉(b) is a basis
of structures for the given representations, and Ab(δ, j) are coefficients we would like to
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determine. A sum over b is implicit. In terms of diagrams, that is

OL
1

2

4

3

Lδ,jdDisc[g] = Ab(δ, j)×
OL

4

3

b L
O

.

(3.71)

Following [23], it is useful to act on both sides with T4 (equivalently relabel x4 → T4x4 =
x+

4 ), giving

T4〈Ω|O4Wδ,j(x, z)O3|Ω〉 = Ab(δ, j)T4〈0|O4L[O](x, z)O3|0〉(b). (3.72)

Note that T4 simply acts on three-point structures by multiplication by a phase. Never-
theless, it is useful to keep the abstract notation in (3.72). This relabeling turns the causal
relationship 4 > x > 3− into 3 > 4 and 3 ≈ x and 4 ≈ x (see figure 7). Here i ≈ j

means xi is spacelike from xj , see appendix A. We write these relationships compactly as
(3 > 4) ≈ x. Our Lorentzian pairing (3.45) is defined for this type of causal relationship.
Thus, to isolate Ab(δ, j), we can take the Lorentzian pairing of both sides with a dual
structure

Ab(δ, j) =
OL

1

2

4

3

Lδ,jdDisc[g] b

−1

L . (3.73)

This gives

Ab(δ, j) =
((
T4〈0|O4L[O](x, z)O3|0〉(b)

)−1
, T4〈Ω|O4Wδ,j(x, z)O3|Ω〉

)
L

=
∫

4>1
2>3

ddx1d
dx2d

dx3d
dx4D

d−2z1D
d−2z2

vol S̃O(d, 2)
〈Ω|
[
O4,O1(x1, z1)

][
O2(x2, z2),O3

]
|Ω〉

× T −1
2 T

−1
4

[ ∫
ddxDd−2z

(
T4〈0|O4L[O](x, z)O3|0〉(b)

)−1

× (T2Lδ,j)(x1, z1, x2, z2;x, z)θ(4+ > 1)θ(2+ > 3)
]
. (3.74)
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1

x

x+

2

2+

3

3−

4

4+

Figure 7. After relabeling 2 → 2+ and 4 → 4+, we have 4+ > 1 & x & 2 > 3−, where “i & j”
means i is on the future null cone of j. Let us imagine that 1, 2, 3, 4 are fixed and ask where x
can be. We see that x is spacelike from 3, 4 and 3 > 4, equivalently (3 > 4) ≈ x. Furthermore,
x is constrained to lie on the Sd−2 given by the intersection of the past lightcone of 1 and future
lightcone of 2. We show lightlike segments between x and 1 (solid blue) and between 2+ and x+

(solid purple), which are subsets of the light-transform contours from figure 6. The image of the
solid purple segment under T −1 is shown in dotted purple.

Here, we have plugged in (3.45) and (3.68). We then changed variables x4 → x−4 , acted
with T −1

2 T2 in the last line, and used T2θ(2 > 3) = θ(2+ > 3). Again, these relabelings are
for the purposes of later applying the Lorentzian pairing (3.45).

The bracketed quantity in (3.74) is the object obtained by cutting the pairing (3.73)
on the lines labeled 1, 2, 3, and 4. Because of the factors T −1

2 T
−1

4 outside the brackets, the
configuration of points inside the brackets (figure 7) is obtained from figure 6 by relabeling
2→ 2+ and 4→ 4+. Note that the bracketed quantity is a conformally-invariant function
of x1, x2, x3, x4 that is an eigenfunction of the conformal Casimirs acting simultaneously on
points 1, 2 (or equivalently 3, 4). Hence it is a linear combination of conformal blocks. To
compute it, we can follow the computation in appendix H of [23]. The kernel T2Lδ,j forces
x to lie on the past lightcone of x1 and the future lightcone of x2 (see figure 7). Thus, as
x1 → x2 (equivalently x3 → x4) the integration point x is forced to stay away from x3, x4.
This means we can compute the integral by taking an OPE-type limit x3, x4 → x′ inside
the integrand (figure 8).

First, we must write the 34 three-point structure as a linear operator B(x3, x4, ∂x′ , ∂z′)
acting on a two-point function22

(
T4〈0|O4L[O](x, z)O3|0〉(b)

)−1
= B(x3, x4, ∂x′ , ∂z′)〈OF(x′, z′)OF†(x, z)〉. (3.75)

22Although we have written B as a differential operator in z′, it must actually be an integral operator
when J is not an integer. See [23] for an explicit expression.
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1

x

2

x′

3

4

Figure 8. To compute the block appearing in (3.74), we take the limit 3, 4→ x′ inside the integral
over x, z. Note that we have (1 > 2) ≈ x′.

Here, OF† has the weights of something that can be paired with L[O], namely (J + d −
1,∆− d+ 1, j) where ∆ = δ + 1 and J = J1 + J2 − 1. We must also replace

θ(4+ > 1)θ(2+ > 3)→ θ(x′+ > 1)θ(2+ > x′), (3.76)

since we are taking the limit x3, x4 → x′. The factorization (3.75) of our three-point struc-
ture into a linear operator B and a two-point structure is possible for generic dimensions
and spins of the operator OF. However, it becomes invalid at special values of the quantum
numbers of OF, where the operator B develops singularities. It turns out that this special
case occurs precisely when j is a “higher transverse spin” — i.e., when j is larger than the
maximum transverse spin jmax that can appear in the usual OPE of the local operators
O1 ×O2. For this reason, the derivation that follows is only valid for j ≤ jmax; see [25] for
details and the general case.

Because of the restriction 1 > 2, (3.76) is equivalent to θ((1 > 2) ≈ x′). The two-
point function in (3.75) is then integrated against the 12 three-point structure, giving a
Lorentzian shadow transform∫
x≈x′

ddxDd−2z〈OF(x′,z′)OF†(x,z)〉T2Lδ,j(x1,z1,x2,z2;x,z) = S[T2Lδ,j ](x1,z1,x2,z2;x′,z′).

(3.77)

The result is the conformal block

B(x3, x4, ∂x′ , ∂z′)S[T2Lδ,j ](x1, z1, x2, z2;x′, z′)θ((1 > 2) ≈ x′)

=
(S[T2Lδ,j ]θ((1 > 2) ≈ x′))

(
T4〈0|O4L[O](x, z)O3|0〉(b)

)−1

〈OFOF†〉
. (3.78)

In the second line, we use the notation for a conformal block where the three-point struc-
tures in the numerator should be merged using the two-point function in the denominator.
The precise meaning of this notation is the first line of (3.78). Pictorially, the block can
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be represented as

OL

1

2

4

3

b

−1

LLδ,j × . (3.79)

3.4.2 Relating to the inversion formula

After writing the quantity in brackets in (3.74) as a conformal block, our formula for
Ab(δ, j) looks extremely similar to the Lorentzian inversion formula (3.42). There are
two main differences. Firstly, our formula for Ab(δ, j) contains the three-point struc-
ture S[T2Lδ,j ]θ((1 > 2) ≈ x′) instead of (T2〈0|O2L[O†]O1|0〉(a))−1. We need to express
the former as a linear combination of the latter, and this is achieved by pairing with
T2〈0|O2L[O†]O1|0〉(a).

The second difference is that (3.74) involves an integral only over the double-
commutator 〈Ω[O4,O1][O2,O3]|Ω〉, corresponding to the “t-channel” term in (3.42). It
does not include a contribution from the “u-channel” term. This is accounted for by aver-
aging over even and odd spins.

In summary, comparing (3.78) and (3.42), we find

Ab(δ, j) = −2πi× 1
2
(
C+
ab(δ + 1, J1 + J2 − 1, j) + C−ab(δ + 1, J1 + J2 − 1, j)

)
× 〈L[O]L[O†]〉−1

〈OFOF†〉

(
S[T2Lδ,j ]θ((1 > 2) ≈ x′), T2〈0|O2L[O†]O1|0〉(a)

)
L
. (3.80)

Note that in this formula, the ratio of two-point structures 〈L[O]L[O†]〉−1

〈OFOF†〉 is simply a number
— it does not refer to the formation of a conformal block. The three-point pairing can be
simplified further by rewriting it as a two-point pairing:

1

2

Lδ,ja

OL
L =


1

2

Lδ,ja
OL

L
OL†

,
OLOL†


L

. (3.81)
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x

x+

x′

x′+

L−[O1]

L+[O2]

L[O†]

Figure 9. Integration contours for the triple light-transform 〈0|L+[O2]L[O†]L−[O1]|0〉. O† is
integrated along a complete null line from x′ to x′+ (solid green). O1 is integrated along a half null
line spacelike from x′ (solid blue), and O2 is integrated along a half null line in the future of x′
(solid purple).

In full detail, we have(
S[T2Lδ,j ]θ((1 > 2) ≈ x′), T2〈0|O2L[O†]O1|0〉(a)

)
L

=
∫

(1>2)≈x′
x≈x′

ddx1d
dx2d

dx′ddxDd−2z1D
d−2z2D

d−2z′Dd−2z

vol S̃O(d, 2)
〈OF(x′, z′)OF†(x, z)〉

× T2Lδ,j(x1, z1, x2, z2;x, z)T2〈0|O2(x2, z2)L[O†](x′, z′)O1(x1, z1)|0〉(a)

= 1
vol SO(1, 1)2

(
〈OFOF†〉,

∫
1≈x′
2>x′

ddx1d
dx2D

d−2z1D
d−2z2Lδ,j(x1, z1, x2, z2;x, z)

× 〈0|O2(x2, z2)L[O†](x′, z′)O1(x1, z1)|0〉(a)
)
L

. (3.82)

In the last equality, we made the change of variables x2 → T −1
2 x2 = x−2 and recognized

the integrals over x, z, x′, z′ as a Lorentzian two-point pairing (3.47). The infinite factors
vol SO(1, 1)2 will cancel shortly. Plugging in the definition of Lδ,j (3.65), we have

Ab(δ,j) =−πi
(
C+
ab(δ+1,J1+J2−1, j)+C−ab(δ+1,J1+J2−1, j)

) (〈L[O]L[O†]〉−1,Q
(a)
δ,j

)
L

volSO(1,1)2 ,

(3.83)

where

Q
(a)
δ,j (x, z;x′, z′) = αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉

× 〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a). (3.84)

Here, L−[O1] indicates that the light-transform contour should be restricted to x1 spacelike
from x′, and L+[O2] indicates that the light-transform contour should be restricted to x2
in the future of x′ (figure 9).

Thus our task reduces to expressing Qδ,j as a multiple of 〈L[O]L[O†]〉. To do so, it
suffices to set x =∞ and x′ = 0. Lorentz invariance and homogeneity in z’s guarantee

〈0|L+[O2](∞, z1)L[O†](0, z′)L−[O1](∞, z2)|0〉(a)

vol SO(1, 1) = q
(a)
δ,j 〈Pδ1(z1)Pδ2(z2)P†δ,j(z

′)〉, (3.85)
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for some constant q(a)
δ,j . With hindsight, we have included a factor vol SO(1, 1)−1 on the

left-hand side so that q(a)
δ,j is finite. Applying the bubble formula (3.57), we find

1
vol SO(1, 1)2Q

(a)
δ,j (∞, z, 0, z′) = q

(a)
δ,j 〈Pδ,j(z)P†δ,j(z

′)〉. (3.86)

Meanwhile, Lorentz invariance and homogeneity imply

〈L[O](∞, z)L[O†](0, z′)〉 = rδ,j〈Pδ,j(z)P†δ,j(z
′)〉. (3.87)

So that

Ab(δ, j) = −πi
(
C+
ab(δ + 1, J1 + J2 − 1, j) + C−ab(δ + 1, J1 + J2 − 1, j)

) q(a)
δ,j

rδ,j
. (3.88)

As explained above, this formula is valid when j ≤ jmax, where jmax is the maximum
transverse spin that can appear in the local operator OPE O1 × O2. Finally, combin-
ing (3.63), (3.70), (3.41), and writing δ = ∆− 1, we have

L[O1](x, z1)L[O2](x, z2)

= πi
jmax∑
j=0

∫ d
2 +i∞

d
2−i∞

q
(a)
∆−1,j
r∆−1,j

Cδ,j(z1, z2, ∂z2)
(
O+

∆,J1+J2−1,j(a)(x, z2) + O−∆,J1+J2−1,j(a)(x, z2)
)

+ higher transverse spin. (3.89)

The differential operator Cδ,j is defined by (3.60).

3.4.3 Example: scalar O1,O2

As an example, consider the case where O1 = φ1 and O2 = φ2 are scalars.23 We have
J = J1 + J2 − 1 = −1. Furthermore, jmax = 0 since only traceless symmetric tensors of
SO(d− 1, 1) can appear in the φ1 × φ2 OPE.

Let us compute qδ,0 and rδ,0. The unique Wightman structure for two scalars and a
spin J = −1 operator is

〈0|φ2(x2)O(x0, z0)φ1(x1)|0〉 = (2V0,12)−1

x∆1+∆2−∆+1
12 x∆2+∆−∆1−1

20 x∆+∆1−∆2−1
01

, (3.90)

The light-transform of O is given by (2.32) with the relabeling (1, 2, 3) → (2, 1, 0), and
J = −1. In embedding-space language, we find

〈0|φ2(X2)L[O](X0, Z0)φ1(X1)|0〉 = L(φ1φ2[O])(2V0,12)1−∆

(X12)
∆1+∆2−3+∆

2 (X10)
∆1−∆2+3−∆

2 (−X20)
∆2−∆1+3−∆

2

,

(3.91)

23As discussed in [1], the product of light-transforms at coincident points may not be well-defined in this
case. In this section, we ignore these issues and assume the product is well-defined.
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where

Xij ≡ −2Xi ·Xj ,

Vk,ij ≡
(Zk ·Xi)(Xk ·Xj)− (Zk ·Xj)(Xk ·Xi)

Xi ·Xj
. (3.92)

We should now specialize X0 = (1, 0, 0) and compute the remaining light transforms
L−[φ1](X∞, Z1) and L+[φ2](X∞, Z2). We set

X1 = Z1 − α1X∞ = (0, 0, z1)− α1(0, 1, 0),
X2 = Z2 − α2X∞ = (0, 0, z2)− α2(0, 1, 0),
X0 = (1, 0, 0),
Z0 = (0, 0, z0), (3.93)

and integrate

〈0|L+[φ2](X∞, Z2)L[O](X0, Z0)L−[φ1](X∞, Z1)|0〉
vol SO(1, 1)

= L(φ1φ2[O])
vol SO(1, 1)

∫ ∞
0

dα2

∫ 0

−∞
dα1

(−2α2z0 · z1 + 2α1z0 · z2)1−∆

(−2z1 · z2)
∆1+∆2−3+∆

2 (−α1)
∆1−∆2+3−∆

2 α
∆2−∆1+3−∆

2
2

= L(φ1φ2[O])
vol SO(1, 1)

(∫ ∞
0

dα2
α2

) Γ(∆−1+∆1−∆2
2 )Γ(∆−1+∆2−∆1

2 )
Γ(∆− 1) 〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉

= − 2πi
∆− 2〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉, (3.94)

where δi = ∆i−1, δ = ∆−1, and the celestial three-point structure 〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉
is defined in (3.50). To get the third line, we integrated over α1. The infinite factor
vol SO(1, 1) cancels against the unbounded integral over α2. Alternatively, we could have
used SO(1, 1)-gauge invariance to fix α2 = 1.

Thus, we find

q∆−1,0 = − 2πi
∆− 2 . (3.95)

Meanwhile, the quantity r∆−1,0 was computed in [23] to be

r∆−1,0 = − 2πi
∆ + J − 1

∣∣∣∣
J=−1

= − 2πi
∆− 2 . (3.96)

The ratio q∆−1,0/r∆−1,0 is simply 1! We find

L[φ1](x, z1)L[φ2](x, z2) = πi

∫ d
2 +i∞

d
2−i∞

d∆
2πiC∆−1,0(z1, z2, ∂z2)

(
O+

∆,−1(x, z2) + O−∆,−1(x, z2)
)

+ higher transverse spin. (3.97)
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3.4.4 Generalization and map to celestial structures

Let us summarize our result so far in slightly different language. In addition, we will
generalize to the case where O1,O2 are not necessarily traceless symmetric tensors. Sup-
pose Oi have weights (∆i, Ji, λi), where the λi are SO(d − 2) representations. The light-
transforms L[Oi](∞) transform as tensors in the representation λi on the celestial sphere.
To describe them, we can use the notation of appendix B. We write L[Oi](∞, z, ~w), where
~w = w1, . . . , wn−1 ∈ Cd is a collection of null polarization vectors orthogonal to z, en-
coding rows in the Young diagram of λi. The light-ray operators appearing in the OPE
may also have nontrivial λ. In what follows, O stands for the representation with weights
(∆, J, λ) = (δ + 1, J1 + J2 − 1, λ).

Lorentz-invariance guarantees that there exists an SO(d − 1, 1)-invariant differential
operator D(a)

δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2) on the celestial sphere such that

D(a)
δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)〈L[O](∞, z2, ~w2)L[O†](0, z0, ~w0)〉

= 〈0|L
+[O2](∞, z2, ~w2)L[O†](0, z0, ~w0)L−[O1](∞, z1, ~w1)|0〉(a)

vol SO(1, 1) . (3.98)

In the notation of section 3.4.2, when λ is the spin-j representation of SO(d− 2), we have
D(a)
δ,j = (q(a)

δ,j /rδ,j)Cδ,j . The derivation of section 3.4.2 generalizes straightforwardly to give24

L[O1](x, z1, ~w1)L[O2](x, z2, ~w2)

= πi
∑
λ∈Λ12

∫ d
2 +i∞

d
2−i∞

d∆
2πiD

(a)
δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)

×
(
O+

∆,J1+J2−1,λ(a)(x, z2, ~w2) + O−∆,J1+J2−1,λ(a)(x, z2, ~w2)
)

+ higher transverse spin. (3.99)

Here, λ ranges over the set Λ12 of SO(d−2) representations that can appear in the O1×O2
OPE and are also allowed by selection rules on the celestial sphere.

A simple rule to determine the set Λ12 is as follows. Let ρi = (Ji, λi) be the Lorentz
irreps of O1 and O2. We have that the set Λ′12 of λ appearing in O1×O2 OPE is given by

Λ′12 = ResSO(d−1,1)
SO(d−2) ρ1 ⊗ ρ2, (3.100)

where ResGH denotes restriction of a representation of group G to its subgroup H. One
can derive this rule by considering the three-point structure 〈O1(x1)O(x0, z)O2(x2)〉 as a
function of x1, x2, x0, and z. It furthermore carries indices for ρ1, ρ2 and λ which we have
suppressed. Using conformal invariance, we can fix x1, x0, x2 to lie on a line in the time
direction and z to be (1, 1, 0, . . . ). The stabilizer group of this configuration is SO(d− 2),
and the correlator must be invariant under this stabilizer group. This leads to (3.102).

The set Λ′′12 of λ that are allowed from celestial sphere selection rules is

Λ′′12 = {λ | (λ† ⊗ λ1 ⊗ λ2)SO(d−3) 6= 0}, (3.101)
24As we discuss in section 4.1, only the term with signature (−1)J1+J2 contributes at z1 6∝ z2.
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∞
0

O2

O1

O†

Figure 10. The celestial locus configuration appearing in (3.103) and (3.104). The operators
O1,O2, and O† are placed on the celestial sphere (orange) that is the intersection of the future null
cones of 0 and ∞. The arrows indicate the directions of the polarization vectors of each operator
(which are inherited from their original light-transform contours).

where λ† is the dual reflected of λ. This rule is just the (d− 2)-dimensional version of the
rule described in [26]. Finally, the set Λ12 is just

Λ12 = Λ′12 ∩ Λ′′12. (3.102)

Equation (3.98) essentially defines a map from a three-point structure 〈O1O2O†〉(a) in
d-dimensions to a differential operator D(a)

δ,λ in d− 2 dimensions. We saw in section (3.4.3)
that when O1,O2 are scalars, this map is surprisingly simple: it takes the standard Wight-
man structure (3.90) to the standard differential operator Cδ,0. In fact, this map turns out
to be simple in general. We claim that D(a)

δ,λ is determined by

D(a)
δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)

(
(−2H20)〈O(X2, Z2, ~W2)O†(X0, Z0, ~W0)〉

∣∣∣
celestial

)
= X12(−2V0,21)〈0|O2(X2, Z2, ~W2)O†(X0, Z0, ~W0)O1(X1, Z1, ~W1)|0〉(a)

∣∣∣
celestial

. (3.103)

Here, we use embedding-space language, as explained in appendix B. The objects Vi,jk and
Hij are defined in appendix D, see also [42]. The two-point and three-point structures
above are each specialized to the “celestial” locus

f(Xi, Zi, ~Wi)
∣∣∣∣
celestial

≡ f(Xi, Zi, ~Wi)
∣∣∣∣ Z0=−(1,0,0)
Z1=−(0,1,0)
Z2=−(0,1,0)
Xi=(0,0,zi)

Wi,j=(0,0,wi,j)

. (3.104)

This corresponds to placing all three operators on the celestial sphere given by the in-
tersection of the future lightcone of the origin and the future lightcone of spatial infin-
ity (figure 10). It is easy to check that the three-point function on the right-hand side
of (3.103), after restricting to the celestial locus, has homogenity −δi = 1 −∆i in zi, and
hence transforms like a three-point function of operators with dimensions δi in d − 2 di-
mensions. Similarly, the two-point function on the left-hand side transforms correctly in
d− 2 dimensions.
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For example, when O1 = φ1,O2 = φ2 are scalars and O is a traceless symmetric tensor
with dimension ∆, one can check from (3.90) that

(−2H20)〈O(X2, Z2)O†(X0, Z0)〉
∣∣∣
celestial

= 〈Pδ(z2)Pδ(z0)〉,

X12(−2V0,21)〈0|φ2(X2)O†(X0, Z0)φ1(X1)|0〉
∣∣∣
celestial

= 〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉, (3.105)

which easily gives Dδ,0 = Cδ,0.
We have checked that (3.103) is equivalent to (3.98) for arbitrary traceless symmetric

tensor representations by explicit calculation, see appendix D. It can also be justified by
examining the limit as z1 → z2 in (3.98). It would be nice to prove (3.103) more directly.

One important caveat to this discussion is that it only applies for separated points, i.e.
when z1 is not proportional to z2. As we will see in section 6, this map has to be modified
in some special cases if one wishes to study z1 ∝ z2 contact terms.

4 Commutativity

In [1], we argued on general grounds that L[O1](x, z1, ~w1) and L[O2](x, z2, ~w2) commute,
given certain conditions on J1 and J2. Our derivation of the light-ray OPE does not assume
commutativity. In fact, even when commutativity holds, it is obscured in our derivation,
since L[O1] and L[O2] are treated differently. For example, to obtain a double-commutator,
we subtract the action of L[O1] on the future vacuum and L[O2] on the past vacuum.

It is instructive to see how commutativity appears from the point of view of the light-ray
OPE. This will lead to nontrivial consistency conditions on the space of light-ray operators.
We relate these conditions to the superconvergence sum rules of [1] in section 4.3 below.

In the remainder of this section, we assume the light-ray operators L[O1] and L[O2] are
not coincident z1 6∝ z2. We discuss how our arguments should be modified for coincident
lightrays in section 6.

4.1 Light-ray OPE for the commutator

We derived an expression for L[O1]L[O2] in (3.99). We can obtain an expression for the
reverse ordering L[O2]L[O1] by applying Rindler and Hermitian conjugation to both sides.
Using (C.10) and (C.11), we find

L[O2](x,z2, ~w2)L[O1](x,z1, ~w1)

=πi
∑
λ∈Λ12

∫ d
2 +i∞

d
2−i∞

d∆
2πiD

(a)
δ,λ(z1, ~w1,z2, ~w2,∂z2 ,∂~w2)

×
(
(−1)J1+J2O+

∆,J1+J2−1,λ(a)(x,z2, ~w2)+(−1)J1+J2−1O−∆,J1+J2−1,λ(a)(x,z2, ~w2)
)

+higher transverse spin (4.1)
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Taking the difference with (3.99), we get the commutator

[L[O1](x, z1, ~w1),L[O2](x, z2, ~w2)]

= 2πi
∑
λ∈Λ12

∫ d
2 +i∞

d
2−i∞

d∆
2πiD

(a)
δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)O(−1)J1+J2−1

∆,J1+J2−1,λ(a)(x, z2, ~w2) + . . .

= −2πi
∑
i

D(a)
δi,λi

(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)O(−1)J1+J2−1

i,J1+J2−1,λ(a)(x, z2, ~w2) + . . . , (4.2)

where “. . . ” represents contributions with higher transverse spin λ /∈ Λ12. We explain while
these terms vanish in [25], and here we focus just on the low-transverse spin part. In the
last line, we have assumed that the behavior of the integrand at large ∆ is such that we
can deform the ∆-contour to pick up poles on the positive real axis, obtaining a sum over
Regge trajectories i. For more detail on deforming the ∆ contour, see section 5.2.

The operators on the right-hand side of (4.2) have spin J = J1 + J2 − 1 and signature
(−1)J . For example, when J1 ≡ J2 mod 2, the commutator is given by a sum of light-ray
operators with odd J and odd signature. This is easy to understand from symmetries: the
light-transforms L[Oi] have signature (−1)Ji , and the commutator introduces an additional
−1, since Hermitian conjugation reverses operator ordering.

These quantum numbers are exactly the ones needed for O(−1)J1+J2−1

i,J1+J2−1,λi to be the light-
transform of a local operator. Let us assume this is the case (we return to this assumption
in section 4.2). Using (3.40), we have

[L[O1](x, z1, ~w1),L[O2](x, z2, ~w2)]

= −2πi
∑
i

D(a)
δi,λi

(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)f12O†i (a)L[Oi](x, z2, ~w2) + . . . , (4.3)

where each Oi has quantum numbers (∆, J, λ) = (δi + 1, J1 + J2 − 1, λi).
There are now two slightly different cases. In the first case, the local operators that

would appear in the right hand side of (4.3) are not allowed to appear in the Euclidean
OPE.25 In other words, f12O†i (a) are zero by selection rules. In this case we immediately
find that the commutator is identically zero.

The second case is when f12O†i (a) are not forbidden by Euclidean selection rules. To

see that the commutator vanishes in this case, recall that the differential operator D(a)
δ,λ

is nonzero only if the three-point structure 〈· · ·〉(a) survives the map to celestial struc-
tures (3.103). However, the structure 〈· · ·〉(a) cannot survive this map if it also appears
in a three-point function of local operators, modulo a small subtlety to be discussed be-
low. The reason is that V0,21|celestial = 0, so the right-hand side of (3.103) vanishes unless
〈· · ·〉(a) contains a pole V −1

0,21 that can cancel this zero. Such poles are not allowed in three-
point functions of local operators (which must be polynomial in polarization vectors zi).
It follows that

f12O†i (a)D
(a)
δi,λi

= 0 (4.4)

for any local operator Oi. Hence, the commutator [L[O1],L[O2]] vanishes again.
25This includes the cases when J1 + J2 − 1 is negative, i.e. J1 = J2 = 0.
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There is a small subtlety in the above argument, which is due to the fact the statements
about the map to celestial structures are correct for separated points only. As we will show
in section 6, it does sometimes happen that tensor structures appearing in three-point
functions of local operators map to contact terms on the celestial sphere.

The above argument was somewhat abstract, so let us give a concrete example. Con-
sider the case O1 = O2 = T , where T is the stress tensor in a 3d CFT. The commutator
[L[T ],L[T ]] is a sum of spin-3 light-ray operators on odd-signature Regge trajectories. By
our assumption above, such operators are light-transforms of local spin-3 operators. How-
ever, the T×T OPE does not contain any spin-3 operators, due to selection rules and Ward
identities [26, 49]. (Odd-spin operators appearing in T × T have spins 5, 7, . . . .) Thus, the
commutator [L[T ],L[T ]] must vanish. No contact terms arise in this case.

4.2 Finishing the argument with conformal Regge theory

The key step in the above argument was the assumption that

O(−1)J1+J2−1

i,J1+J2−1,λ(a) = f12O†i (a)L[Oi], (4.5)

where Oi is a local operator of spin J1 + J2 − 1. As discussed in section 3.2.1, this is true
by construction in the case when f12O†i (a) is allowed to be non-zero by selection rules of the
Euclidean OPE.26 More precisely, this is true under the condition J1 + J2 − 1 > J0, which
comes from the fact that the Lorentzian inversion formula is only guaranteed to reproduce
Euclidean OPE data for spins larger than J0. We return to this condition later in this
section.

We are also interested in the case where f12O†i (a) is forbidden by the selection rules of
the Euclidean OPE. In this case, there is nothing that we can write in the right-hand side
of (4.5) and so we would like to argue that in this case

O(−1)J1+J2−1

i,J1+J2−1,λ(a) = 0. (4.6)

We can argue for (4.6) using conformal Regge theory and boundedness in the Regge
limit. Let us first review some aspects of conformal Regge theory, using a four-point
function of scalars for simplicity. We follow the presentation of [23]. One starts with a
four-point function in a Euclidean partial wave expansion

〈φ1φ2φ3φ4〉 =
∞∑
J=0

∮
d∆
2πiC(∆, J)(F∆,J(xi) +H∆,J(xi)). (4.7)

Here, we’ve split each partial wave into a piece F∆,J(xi) that dies at large positive J
and a piece H∆,J(xi) that dies at large negative J . For simplicity, we only keep track of
F∆,J . The sum runs over nonnegative integer J because these are the allowed spins in the
Euclidean OPE.

26Saying that f12O†
i
(a) = 0 even thought it is allowed by Euclidean OPE amounts to saying that there is

no corresponding pole in O±∆,J,λ(a) and hence no O(−1)J1+J2−1

i,J1+J2−1,λ(a) in the first place.
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Γ′

Γ

j(ν)

J

0 2 4 6 8

Γ′

Γ

j(ν)

7 91 3 5

J

Figure 11. Deformation of Regge contour in Sommerfeld-Watson transform. Left: even spins in
the case of scalar four-point function. Right: odd spins in the case of 〈TTO3O4〉.

The key step is the Sommerfeld-Watson transform: we rewrite the sum over J as a
contour integral
∞∑
J=0

∮
d∆
2πiC(∆, J)F∆,J(xi) = −

∮
Γ
dJ

∮
d∆
2πi

(
C+(∆, J)
1− e−iπJ + C−(∆, J)

1 + e−iπJ

)
F∆,J(xi), (4.8)

where Γ encircles all nonnegative integers clockwise. We now deform the contour Γ → Γ′

towards the imaginary J axis (left panel of figure 11). When we do, we pick up any poles
or branch cuts in the integrand that were not encircled by the original contour Γ. We refer
to such singularities as “Regge poles”. In figure 11 we show a single Regge pole at J = j(ν).
The behavior of the correlator in the Regge limit is determined by the Regge poles. If the
Regge growth exponent is J0, then all Regge poles must have real part less or equal to J0.

Let us now consider what happens in spinning four-point functions when we have non-
trivial selection rules. For concreteness, we will focus on the case O1 = O2 = T and study
matrix elements of O(−1)J1+J2−1

i,J1+J2−1,λ(a) = O−i,3,(a) (i.e. λ = 0) between generic states created
by O3 and O4. These matrix elements show up as residues of the poles of the function
C−ab(∆, J = 3, λ = 0) which appears in the partial wave expansion of 〈TTO3O4〉. Note that
there are no local spin-3 (or spin-1) operators in T × T OPE allowed by selection rules. In
order to prove (4.6) we must show that this function does not have physical poles.

To see this, imagine applying conformal Regge theory to 〈TTO3O4〉. We will arrive at
the generalization of (4.8), where the factor27

1
1 + e−iπJ

(4.9)

will create poles for all odd J , including J = 1 and J = 3. However, since J = 1, 3 are not
allowed in the Euclidean OPE, the contour Γ must not circle these poles, see right panel

27One might argue that in this case we should use a different factor in the Sommerfeld-Watson transform.
However, the factor 1

1+e−iπJ is the unique factor which has the same residue at all sufficiently large odd J
and an appropriate behavior at infinity in the complex plane.
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of figure 11. This implies that these poles will be picked up by Γ′. If J0 < 3, we must
conclude that the residue of J = 3 pole vanishes, and so

C−ab(∆, J = 3, λ = 0) = 0. (4.10)

This straightforwardly generalizes to other situations, and we conclude that (4.5) holds
provided J1+J2−1 > J0. If this condition is satisfied, the arguments in the previous section
show that [L[O1](x, z1),L[O2](x, z2)] vanishes for z1 6∝ z2. This is precisely the same result
as obtained in [1], where it was shown that J1 + J2 − 1 > J0 is a necessary condition for
the product L[O1](x, z1)L[O2](x, z2) to be well-defined and commutative.

4.3 Superconvergence in ν-space

We have seen that when J1 + J2 − 1 > J0, the commutator (4.2) vanishes. This follows
from the analysis of [1], or alternatively from the arguments of sections 4.1 and 4.2 using
the light-ray OPE and conformal Regge theory.28 From (4.2), commutativity is equivalent
to the statement that

〈Ω|O4O
(−1)J1+J2−1

d
2 +iν,J1+J2−1,λ(a)(x, z2, ~w2)O3|Ω〉 = 0, if J1 + J2 − 1 > J0, (4.11)

where we have written ∆ = d
2 +iν, and the above conditions hold for all ν ∈ R. Using (3.41),

we can also write this as

C
(−1)J1+J2−1

ab

(
d

2 + iν, J1 + J2 − 1, λ
)

= 0, if J1 + J2 − 1 > J0. (4.12)

What constraints do these conditions imply on CFT data?
For simplicity, let us specialize to the case where O1,O2,O3,O4 are scalars, so that

λ = • and the labels a, b are trivial. We further assume that the Oi have equal dimensions
∆φ, though we do not assume they are identical, since otherwise the superconvergence sum
rules are trivial. Recall that C±(∆, J) is computed by plugging the physical four-point
function g(z, z) into the Lorentzian inversion formula (3.27) and performing the integral.
The four-point function has an expansion in t-channel conformal blocks that converges
exponentially inside the square z, z ∈ (0, 1) [50]:

g(z, z) =
(

zz

(1− z)(1− z)

)∆φ ∑
∆′,J ′

pt∆′,J ′G∆′,J ′(1− z, 1− z).

dDisct[g](z, z) =
(

zz

(1− z)(1− z)

)∆φ ∑
∆′,J ′

2 sin2
(
π

∆′ − 2∆φ

2

)
pt∆′,J ′G∆′,J ′(1− z, 1− z).

(4.13)

On the second line, we have written an expansion for dDisc[g]. Because dDisc inserts pos-
itive, bounded factors 2 sin2

(
π

∆′−2∆φ

2

)
into the t-channel block expansion, the t-channel

28More precisely, those arguments applied to the case where the null directions z1 and z2 are not coincident
z1 6∝ z2. For coincident null directions, there can be contact terms. In that case, the discussion in this
section would need to be modified by subtracting those contact terms before passing to ν-space. In the case
of ANEC operators, contact terms are absent.
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block expansion for dDisc[g] converges exponentially inside the square as well.29 The four-
point function has a similar expansion in u-channel blocks with coefficients pu∆′,J ′ .

Inserting (4.13) into the Lorentzian inversion formula, we obtain an expression for
C±(∆, J) as a sum

C±(∆, J) =
∑

∆′,J ′
(pt∆′,J ′ ± pu∆′,J ′)B(∆, J ; ∆′, J ′), (4.14)

where B(∆, J ; ∆′, J ′) is the Lorentzian inversion of a single t-channel block. The function
B(∆, J ; ∆′, J ′) was computed in d = 2 and d = 4 dimensions in [51]. We expect the
sum (4.14) to converge whenever ∆ = d

2 + iν is on the principal series and J > J0 is
larger than the Regge intercept. We argue for this using the Fubini-Tonelli theorem in
appendix E.

Plugging (4.14) into (4.12), we obtain an infinite set of sum rules30

0 =
∑

∆′,J ′
(pt∆′,J ′ − pu∆′,J ′)B

(
d

2 + iν,−1; ∆′, J ′
)
, if J0 < −1. (4.15)

As we will see in section 5.4, these are precisely the superconvergence sum rules of [1],
written as a function of a different variable ν. In ν-space, we have a clear argument that
the sum is convergent. Equation (4.15) and its generalization to spinning correlators may
be a good starting point for analyzing contributions of stringy states to superconvergence
sum rules in holographic theories.

We give more details on the relationship between ν-space sum rules and the sum rules
from [1] in section 5.4.

5 The celestial block expansion

Perhaps the most common use of the local OPE is within four-point correlation functions.
The contribution to the correlator of a given primary operator and its descendants is
captured by a conformal block. Analogously, it is natural and practical to apply the light-
ray OPE within two-point event shapes and compute the contribution of a primary light-ray
operator and its celestial descendants. We call the resulting objects “celestial blocks”. In
this section, we will compute celestial blocks and analyze the celestial block decomposition
of two-point event shapes.

5.1 Celestial blocks

For the purpose of computing event shapes, we would like to apply the light-ray OPE
inside momentum eigenstates. Matrix elements of individual light-ray operators O∆,J in
momentum eigenstates are proportional to the one-point event shape (2.37). To apply the

29The analysis of [50] relied on positivity of pt∆′,J′ = f14O†
∆′,J′

fO∆′,J′23 which is not guaranteed

for the OPE of non-identical scalar operators at hand. Using the simple inequality |f14O†fO23| ≤
1
2

(
|f14O† |2 + |fO23|2

)
we can readily apply the results of [50] to our case.

30We expect that J0 < −1 is not true in most interesting theories. Here, we have this condition because
we specialized to scalar operators for simplicity.
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OPE (3.89), we must understand how to apply the differential operator Cδ,0(z1, z2, ∂z2) to
these matrix elements:

Cδ,0(z1, z2, ∂z2)〈φ(p)|O∆,J(∞, z2)|φ(p)〉 ∝ Cδ,0(z1, z2, ∂z2)(−2z2 · p)−δ. (5.1)

The resulting celestial blocks capture the full contribution of a light-ray operator and its
z-derivatives to an event shape.

The right-hand side of (5.1) is fixed by Lorentz-invariance and homogeneity to have
the form

Cδ,0(z1, z2, ∂z2)(−2z2 · p)−δ = (−p2)
δ1+δ2−δ

2

(−2z1 · p)δ1(−2z2 · p)δ2
f(ζ), (5.2)

where the cross-ratio ζ is given by

ζ = (−2z1 · z2)(−p2)
(−2z1 · p)(−2z2 · p)

. (5.3)

Furthermore, it is an eigenvector of the quadratic Casimir of the Lorentz group acting
simultaneously on z1, z2, or equivalently acting on p. Specifically, it is killed by the differ-
ential operator

−1
2

(
pµ

∂

∂pν
− pν

∂

∂pµ

)(
pµ

∂

∂pν
− pν ∂

∂pµ

)
− δ(δ − d+ 2). (5.4)

This gives the Casimir differential equation

0 = 4(1− ζ)ζ2f ′′(ζ)− 2ζ (2 (δ1 + δ2 + 1) ζ + d− 2 (δ1 + δ2 + 2)) f ′(ζ)
+ ((δ − δ1 − δ2) (d− δ − δ1 − δ2 − 2)− 4δ1δ2ζ) f(ζ). (5.5)

Meanwhile, from the definition of Cδ,0, we see that

Cδ,0(z1, z2, ∂z2)(−2z2 · p)−δ = (−2z1 · z2)
δ−δ1−δ2

2 (−2z2 · p)−δ + . . . , (5.6)

where “. . . ” represent higher-order terms in the separation between z1 and z2 on the celestial
sphere. In terms of f(ζ), this becomes

f(ζ) = ζ
δ−δ1−δ2

2 (1 +O(ζ)). (5.7)

The solution to the Casimir equation with boundary condition (5.7) is

f∆1,∆2
∆ (ζ) = ζ

∆−∆1−∆2+1
2 2F1

(∆− 1 + ∆1 −∆2
2 ,

∆− 1−∆1 + ∆2
2 ,∆ + 1− d

2 , ζ
)
, (5.8)

where we have written δi = ∆i − 1 for future convenience.
Essentially the same function has appeared previously in the literature as the conformal

block for a two-point function of local operators in the presence of a spherical codimension-1
boundary [27, 28]. The reason is that the momentum p breaks SO(d−1, 1) in a similar way
to a boundary in a d− 2 dimensions. To see this, consider an embedding space coordinate
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X ∈ Rd−1,1 for a d− 2-dimensional CFT. A spherical codimension-1 boundary is specified
by P · X = 0, for some spacelike P ∈ Rd−1,1 [52]. The vector P breaks the symmetry
from SO(d− 1, 1) to SO(d− 2, 1). In our case, we have a timelike vector p that breaks the
symmetry from SO(d − 1, 1) to SO(d − 1). However, the Casimir equation is the same in
both cases, and the only difference is a minus sign in our definition of the cross-ratio ζ.

Now, we can finally write the light-ray OPE for a two-point event shape. For simplicity,
we consider the case where the sink, source, and detectors are all scalars. In this case, the
higher transverse spin terms in the light-ray OPE cannot contribute, because there is
no conformally-invariant three-point structure between two scalars and a non-traceless-
symmetric tensor. From the OPE (3.89), we have

〈φ4(p)|L[φ1](∞, z1)L[φ2](∞, z2)|φ3(p)〉

= πi

∫ d
2 +i∞

d
2−i∞

d∆
2πiC∆−1,0(z1, z2, ∂z2)〈φ4(p)|O+

∆,−1(∞, z2) + O−∆,−1(∞, z2)|φ3(p)〉

= −πi
∫ d

2 +i∞

d
2−i∞

d∆
2πi(C

+(∆,−1) + C−(∆,−1))C∆−1,0(z1, z2, ∂z2)〈φ4(p)|L[O](∞, z2)|φ3(p)〉,

(5.9)

where 〈0|φ4Oφ3|0〉 is the standard Wightman structure (3.90) with 2 → 4 and 1 → 3.
Plugging in the expression (2.37) for the light transform and Fourier transform (with ap-
propriate relabelings), and using (5.2) we find

〈φ4(p)|L[φ1](∞, z1)L[φ2](∞, z2)|φ3(p)〉 = (−p2)
∆1+∆2+∆3+∆4−4−d

2 θ(p)
(−2z1 · p)∆1−1(−2z2 · p)∆2−1Gφ1φ2(ζ), (5.10)

where

Gφ1φ2(ζ) = 2d+4−∆3−∆4π
d
2 +3eiπ

∆4−∆3
2

×
∫ d

2 +i∞

d
2−i∞

d∆
2πi

Γ(∆− 2)
(
C+(∆,−1) + C−(∆,−1)

)
Γ(∆−1+∆3−∆4

2 )Γ(∆−1−∆3+∆4
2 )Γ(∆3+∆4−∆−1

2 )Γ(∆−1+∆3+∆4−d
2 )

f∆1,∆2
∆ (ζ).

(5.11)

In the special case where the sink and source are the same φ3 = φ4 = φ, it is natural
to define an expectation value by dividing by a zero-point event shape:

〈φ(p)|φ(p)〉 ≡
∫
ddxeip·x〈0|φ(0)φ(x)|0〉 = 2d+1−2∆φπ

d+2
2

Γ(∆φ − d−2
2 )Γ(∆φ)

(−p2)
2∆φ−d

2 θ(p). (5.12)

We find

〈φ(p)|L[φ1](∞, z1)L[φ2](∞, z2)|φ(p)〉
〈φ(p)|φ(p)〉 =

Γ(∆φ − d−2
2 )Γ(∆φ)

2d+1−2∆φπ
d+2

2

(−p2)
∆1+∆2

2 −2Gφ1φ2(ζ)
(−2z1 · p)∆1−1(−2z2 · p)∆2−1 .

(5.13)
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5.2 Contour deformation in ∆ and spurious poles

In (5.11), the celestial block expansion of Gφ1φ2(ζ) takes the form of an integral over the
principal series ∆ ∈ d

2 + iR. When ζ < 1, the celestial block f∆1,∆2
∆ (ζ) is exponentially

damped in the right-half ∆-plane, so we can deform the contour into this region and pick
up poles in the integrand.

The coefficient function C±(∆, J) contains poles of the form

C±(∆, J) 3 − p±i (J)
∆−∆±i (J)

, (5.14)

where p±i (J) are products of OPE coefficients analytically-continued in J , and ∆±i (J) are
dimensions analytically-continued in J .31 When we deform the ∆-contour, we pick up
contributions from these poles. They are interpreted as light-ray operators in the light-ray
OPE.

In general, C±(∆, J) can also contain “spurious” poles at ∆ = d + J + n for integer
n, originating from poles in the conformal block GJ+d−1,∆−d+1(z, z) in the Lorentzian
inversion formula (3.27). In the usual conformal block expansion, these spurious poles
cancel with poles in G∆,J(z, z) that are encountered when deforming the ∆-contour from
the principal series to the positive real axis [24, 46, 53, 54]. However, the celestial block
f∆1,∆2

∆ (ζ) does not have poles in ∆ to the right of the principal series.32 Thus, it is not
clear how spurious poles in C±(∆, J) could cancel.

Remarkably, it turns out that when we set J = −1, spurious poles in C±(∆, J) are
absent. This can be seen as follows. Note that the following combination of conformal
blocks is free of poles to the right of ∆ = d

2 [24]:

GJ+d−1,∆−d+1(z, z)− r∆,JG∆,J(z, z), (5.15)

where

r∆,J =
Γ(J + d−2

2 )Γ(J + d
2)

Γ(J + 1)Γ(J + d− 2)
Γ(∆− 1)Γ(∆− d+ 2)
Γ(∆− d

2)Γ(∆− d−2
2 )

×
Γ(J −∆ + d)Γ(−d−J+∆−∆1+∆2+2

2 )Γ(−d−J+∆+∆3−∆4+2
2 )

Γ(∆− J − d+ 2)Γ(d+J−∆−∆1+∆2
2 )Γ(d+J−∆+∆3−∆4

2 )
. (5.16)

Suppose first that d 6= 4. Setting J = −1, the factor Γ(J + 1)−1 in (5.16) ensures that
r∆,−1 = 0, so that GJ+d−1,∆−d+1|J=−1 is free of poles to the right of ∆ = d

2 . In the special
case d = 4, we have [55, 56]

G∆,−1 = zz

z − z
(k∆−1(z)k∆−1(z)− k∆−1(z)k∆−1(z)) = 0, (5.17)

so that GJ+d−1,∆−d+1|J=−1 is again free of poles to the right of ∆ = d
2 .

33

31We comment on the possibility of non-simple poles or branch-cuts in ∆ below.
32Assuming |∆1−∆2| is not too large. See [23, 48] for examples of how to treat the case where |∆1−∆2|

is large.
33Note that the case d = 2 is not relevant to our discussion, since there is no transverse space Rd−2 in

which to consider the light-ray OPE.
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Let us also comment on the case d = 3. There, the Lorentz group is SL(2,R), whose
harmonic analysis is slightly different than for the higher-dimensional Lorentz groups. In
particular, the Plancherel measure for SL(2,R) has support on discrete series representa-
tions in addition to principal series representations. In this case, we expect the contribution
of discrete series representations to be cancelled by poles in C±(∆, J), in the same way as
occurs in the four-point function of fermions in the SYK model [57].

The end result is that spurious poles and discrete state contributions are absent in the
celestial block expansion for all d > 2. Deforming the ∆-contour, we obtain Gφ1φ2(ζ) as a
sum of contributions from light-ray operators when ζ < 1

Gφ1φ2(ζ) = 2d+4−∆3−∆4π
d
2 +3eiπ

∆4−∆3
2

×
∑
i

Γ(∆i − 2)
(
p+

∆i
+ p−∆i

)
Γ(∆i−1+∆3−∆4

2 )Γ(∆i−1−∆3+∆4
2 )Γ(∆3+∆4−∆i−1

2 )Γ(∆i−1+∆3+∆4−d
2 )

f∆1,∆2
∆i

(ζ)

(when ζ < 1). (5.18)

Here, i labels Regge trajectories and we have abbreviated ∆i = ∆i(J = −1) and p±∆i
=

p±i (J = −1). When ζ = 1, the celestial block f∆1,∆2
∆ (ζ) is no longer exponentially damped

at large positive ∆, so (5.18) does not apply. We will see examples of how to treat the case
ζ = 1 in section 7.3.

We expect that the above analysis extends to the more general light-ray OPE
L[O1]L[O2], where O1 and O2 have general spins J1 and J2. In this case, the contour
integral over ∆ in (3.99) should become (in schematic notation)

L[O1]L[O2] = −πi
∑
i,λ

D(a)
∆i−1,λ

(
O+
i,J1+J2−1,λ(a) + O−i,J1+J2−1,λ(a)

)
+ . . . . (5.19)

Let us return to the assumption that C±(∆, J) (more generally O±∆,J,λ(a)) has only
simple poles in ∆. This is known to be true when the signature and spin are such that
C±(∆, J) describes light-transforms of local operators, i.e. when J ∈ Z≥0 and ±1 = (−1)J .
However, for more general values of J , the singularity structure of C±(∆, J) as a function
of ∆ is not known. In the presence of other types of singularities like higher poles and
branch cuts, one can define light-ray operators O±i,J in terms of discontinuities across those
singularities, and then suitable generalizations of (5.18) and (5.19) apply.

5.3 No contribution from disconnected terms

Consider an event shape of identical scalars

〈φ(p)|L[φ]L[φ]|φ(p)〉. (5.20)

The four-point function of φ’s can be split into connected and disconnected pieces

〈φ(x1)φ(x2)φ(x3)φ(x4)〉
= 〈φ(x1)φ(x2)φ(x3)φ(x4)〉c

+ 〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉+ 〈φ(x1)φ(x3)〉〈φ(x2)φ(x4)〉+ 〈φ(x1)φ(x4)〉〈φ(x3)φ(x2)〉.
(5.21)
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After taking the light-transforms to compute (5.20), the disconnected terms in (5.21) must
drop out. The reason is that the light-transform of a Wightman two-point function van-
ishes, since the light-transformed operator annihilates the vacuum.

Despite the simplicity of this argument, vanishing of disconnected contributions in the
celestial block expansion is slightly nontrivial. The mechanism is similar to the vanishing
of spurious poles discussed in section 5.2. Note that the contribution of disconnected terms
to C+(∆, J) is given by the OPE coefficient function of Mean Field Theory (MFT). This
is [47, 48]

CMFT(∆,J)

=
2d+1−2∆Γ(J+ d

2)Γ(d+1+J−∆
2 )Γ(∆−1)Γ(∆+J

2 )Γ(d2−∆φ)2Γ(J−∆
2 +∆φ)Γ(∆+J−d

2 +∆φ)
Γ(J+1)Γ(d+J−∆

2 )Γ(∆− d
2)Γ(∆+J−1

2 )Γ(2d+J−∆−2∆φ

2 )Γ(d+J+∆−2∆φ

2 )Γ(∆φ)2
.

(5.22)

Due to the factor Γ(J + 1)−1, this function vanishes at J = −1. Thus, we have

C±(∆, J = −1) = C±c (∆, J = −1), (5.23)

where the subscript c indicates the contribution of the connected term alone. Consequently,
disconnected terms don’t contribute to the celestial block expansion (5.11), as expected.

5.4 Relationship to t-channel blocks and superconvergence

In [1], we introduced an alternative expansion for event shapes in terms of t-channel event-
shape blocks Gt∆′,J ′(p, z1, z2). We computed Gt∆′,J ′(p, z1, z2) by inserting a projector onto
an individual conformal multiplet O∆′,J ′ between L[O1] and L[O2]. An alternative way
to obtain it is to first find the contribution of the t-channel four-point block G∆′,J ′(1 −
z, 1 − z) in the Lorentzian inversion formula and then plug this into the celestial block
expansion (5.11).

For example, in the case of scalars Oi = φi with dimensions ∆i, we claim that

Gt∆′,J ′(p, z1, z2) = (−p2)
∆1+∆2+∆3+∆4−4−d

2 θ(p)
(−2z1 · p)∆1−1(−2z2 · p)∆2−1G

t
∆′,J ′(ζ), (5.24)

where

Gt∆′,J ′(ζ) = 2d+4−∆3−∆4π
d
2 +3eiπ

∆4−∆3
2

×
∫ d

2 +i∞

d
2−i∞

d∆
2πi

2Γ(∆− 2)B(∆,−1; ∆′, J ′)
Γ(∆−1+∆3−∆4

2 )Γ(∆−1−∆3+∆4
2 )Γ(∆3+∆4−∆−1

2 )Γ(∆−1+∆3+∆4−d
2 )

f∆1,∆2
∆ (ζ).

(5.25)

Here B(∆, J ; ∆′, J ′) is the Lorentzian inversion of a single t-channel block (defined
near (4.14)) and Gt∆′,J ′(p, z1, z2) are the functions defined in (5.160) in [1]. We have verified
this identity numerically for some special cases in d = 2 and d = 4 using formulas for B±

from [51].
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One property of event-shape t-channel blocks is that they are regular in the limit
z1 → z2. This is consistent with (5.25) because the Lorentzian inversion of a single t-
channel block contains double and single poles at double-trace values of ∆, and no other
singularities in ∆ [24, 51]. Thus, when we deform the ∆-contour in (5.25) to pick up poles,
we obtain only double-trace celestial blocks, which are indeed regular near ζ = 0.

Equation (5.25) lets us clarify the relationship between (4.15) and the superconvergence
sum rules written in [1]. Equation (4.15) is a superconvergence sum rule written in ν-space,
obtained by decomposing the commutator (4.2) into celestial conformal partial waves. By
contrast, the sum rules of [1] are obtained by decomposing the commutator into t-channel
conformal multiplets (each of which is a finite sum of spherical harmonics on the celestial
sphere). To go from (4.15) to the formulas of [1], we can integrate (4.15) against celestial
blocks.

6 Contact terms

In addition to giving a convergent expansion for the product

L[O1](x, z1, ~w1)L[O2](x, z2, ~w1) (6.1)

for z1 6∝ z2, the OPE expansion (3.99) can also capture contact terms in the limit z1 → z2,
such as those studied in [10]. A complete description of possible contact terms is beyond the
scope of this work. Instead, in this section, we will study two specific examples and explain
how (3.99), suitably interpreted, can be used to determine contact terms at z1 ∝ z2. The
contact terms in both examples ultimately arise for the same reason: we must be careful
about the distributional interpretation of the integrand in (3.99). In particular, we must
ensure that this distribution is analytic in ∆.

6.1 Charge detector commutator

Our first example concerns contact terms in the OPE of charge detectors,34

L[Ja](x, z1)L[Jb](x, z2), (6.2)

where Ja is a current for a global symmetry group G, and a is an adjoint index for G.
From [10], the commutator should contain a contact term

[L[Ja](x, z1),L[Jb](x, z2)] = ifabcδd−2(z1, z2)L[Jc](x, z1), (6.3)

where fabc are the structure constants of G, and δd−2(z1, z2) is a delta-function on the null
cone. To see this, note that ∫

Dd−2z L[Ja](x, z) = Qa, (6.4)

34Note that a sufficient condition for the charge-charge correlator to exist is J0 < 1. Therefore, we
expect that we encounter divergences in gauge theories both in the weak and strong coupling perturbative
expansion. On the other hand, we expect that it exists in the critical O(N) model.
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and we should have

[Qa, Jb(x, z)] = ifabcJc(x, z). (6.5)

Requiring that [L[Ja](x, z1),L[Jb](x, z2)] vanishes for z1 6∝ z2 we arrive at (6.3). Vanishing
of this commutator for z1 6∝ z2 was justified in [1] if J0 < 1. This also follows from the
arguments of section 4.1.

We would now like to argue for (6.3) using the light-ray OPE. Recall that the commu-
tator is a sum of light-transforms of local operators with spin J1 + J2 − 1 = 1. Thus, we
must understand three-point structures

〈Ja(x1, z1)Jb(x2, z2)Oc∆(x3, z3)〉(a) (6.6)

where Oc∆ is a local spin-1 operator in the adjoint representation of G, with dimension ∆.
There exist two tensor structures

〈J(x1,z1)J(x2,z2)O∆(x3,z3)〉(1) = V1H23+V2H13+(∆+d−2)V3H12+(∆+3)V1V2V3

X
2d−∆−1

2
12 X

∆+1
2

13 X
∆+1

2
23

,

(6.7)

〈J(x1,z1)J(x2,z2)O∆(x3,z3)〉(2) =
(∆−2d+3)((∆+1)(V1H23+V2H13)−(∆−2d+1)V3H12)+(∆−d+1)(∆+3)V −1

3 H23H13

X
2d−∆−1

2
12 X

∆+1
2

13 X
∆+1

2
23

.

(6.8)

Here we used the convention V1 = V1,23 and its cyclic permutations, and Hij , Vi,jk, Xij

are defined in appendix D, see also [42]. The second structure cannot appear in the local
three-point function (6.6) for generic ∆ because of the term involving V −1

3 . However,
when O = J and ∆ = d− 1, the term with V −1

3 vanishes, and this structure is allowed.35

Moreover, at ∆ = d− 1 Ward identities fix the coefficient λ2 of the second structure as

λabc2 = CJf
abc

(d2 − 4) volSd−1 , (6.9)

where CJ is defined by

〈Ja(x1, z1)Jb(x2, z2)〉 = CJ
H12δ

ab

Xd
12

. (6.10)

We will now argue that the second structure survives the map to celestial structures even
at ∆ = d− 1 as a contact term.

According to the results of section 3.4.4, naïvely, when ∆ = d − 1 the structure (6.8)
does not survive the map to celestial structures because it does not contain factors of V −1

3 .
However, this is only true for z1 6∝ z2. When z1 ∝ z2, this claim must be modified. It
should be possible to see this directly by performing a more careful analysis of the map to
celestial structures. However, we can also use the following indirect argument. According

35We thank Simon Caron-Huot for pointing out this interpretation of the second structure at ∆ = d− 1.
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to the results of section 3.4.4, for generic ∆ the structure (6.8) gets mapped to the following
OPE contribution

L[Ja](x0,~y1)L[Jb](x0,~y2)3 iπ (∆+3)(∆−d+1)λabc2
CJ

(|~y12|(∆−1)−2(d−2)+· · ·)L[Oc](x0,~y2).

(6.11)

This result is obtained using (3.99) and (3.103). Here, we put x0 at past null infinity and
used transverse coordinates ~yi to parametrize the detectors. The factor (∆−d+1) appears
because only the term with V −1

3 in (6.8) contributes. We can now take the limit ∆→ d−1
in this expression, taking into account that

(∆− d+ 1)|~y12|(∆−1)−2(d−2) → (volSd−3)δd−2(~y1 − ~y2), (6.12)

while the higher-order terms in the parenthesis in (6.11) are less singular and go to zero.
We then find

L[Ja](x0, ~y1)L[Jb](x0, ~y2) 3 iπ (d+ 2)λabc2 volSd−3

CJ
δd−2(~y1 − ~y2)L[Jc](x0, ~y2)

= ifabc

2 δd−2(~y1 − ~y2)L[Jc](x0, ~y2). (6.13)

It follows from the discussion in 4.1 that this is the only term that survives after taking
the commutator,36 and so we find

[L[Ja](x0, ~y1),L[Jb](x0, ~y2)] = ifabcδd−2(~y1 − ~y2)L[Jc](x0, ~y2), (6.14)

as expected.
We expect that it should be possible to generalize this discussion to other commutators

considered in [10]. The main difficulty in this generalization is that the operators considered
in [10] are descendants of light transforms [1]. We expect that the light-ray OPE can be
generalized to OPE of these descendants; we briefly discuss this direction in section 8.

6.2 Contact terms in energy correlators in N = 4 SYM

Our second example concerns the celestial block expansion (5.11). For simplicity, we will
specialize to ∆i = 2, which is relevant for the case of energy-energy correlator in N = 4
SYM studied in the next section, see (7.11) and (7.12).

We will focus on the function

f̂∆(ζ) = 4π4Γ(∆− 2)
Γ(∆−1

2 )3Γ(3−∆
2 )

f4,4
∆ (ζ)

= 4π4Γ(∆− 2)
Γ(∆−1

2 )3Γ(3−∆
2 )

ζ
∆−7

2 2F1(∆−1
2 , ∆−1

2 ,∆− 1, ζ) (6.15)

that multiplies C+(∆,−1) under the integral in (7.12). Naïvely, this function vanishes at
∆ = 3 + 2n due to the Γ-function in the denominator. However, at the same time the

36This is assuming that the first structure (6.7) does not produce contact terms under the map to celestial
structures.
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factor ζ
∆−7

2 becomes singular as ζn−2 if n = 0, 1. To interpret (7.12) in a distributional
sense and simultaneously treat it as the integral of an analytic function, we must ensure
that we make sense of f̂∆(ζ) as a distribution that is analytic in ∆. This distribution must
be defined for ζ ∈ [0, 1].

For Re ∆ > 5, f̂∆(z) is integrable near ζ = 0 and thus uniquely defines a distribution
analytic in ∆. Therefore, for all other ∆ the distribution f̂∆(z) must be defined by analytic
continuation in ∆. For example,

f̂5(ζ) = lim
∆→5

f̂∆(ζ) = lim
∆→5

8π4 ∆−5
2 ζ

∆−7
2 = 8π4δ(ζ), (6.16)

and similarly

f̂3(ζ) = 4π4δ′(ζ)− 2π4δ(ζ). (6.17)

The other values of ∆ that give negative integer powers of ζ are ∆ = 1 − 2n for n ≥ 0.
In these cases, we find f̂∆(ζ) = 0, due to higher-order zeros coming from Γ(∆−1

2 )3 in the
denominator. For other values of ∆, the exponent of ζ, even if large and negative, is non-
integer, and analytic continuation in ∆ defines a distribution even though there is no zero
coming from the Γ-functions.

As we will see in the next section, the function relevant for scalar event shapes in
N = 4 SYM is ζ2f̂∆(ζ). Since we only a found delta function and its first derivative in
f̂∆(ζ), this means that there are no contact terms in the scalar event shapes. Alternatively,
by repeating the above analysis for ζ2f̂∆(ζ) we find that it stops being integrable at ∆ = 1,
at which point the Γ(∆−1

2 )3 factor in denominator kicks in, and we do not get interesting
distributions.

We will also need a slight refinement of the result for f̂∆(ζ) near ∆ = 5. Near this
point, the only term non-integrable in ζ comes from the leading term of the 2F1, so we can
write

f̂∆(ζ) ∼ 4π4Γ(∆− 2)
Γ(∆−1

2 )3Γ(3−∆
2 )

ζ
∆−7

2 . (6.18)

Furthermore,

4π4Γ(∆− 2)
Γ(∆−1

2 )3Γ(3−∆
2 )

= 4π4(∆− 5) + 2π4(∆− 5)2 − π4(∆− 5)3 +O((∆− 5)4), (6.19)

and

ζ
∆−7

2 = 2
∆− 5δ(ζ) +

[1
ζ

]
0

+ ∆− 5
2

[ log ζ
ζ

]
0

+O((∆− 5)2), (6.20)

so

f̂∆(ζ) ∼8π4δ(ζ) + 4π4
(
δ(ζ) +

[1
ζ

]
0

)
(∆− 5)

− 2π4
(
δ(ζ)−

[1
ζ

]
0
−
[ log ζ

ζ

]
0

)
(∆− 5)2 +O((∆− 5)3). (6.21)
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Here the distribution [ζ−1]0 is in principle defined by the Laurent expansion in which it
appears. Otherwise, one can define it as the unique distribution which agrees with ζ−1 on
test functions which vanish at ζ = 0 and for which∫ 1

0
dζ

[1
ζ

]
0

= 0. (6.22)

Similar comments apply to [ζ−1 log ζ]0. It is straightforward to obtain subleading terms
in (6.21). In section 7 we will see that the contact terms we just described are necessary
to satisfy the Ward identities for the energy-energy correlator.

7 Event shapes in N = 4 SYM

In this section, we apply the machinery derived above to scalar half-BPS operators in
N = 4 SYM. We re-derive some previous results both at weak and strong coupling and
make further predictions. The basic operators of interest are

OIJ = Tr
(

ΦIΦJ − 1
6δ

IJΦKΦK
)
, (7.1)

which transform as traceless symmetric tensors of SO(6), i.e. in the 20′ representation.
These operators are part of a supermultiplet that also contains R-symmetry conserved
currents, supersymmetric currents, and the stress tensor, among other operators.

We will study a scalar event shape, where the detectors, source, and sink are all built
from OIJ ’s. Superconformal Ward identities relate the four-point function of 20′ scalars
to four-point functions of other operators in the stress tensor multiplet [58, 59]. These
relations were explicitly worked out in [29, 30]. In particular they imply a simple relation
between scalar event shapes and energy-energy correlators which we review below.

The structure of the section is as follows. We first review basic properties of the
four-point function of 20′ operators and define the scalar event shape of interest. We then
explain its relation to the energy-energy correlator which is the main subject of our interest.
In sections 7.3, 7.4, 7.5, we apply the light-ray OPE at weak coupling at tree-level, 1-loop,
and 2-loops (at leading and subleading twist), finding agreement with previous results and
completing them with contact term contributions. In section 7.7, we use known OPE data
to make a new prediction for the small-angle limit at 3 and 4-loops. In section 7.8, we
apply the OPE at strong coupling, again finding agreement with previous results.

7.1 Review: event shapes in N = 4 SYM

The scalar event shape of interest is built from OIJ ’s, where the R-symmetry indices are
contracted with particular polarizations. Following the conventions of [6], we treat the in-
and out-states differently from the detectors. For the in- and out-states, we contract OIJ

with null polarization vectors YI ∈ C6,

O(x, Y ) =
(
N2
c − 1
2π4

)−1/2

OIJ(x)YIYJ . (7.2)
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The two-point function of O(x, Y ) is given by

〈O(x, Y )O(0, Y )〉 =
(
N2
c − 1
2π4

)−1
N2
c − 1

32π4
(Y · Y )2

x4 = (Y · Y )2

16x4 . (7.3)

For the detectors, we contract the R-symmetry indices of OIJ with traceless symmetric
tensors SIJ ,

O(x, S) = 2OIJ(x)SIJ . (7.4)

Obviously, O(x, Y ) and O(x, S) encode the same thing, with the R-symmetry indices
treated slightly differently.

Let us denote O(z) ≡ 1
2L[O](∞, z), where z is a future-pointing null vector.37 Our

scalar event shape is defined by

〈O(z1, S1)O(z2, S2)〉p,Y ≡ σ−1
tot(p, Y )

∫
ddxe−ip·x〈Ω|O(x, Y )O(z1, S1)O(z2, S2)O(0, Y )|Ω〉,

(7.5)

σtot(p, Y ) ≡
∫
ddxe−ip·x〈Ω|O(x, Y )O(0, Y )|Ω〉 = 2π3 (Y · Y )2

16 θ(p). (7.6)

This event shape is sometimes called “scalar flow”, by analogy with energy flow observables
that measure the flow of energy at null infinity.

Following [6], let us choose the R-symmetry structures

Y0 = (1, 0, 1, 0, i, i),
S0 = diag(1,−1, 0, 0, 0, 0),
S′0 = diag(0, 0, 1,−1, 0, 0). (7.7)

With this choice, we have 〈O(x, Y 0)O(0, Y0)〉 = 1
x4 . Moreover, only the 105 representa-

tion of SO(6) contributes to the O(n1, S)×O(n2, S
′) OPE. Finally, superconformal Ward

identities relate the event shape with these choices to energy correlators

〈E(z1)E(z2)〉p,Y0 = 16(−p2)2

(−2z1 · z2)2 〈O(z1, S0)O(z2, S
′
0)〉p,Y0 + protected contact terms. (7.8)

(The energy correlators are independent of Y .) In [29], this relation was derived while
ignoring contact terms at z1 ∝ z2. We will find that consistency with the OPE requires
correcting this relation by contact terms. We expect that these contact terms come from
the protected part of the 20′ four-point function. We discuss them in more detail below.

Using (5.13), the scalar event shape can be written

〈O(z1, S0)O(z2, S
′
0)〉p,Y0 =

(1
2

)2 1
2π3

GOO(ζ)
(−2z1 · p)(−2z2 · p)

, (7.9)

37The factor of 1
2 is for consistency with the definitions of [6].
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where the factor (1
2)2 in (7.9) comes from O(z) ≡ 1

2L[O](∞, z). The function GOO(ζ) has
a celestial block expansion given by (5.11):

GOO(ζ) =
∫ 2+i∞

2−i∞

d∆
2πiC

+(∆,−1) 16π5Γ(∆− 2)
Γ(∆−1

2 )3Γ(3−∆
2 )

f2,2
∆ (ζ). (7.10)

Here, C+(∆,−1) encodes the OPE data of the 〈OOOO〉 four-point function, analytically
continued to spin J = −1. We discuss this four-point function in section 7.2. Since the
105 representation appears in the symmetrized tensor square of the 20′ representation, the
OPE contains only even spin operators. This is the reason for the absence of C−(∆,−1)
in (7.10).

The superconformal Ward identity (7.8) lets us obtain a celestial block expansion for
the energy-energy correlator in terms of OPE data for the scalar four-point function. Let
us define the function FE(ζ) by

〈E(z1)E(z2)〉p,Y0 = 4 volS2

2π3
(−p2)4

(−2z1 · p)3(−2z2 · p)3FE(ζ). (7.11)

Here we include the factor 4 volS2 = 16π because it simplifies the Ward identities discussed
below. The relation (7.8) implies that FE has the celestial block expansion

FE(ζ) =
∫ 2+i∞

2−i∞

d∆
2πiC

+(∆,−1) 4π4Γ(∆− 2)
Γ(∆−1

2 )3Γ(3−∆
2 )

f4,4
∆ (ζ) + ξ(ζ), (7.12)

where

f4,4
∆ (ζ) = ζ

∆−7
2 2F1

(∆− 1
2 ,

∆− 1
2 ,∆− 1, ζ

)
, (7.13)

ξ(ζ) ≡ 1
4(2δ(ζ)− δ′(ζ)). (7.14)

Here, C+(∆,−1) is the same function that enters (7.10). The function ξ(ζ) represents
the protected coupling-independent contact terms mentioned in (7.8). Below, we fix ξ(ζ)
by requiring consistency with Ward identities and check that it is indeed independent of
the coupling (at one and two loops, and at strong coupling). Its effect is to remove the
contribution of short multiplets from C+(∆,−1) in (7.12). It would be interesting to derive
the presence of ξ(ζ) from first principles along the lines of [29].

For 0 < ζ ≤ 1, the superconformal Ward identity relating scalar flow and the energy-
energy correlator takes the simple form

FE(ζ) = GOO(ζ)
4πζ2 , (0 < ζ ≤ 1). (7.15)

However, the celestial block expansion (7.12) also captures contact terms at ζ = 0 that are
not captured by (7.15).

When evaluating the celestial block expansion for ζ < 1, we will find it convenient to
close the ∆-contour to the right as discussed in section 5.2 and write the event shape as a
sum over Regge trajectories, see (5.18). For example, we have

FE(ζ) =
∑
i

p∆i

4π4Γ(∆i − 2)
Γ(∆i−1

2 )3Γ(3−∆i
2 )

f4,4
∆i

(ζ) + ξ(ζ), (ζ < 1). (7.16)
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Before computing FE(ζ), let us comment on some of its properties. First, FE(ζ) is
constrained by Ward identities. By integrating E(z1) over the celestial sphere with the
appropriate weight, we can produce different components of the translation generators
Pµ. In the energy correlator (7.11), these must evaluate to pµ, which leads to the Ward
identities ∫ 1

0
dζ FE(ζ) = 1

2 , (7.17)∫ 1

0
dζ(2ζ − 1)FE(ζ) = 0. (7.18)

Since (7.17), (7.18) are sensitive to the values of FE(ζ) at arbitrary angle ζ they can be
used as a nontrivial consistency check on the computations of FE(ζ).

Finally, note that FE(ζ) has a weak-coupling expansion

FE(ζ) = F (0)
E (ζ) + aF (1)

E (ζ) + . . . , a ≡ g2
YMNc

4π2 . (7.19)

FE(ζ) is explicitly known up to two-loop order [34], and as a two-fold integral at three
loops [35].38 It is also easily computable at strong coupling, reproducing the result of
Hofman and Maldacena [5].

7.2 Review: four-point function of 20′ operators

The main ingredient in computing FE(ζ) is the four-point function of 20′ operators that
enters in the definition of the scalar event shape (7.5), specialized to the R-symmetry
structures (7.7). This is

〈O(x4, Y 0)O(x1, S0)O(x2, S
′
0)O(x3, Y0)〉 = G(105)(u, v)

x4
12x

4
34

. (7.20)

It will be convenient to write G(105)(u, v) in two different ways. Firstly, we have

G(105)(u, v) = c

2(2π)4

(
u2 + u2

v2

)
+ 1

(2π)4
u2

v

(1
2 + uΦ(u, v)

)
, (7.21)

where the central charge c is given by

c = N2
c − 1
4 . (7.22)

Here, the function Φ(u, v) = Φ(v, u) = 1
vΦ
(
u
v ,

1
v

)
encodes the dependence of the correlator

on the coupling a (it is zero for a = 0). It is known explicitly up to three loops [60]. The
integrand for G(105)(u, v) is known up to ten loops in the planar limit [61, 62].

The other way of writing G(105)(u, v) is to organize it into the contribution of short
and long supermultiplets in the superconformal block expansion,

G(105)(u, v) = c

2(2π)4u
2G(short)(u, v) +H(u, v), (7.23)

38The quantity EEC(ζ) computed in [34, 35] is equal to our FE(ζ).
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where G(short)(u, v) encodes the contribution from protected operators and was computed
in [63]. H(u, v) encodes the contribution of long multiplets and can be written in terms of
superconformal blocks as follows

H(u, v) =
∑
∆

∑
even J

a∆,Jg∆+4,J(u, v) =
∑
∆

∑
even J

p∆,Jg∆,J(u, v) (7.24)

where g∆,J(u, v) are the usual conformal blocks and a∆,J is the three-point coupling to a
given superconformal primary, see e.g. [63].39 We will use p∆,J to denote the three-point
coupling to a given conformal primary. Note that only even spin operators enter in the
OPE decomposition of G(105)(u, v).

Because of the factor Γ(3−∆
2 )−1 in (7.16), most protected operators from G(short)(u, v)

will not contribute to FE(ζ). However, operators with dimensions ∆ = 3 and ∆ = 5 can
contribute contact terms at ζ = 0, in accordance with the discussion in section 6.2.

7.3 Tree level

To get the tree-level correlator we set Φ(u, v) = 0 in (7.20). Recall from section 5.3 that

C+(∆, J = −1) = Cc(∆, J = −1), (7.25)

where Cc(∆,−1) corresponds to the connected part of the four-point function. Written in
terms of cross-ratios, the connected tree-level correlator takes the form

〈O(x4, Y 0)O(x1, S0)O(x2, S
′
0)O(x3, Y0)〉tree

c = 1
2(2π)4

1
x2

14x
2
23x

2
13x

2
24

= 1
x4

12x
4
34

(
1

2(2π)4
u2

v

)
.

(7.26)

Plugging into the inversion formula, we have

Ctree
c (∆, J) = 2κ∆+J

4

∫ 1

0

∫ 1

0

dz

z2
dz

z2
(z − z)2

(zz)2 GJ+3,∆−3(z, z)dDisc
[

1
2(2π)4

(zz)2

(1− z)(1− z)

]
,

(7.27)

where the factor of 2 in front comes from the fact that the t- and u-channel terms in the
inversion formula are equal. dDisc 1

1−z is delta-function supported near z = 1. To regulate
it, we will replace

zz

(1− z)(1− z) →
(zz)1+δ

((1− z)(1− z))1+δ . (7.28)

Recall that [55, 56]

GJ+3,∆−3(z, z) = zz

z − z
(k∆+J(z)k4+J−∆(z)− k∆+J(z)k4+J−∆(z)),

kβ(z) = zβ/22F1

(
β

2 ,
β

2 , β, z
)
. (7.29)

39Note that [64] used a different conformal block normalization.
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Doing the integral and removing the regulator δ → 0 leads to the result

Ctree
c (∆,J)

=
Γ(∆+J

2 )4

Γ(∆+J−1)Γ(∆+J)
1

2(2π)4

(
Γ(∆+J)
Γ(∆+J

2 )2
I1(J+4−∆

2 ,−1)−I1(∆+J
2 ,−1)Γ(J+4−∆)

Γ(J+4−∆
2 )2

)
,

(7.30)

where

Iα(h, p) ≡
∫ 1

0

dz

z(1− z)z
α
(

z

1− z

)p
k2h(z)

= Γ(α+ p+ h)Γ(−p)
Γ(α+ h) 3F2(h, h, α+ p+ h; 2h, α+ h; 1). (7.31)

We can now compute the energy-energy correlator by plugging (7.30) at J = −1 into (7.12).
The result is

Ctree
c (∆,−1) 4π4Γ(∆− 2)

Γ(∆−1
2 )3Γ(3−∆

2 )

= 1
8

(
1

Γ(∆−1
2 )

I1(3−∆
2 ,−1)

Γ(3−∆
2 )

− I1(∆−1
2 ,−1)

Γ(∆−1
2 )

Γ(∆− 1)
Γ(3−∆)
Γ(3−∆

2 )3

)

= 1
8

Γ(∆−1
2 )

Γ(∆− 1)Γ(3−∆
2 )

∫ 1

0

dz

z

(
Γ(∆− 1)
Γ(∆−1

2 )2
k3−∆(z)− Γ(3−∆)

Γ(3−∆
2 )2

k∆−1(z)
)

= 1
8

Γ(∆−1
2 )2

Γ(∆− 2) . (7.32)

This expression is free of poles to the right of the principal series, so by closing the contour
in (7.12) to the right we conclude that FE(ζ) = 0 for 0 < ζ < 1. This ignores the possibility
of contact terms discussed in section 6.2, which we now address.

Let us start by studying contact terms at ζ = 0. As explained in section 6.2, apart
from the protected contact term ξ(ζ) in (7.14), the energy correlator FE(x) may receive
contact terms from the integral (7.12). Indeed, when ζ = 0, the distribution f̂∆(ζ) does
not vanish at ∆ = 3, 5, and we in fact have

F (0)
E (ζ) = −(4π4δ′(ζ)− 2π4δ(ζ))res∆=3C

tree
c (∆,−1)− 8π4δ(ζ)res∆=5C

tree
c (∆,−1) + ξ(ζ)

= 1
4δ(ζ) , (ζ < 1). (7.33)

Let us now analyze contact terms at ζ = 1. When ζ = 1, we should worry about the
convergence of the integral when closing the contour, since there is no suppression coming
from ζ

∆−7
2 in the celestial block. To probe possible delta-function terms localized at ζ = 1

let us consider moments of the energy flow∫ 1

0
dζ ζNF (0)

E (ζ) = δN,0
4 +

∫ C0+i∞

C0−i∞

d∆
2πiC

tree
c (∆,J =−1) 4π4Γ(∆−2)

Γ(∆−1
2 )3Γ(3−∆

2 )

∫ 1

0
dζ ζNf4,4

∆ (ζ), ·

(7.34)
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where we deformed the integration contour to Re[∆] = C0 > 5 so that the integral∫ 1
0 dζ ζ

Nf4,4
∆ (ζ) converges for N ≥ 0. We find that at large |∆| � 1 the integrand be-

haves as ∫ 1

0
dζ ζNF (0)

E (ζ) = δN,0
4 +

∫ 2+i∞

2−i∞

d∆
2πi

1
2∆ = 1 + δN,0

4 , (7.35)

where we evaluated the ∆ integral using the principal value prescription. If we subtract
off this leading behavior, then the contour deformation in ∆ becomes legitimate and we
get 0 for the remainder. This implies that F (0)

E (ζ) 3 1
4δ(1 − ζ), in agreement with the

straightforward scattering amplitude evaluation, see e.g. [6]. More generally, we see that
distributional terms supported at ζ = 1 are encoded in the large-∆ behavior of C+(∆, J =
−1).

To summarize, the energy-energy correlator at tree-level is given by

F (0)
E (ζ) = 1

4(δ(ζ) + δ(1− ζ)). (7.36)

Note that this is the unique expression with delta functions at ζ = 0 and ζ = 1 that satisfies
both Ward identities (7.17) and (7.18).

7.4 One loop

To study perturbative corrections, let us briefly discuss how they are encoded in C+(∆, J).
Non-perturbatively, we have poles of the form

C+(∆, J) ∼ − ai(a)
∆−∆i(a) , (7.37)

where ai(a) and ∆i(a) are, respectively, the product of OPE coefficients and scaling di-
mension of an exchanged operator.

We furthermore have expansions

ai(a) = a
(0)
i + a a

(1)
i + a2a

(2)
i + · · · , (7.38)

∆i(a) = ∆(0)
i + a γ

(1)
i + a2γ

(2)
i + · · · , (7.39)

and thus

C+(∆, J) ∼ − a
(0)
i

∆−∆(0)
i

+ a

(
− a

(1)
i

∆−∆(0)
i

− a
(0)
i γ

(1)
i

(∆−∆(0)
i )2

)
+ · · · . (7.40)

Suppose now that there is a degeneracy at tree level, i.e. ∆(0)
i = ∆(0)

∗ . Then we have

C+(∆, J) ∼ −
∑
i a

(0)
i

∆−∆(0)
∗

+ a

(
−
∑
i a

(1)
i

∆−∆(0)
∗
−
∑
i a

(0)
i γ

(1)
i

(∆−∆(0)
∗ )2

)
+ · · ·

∼ − 〈a(0)
∗ 〉

∆−∆(0)
∗

+ a

(
− 〈a(1)

∗ 〉
∆−∆(0)

∗
− 〈a(0)

∗ γ
(1)
∗ 〉

(∆−∆(0)
∗ )2

)
+ · · · , (7.41)
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where we introduced the notation 〈· · ·〉 (used extensively below) representing the total
contribution of operators that are degenerate at tree level. Below, the subscript ∗ will be
replaced by a label referring to the degenerate group of operators. The contribution of
these poles to (7.12) now becomes

F (1)
E (ζ) 3 〈a(1)

∗ 〉
[

4π4Γ(∆− 2)
Γ(∆−1

2 )3Γ(3−∆
2 )

f4,4
∆ (ζ)

]
∆=∆(0)

∗

+ 〈a(0)
∗ γ

(1)
∗ 〉

[
∂∆

4π4Γ(∆− 2)
Γ(∆−1

2 )3Γ(3−∆
2 )

f4,4
∆ (ζ)

]
∆=∆(0)

∗

.

(7.42)

In this section, we will not compute C+(∆,−1), but rather use the known OPE data
〈a(1)
∗ 〉 and 〈a(0)

∗ γ
(1)
∗ 〉, analytically continued to J = −1. The complete OPE data for the

one-loop correlator was written down in [65]. Recall from section 7.2 that the contribution
of long multiplets, which are the ones that receive loop corrections, is given by

H(u, v) = c

2(2π)4u
2
(

1 + 1
v2 −G

(short)(u, v)
)

+ 1
(2π)4

u2

v

(1
2 + uΦ(u, v)

)
. (7.43)

At tree level, this can be decomposed into superconformal blocks (7.24) as follows, see
(2.21) in [65],

〈a(0)
τ=2,J〉=

1
(2π)4

Γ(J+3)2

Γ(2J+5) ,

〈a(0)
τ,J〉=

c

(2π)4
Γ( τ2 +1)2Γ( τ2 +J+2)2

Γ(τ+1)Γ(τ+2J+3)

(
(τ+J+2)(J+1)+ (−1)τ/2

c

)
, τ = 4,6,8, . . . ,

(7.44)

where we used twist τ = ∆− J and even spin J ≥ 0 to label the operators.
Note that for τ > 2 there are degeneracies in the spectrum, so the 〈· · ·〉 notation

is necessary. One can check that (7.44) indeed correctly reproduces (7.43) upon setting
Φ(u, v) to zero.

In perturbation theory, we write

Φ(u, v) = a Φ(1)(u, v) + a2Φ(2)(u, v) + · · · , (7.45)

and similarly for H(u, v). At one loop we have

H(1)(u, v) = 1
(2π)4

u3

v
Φ(1)(u, v),

Φ(1)(u, v) = −1
4

1
z − z

(
2Li2(z)− 2Li2(z) + log zz log 1− z

1− z

)
. (7.46)

Analogously to (7.42), the OPE data enters as

δH(u, v) =
∞∑

τ=2,4,...; even J

(
〈a(1)
τ,J〉Gτ+4+J,J + 〈a(0)

τ,Jγ
(1)
τ,J〉∂τGτ+4+J,J

)
, (7.47)
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where for convenience we labeled the superconformal primaries by twist τ = ∆−J instead
of the dimension (as we did in (7.24)).

The result of the one-loop decomposition for anomalous dimensions is, see (A.24-A.25)
in [65],

〈γ2,J〉 ≡
〈a(0)

2,Jγ
(1)
2,J〉

〈a(0)
2,J〉

= 2S1(J + 2),

〈γτ,J〉 ≡
〈a(0)
τ,Jγ

(1)
τ,J〉

〈a(0)
τ,J〉

= −2
c

[η + 1]S1( τ2 ) + [η − 1]S1( τ2 + J + 1)
(τ + J + 2)(J + 1) + η

c

, (7.48)

where following [65] we introduced η = (−1)τ/2 and

Sk(N) =
N∑
i=1

1
ik
. (7.49)

We can concisely write the OPE coefficients at one loop by defining

〈a(1)
τ,J〉 ≡ 〈ατ,J〉〈a

(0)
τ,J〉+ 1

2∂J〈a
(0)
τ,Jγ

(1)
τ,J〉. (7.50)

The coefficients 〈ατ,J〉 are

〈α2,J〉 = −ζ2,

〈ατ,J〉 = −2
c

1(
(τ + J + 2)(L+ 1) + (−1)τ/2

c

)(1− η
2 ζ2 + (1 + η)S1( τ2 )2 − 1 + η

2 S2( τ2 )

− (1 + η)S1( τ2 )S1(τ) + [(2η − 1)S1( τ2 ) + (1− η)S1(τ)]S1( τ2 + J + 1)
)
, (7.51)

Note that for superconformal primaries of twist τ and spin J we should set ∆(0)
∗ =

4 + τ + J in (7.42). Here the shift by 4 is due to the form of the superconformal block
in (7.24). This means that for twist τ = 2n, n ≥ 1, and spin J = −1 we have to use
∆(0)
∗ = 3 + 2n. In this case, the first term in (7.42) vanishes for ζ 6= 0 due to the factor

Γ(∆−3
2 )−1. Thus, the only relevant term is the one proportional to 〈a(0)

τ,−1γ
(1)
τ,−1〉 for which

we get

〈a(0)
τ,−1γ

(1)
τ,−1〉 = (−1)τ/2+1 Γ(1 + τ

2 )4S1( τ2 )
4π4Γ(1 + τ)2 . (7.52)

From this we conclude that for 0 < ζ < 1

F (1)
E (ζ) = 2π4

∞∑
n=1

(−1)n+1〈a(0)
τ=2n,−1γ

(1)
τ=2n,−1〉

1
rn+1

f4,4
3+2n(ζ)

=
∞∑
n=1

(n!)2

2(2n)!S1(n)f4,4
3+2n(z) = −1

4
log(1− ζ)
ζ2(1− ζ) , (7.53)
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where

rh = Γ(h)2

Γ(2h− 1) . (7.54)

Again our results are in perfect agreement with the direct evaluation performed in [6].
Let us now analyze the contact terms at ζ = 0 and ζ = 1 in FE(ζ). First, let us fix

these contact terms using the result for 0 < ζ < 1

F (1)
E (ζ) = −1

4
log(1− ζ)
ζ2(1− ζ) (0 < ζ < 1), (7.55)

together with Ward identities. We will then check that we reproduce the same contact
terms at ζ = 0 using the light-ray OPE. We can rewrite (7.55) as

F (1)
E (ζ) = 1

4ζ −
1
4

log(1− ζ)
1− ζ + F (1),reg

E (ζ), (7.56)

where F (1),reg
E (ζ) is integrable near 0 and 1, and so has an unambiguous distributional

interpretation. We then only need to interpret the first two terms. The most general
expression we can write is40

F (1)
E (ζ) = c

(1)
0 δ(ζ) + c

(1)
1 δ(1− ζ) + 1

4

[1
ζ

]
0
− 1

4

[ log(1− ζ)
1− ζ

]
1

+ F (1),reg
E (ζ), (7.57)

where [· · · ]0 is defined near (6.22), and the definition of [· · · ]1 is analogous with ζ → 1− ζ.
Ward identities (7.17) and (7.18) require∫ 1

0
dζ F (1)

E (ζ) =
∫ 1

0
dζ(2ζ − 1)F (1)

E (ζ) = 0, (7.58)

from which we find

c
(1)
0 = −1

4 , c
(1)
1 = −ζ2

4 . (7.59)

We would now like to reproduce the distributional piece near ζ = 0

F (1)
E (ζ) = −1

4δ(ζ) + 1
4

[1
ζ

]
0

+ regular (7.60)

from the OPE. From the discussion in section 6.2 together with (7.42), this piece is given by

F (1)
E (ζ) 3 〈a(1)

τ=2,−1〉f̂5(ζ) + 〈a(0)
τ=2,−1γ

(1)
τ=2,−1〉∂∆f̂∆(ζ)|∆=5

= − 1
16π4 × 8π4δ(ζ) + 1

16π4 × 4π4
(
δ(ζ) +

[1
ζ

]
0

)
= −1

4δ(ζ) + 1
4

[1
ζ

]
0
, (7.61)

where we used (6.21). This is precisely the expected result.
40We assume that there are no derivatives of delta-functions. We verify this at ζ = 0 using the OPE.
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To summarize, the full one-loop energy-energy correlator takes the form

F (1)
E (ζ) = −1

4δ(ζ)− ζ2
4 δ(1− ζ) + 1

4

[1
ζ

]
0
− 1

4

[ log(1− ζ)
1− ζ

]
1

+ F (1),reg
E (ζ), (7.62)

where F (1),reg
E (ζ) is defined via (7.56). The distributional part at ζ = 1 is in agreement

with the one obtained in [6]. We also derive this ζ = 1 contact term from a different point
of view in appendix F.

7.5 Two loops

Next, we would like to perform a similar analysis for the two-loop result [66, 67]. In this
case, we must expand both the three-point coefficients and the anomalous dimensions up
to second order. We have

H(2)(u, v) =
∞∑

τ=2,4,...; even J

(
〈a(2)
τ,J〉Gτ+4,J + 〈a(1)

τ,Jγ
(1)
τ,J + a

(0)
τ,Jγ

(2)
τ,J〉∂τGτ+4,J

+ 1
2〈a

(0)
τ,J(γ(1)

τ,J)2〉∂2
τGτ+4,J

)
,

(7.63)

and a similar extension of (7.42) for the celestial block expansion (7.16). The explicit
expression for H(2) is [33]

H(2)(u,v) = 1
(2π)4

u3

v

(1
2(1+u+v)

[
Φ(1)(u,v)

]2
+2
[
Φ(2)(u,v)+Φ(2) (v,u)+ 1

v
Φ(2)

(
u

v
,
1
v

)])
,

Φ(2)(z,z) = 1
16

1
z−z

(
6(Li4(z)−Li4(z))−3log(zz)(Li3(z)−Li3(z))

+ 1
2 log2(zz)(Li2(z)−Li2(z))

)
. (7.64)

A complete OPE expansion of this result is not available in the literature (as far as we
know). Otherwise, we could simply evaluate the OPE data at J = −1, plug into the
celestial OPE formula, and read off the answer for the energy-energy correlator. Some parts
of the OPE expansion were obtained in [68], whose results we use below. For simplicity we
focus on the term that involves 〈a(1)

τ,J(γ(1)
τ,J)2〉, which on the celestial sphere maps to terms

containing log2 ζ.
Below, it will be useful to explicitly write the small-z expansion of ∂2

τGτ+4,J , which
takes the form

∂2
τGτ+4,J = (zz)2+ τ

2 log2 z

(1
4 g̃τ+4,J + 1

4(zz)g̃sub
τ+4,J + . . .

)
,

g̃τ,J = gτ/2,J = zJ 2F1

(
τ

2 + J,
τ

2 + J, τ + 2J, z
)
,

g̃sub
τ,J (z) = g̃τ+4,J−2(z) + τ − 2

4 g̃τ+2,J−1(z)− δJ,0g̃τ+2,−2(z) , (7.65)

where we only kept the terms containing log2 z.
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7.5.1 Leading twist

The leading-twist contribution to H(2) takes the form (zz)3 log2 zf3(z), where

f3(z) = 1
16

1
(2π)4

1
(1− z)z2

(
log2[1− z] + 2z Li2(z)

)
. (7.66)

Since there is no tree-level degeneracy for twist-two operators, this is equal to

f3(z) = 1
2
∑

even J

a
(0)
2,J

(
γ

(1)
2,J

)2
[1

4 g̃6,J(z)
]
. (7.67)

Indeed one can check that (7.67) reproduces (7.66) .

7.5.2 Subleading twist

Knowing 〈a(1)
τ,J(γ(1)

τ,J)2〉 at τ = 2 allows us to compute the ζ2 log ζ piece in F (2)(ζ). A really
nontrivial check would be to reproduce the ζ3 log ζ term. Indeed the two-loop result of [34]
contains both rational and transcendental pieces (π2) at this order. The latter should come
from the analytically continued 〈γ2〉 6= 〈γ〉2, due to the degeneracy of twist 4 operators.

We can compute the required OPE data from the piece (zz)4 log2 zf4(z) ∈ H(2), where

f4(z) =− 1
16

1
(2π)4

1
(1−z)z4

(
2z2+z(z−2) log[1−z]−(2+z2) log2[1−z]−2z(1+z)Li2(z)

)
.

(7.68)
This receives contributions from descendants of twist-two operators as well as from the
subleading twist-four Regge trajectory. The subleading trajectory has tree-level degenera-
cies that we have not resolved, and therefore we cannot simply compute the result using
our one-loop analysis.

The function (7.68) has decomposition

f4(z) = 1
2
∑

even J

a
(0)
2,J

(
γ

(1)
2,J

)2
[1

4 g̃
sub
8,J (z)

]
+ 1

2
∑

even J

〈a(0)
4,J [γ(1)

4,J ]2〉
[1

4 g̃8,J(z)
]
. (7.69)

Using

g̃τ,J(z) = z−
τ
2 g̃0,τ+J(z) (7.70)

and (7.65) it is easy to compute the contribution of descendants of twist 2 operators. After
that we are left with the contribution of twist-four primaries

f̃4(z) = 1
2(2π)4z4

−9
2−

1
4
z2

1−z+
(z−2)(18− z2

1−z )
8z log(1−z)+ 1

8(1+ z2

1−z ) log2(1−z)

 ,
(7.71)

which admits the decomposition (7.69) with the second term only. From this we find41

〈a(0)
4,J [γ(1)

4,J ]2〉 = 1
4π4

2−8−2J√π
3Γ(J + 7/2)

(
−6(11 + 7J + J2)Γ(3 + J)

4 + J

− Γ(4 + J)
(
π2 + 6(1− 2S1(3 + J))S1(3 + J) + 3S2(2 + J

2 )− 3S2(5+J
2 )
))

.

(7.72)
41To solve this decomposition problem, one can use the methods of [68].
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Evaluating at J = −1, we finally get

〈a(0)
4,−1[γ(1)

4,−1]2〉 = −2
9(π2 − 11) 1

2(2π)4 . (7.73)

Note the appearance of the transcendental quantity π2 which is absent for even integer J .

7.5.3 Two-loop energy correlator

Expanding (7.16) to the second order we get

F (2)
E (ζ) = 2π4

∞∑
n=1

((
〈a(0)
τ=2n,−1γ

(2)
τ=2n,−1〉+ 〈a(1)

τ=2n,−1γ
(1)
τ=2n,−1〉

) (−1)n+1

rn+1
f4,4

3+2n(ζ)

+ 〈a(0)
τ=2n,−1[γ(1)

τ=2n,−1]2〉(−1)n+1 1
2∂n

[
f4,4

3+2n(ζ)
rn+1

])
. (7.74)

Here, we used the fact that corrections to three-point coefficients alone do not contribute
to scalar flow, due to the vanishing of the prefactor in (7.16) at tree-level twists.

Since we do not have degeneracies at twist two, we can fully predict the n = 1 term
in (7.74). For n = 2, corresponding to twist-four operators, we only computed the term
〈a(0)

4,−1[γ(1)
4,−1]2〉. The only missing element in the twist two sector is the two-loop anomalous

dimension. It takes the following form (see e.g. formula (5.29) in [68])

γ
(2)
2,J = 2S−2,1(J + 2)− 2S1(J + 2)(S2(J + 2) + S−2(J + 2))− (S3(J + 2) + S−3(J + 2)) ,

(7.75)

where S−2,1(N) =
∑N
n=1

(−1)n
n2 S1(n) is an example of a nested harmonic sum. The relevant

analytic continuation from even spins to J = −1 gives

γ
(2),+
2,−1 = 2S+

−2,1(1) + π2

3 − 6 + 3
2ζ3 = −4 + π2

3 − ζ3, (7.76)

where we used standard methods [69] to perform the analytic continuation.
Plugging everything back, we get the following prediction for the small-angle expansion

of the scalar flow observable at two loops

F (2)
E (ζ) = 1

4ζ

(
1 + π2 − 5

6 ζ + . . .

)
log ζ + 1

4ζ

(
−1

2ζ3 + π2

6 − 3
)

+ . . . . (7.77)

This coincides with the expansion of the result in [34]. In principle, by performing the OPE
decomposition of the small z expansion of the two-loop result (7.64) further and evaluating
it at J = −1, we can predict higher order terms in the small-angle (small ζ) expansion of
the scalar event shape.

7.5.4 Contact terms

Let us also check that we reproduce the correct ζ = 0 contact terms in F (2)
E (ζ). Firstly,

as in the one-loop example, we can use the Ward identities to fix the contact terms in the
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Figure 12. Integrable part F (2),reg
E (ζ) of the two-loop energy correlator. Left: F (2),reg

E (ζ) as a
function of ζ. Right: F (2),reg

E (ζ)/h(ζ) as a function of ζ, where h(ζ) = (1− log ζ)(1− log(1− ζ))3.

two-loop result of [34]. We have

F (2)
E (ζ) =1

4
1
ζ

(
π2

6 −
1
2ζ3 − 3

)
+ 1

4
log ζ
ζ

+ ζ3
8

1
1− ζ + π2

16
log(1− ζ)

1− ζ + 1
8

log3(1− ζ)
1− ζ

+ F (2),reg
E (ζ), (7.78)

where F (2),reg
E (ζ) is integrable both at ζ = 0 and ζ = 1. We show the plot of F (2),reg

E (ζ) in
figure 12. It only has integrable logk-type singularities at the endpoints. To demonstrate
this, we show also the ratio F (2),reg

E (ζ)/h(ζ) with h(ζ) = (1− log ζ)(1− log(1− ζ))3. This
ratio is finite, but approaches its limits near ζ = 0, 1 in a non-analytic way due to 1/ logk

type non-analyticities.
As before, we make an ansatz for the distribution by writing

F (2)
E (ζ) =1

4

[1
ζ

]
0

(
π2

6 −
1
2ζ3 − 3

)
+ 1

4

[ log ζ
ζ

]
0

+ ζ3
8

[ 1
1− ζ

]
1

+ π2

16

[ log(1− ζ)
1− ζ

]
1

+ 1
8

[
log3(1− ζ)

1− ζ

]
1

+ c
(2)
0 δ(ζ) + c

(2)
1 δ(1− ζ) + F (2),reg

E (ζ), (7.79)

where [ζ−1 logk ζ]0 is defined by the Taylor expansion of ζ−1+ε in ε to the appropriate order,
and similarly for [(1−ζ)−1 logk(1−ζ)]1. The Ward identities (7.17) and (7.18) require that

0 =c(2)
0 + c

(2)
1 +

∫ 1

0
dζ F (2),reg

E (ζ), (7.80)

0 =− c(2)
0 + c

(2)
1 −

1
2(ζ3 + 1) + 5π2

24 +
∫ 1

0
dζ(2ζ − 1)F (2),reg

E (ζ). (7.81)

The explicit expression for F (2),reg
E (ζ) follows easily from the definition and the results

of [34]. Due to its complexity, we computed the above integrals numerically,∫ 1

0
dζ F (2),reg

E (ζ) = −2.6133007151791604187079457 . . . , (7.82)∫ 1

0
dζ(2ζ − 1)F (2),reg

E (ζ) = −1.047646501079170962972713 . . . , (7.83)
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from which we can determine

c
(2)
0 = 1.26039667304023767931294 . . . ,

c
(2)
1 = 1.35290404213892273939500 . . . . (7.84)

Using Mathematica’s FindIntegerNullVector we found that to the available precision
these numbers are given by

c
(2)
0 = 11π4

1440 −
π2

8 + 7
4 ,

c
(2)
1 = π4

72 . (7.85)

To summarize, the distributional piece of F (2)
E (ζ) near ζ = 0 is

F (2)
E (ζ) =

(
11π4

1440 −
π2

8 + 7
4

)
δ(z) + 1

4

[1
ζ

]
0

(
π2

6 −
1
2ζ3 − 3

)
+ 1

4

[ log ζ
ζ

]
0

+ · · · . (7.86)

As at one loop, from the OPE point of view these pieces are determined completely
by twist-two OPE data. In particular, we have

F (2)
E (ζ) =〈a(2)

τ=2,−1〉f̂5(ζ) + 〈a(1)
τ=2,−1γ

(1)
τ=2,−1 + a

(0)
τ=2,−1γ

(2)
τ=2,−1〉∂∆f̂∆(ζ)|∆=5

+ 1
2〈a

(0)
τ=2,−1(γ(1)

τ=2,−1)2〉∂2
∆f̂∆(ζ)|∆=5 + · · · . (7.87)

All OPE data in this equation except for 〈a(2)
τ=2,−1〉 has been described above. We give

〈a(2)
τ=2,−1〉 in the next section in equation (7.99). Using these results and (6.21) we precisely

reproduce (7.86). A calculation in appendix F also reproduces the value of c(2)
1 in (7.85).

Note that this is non-trivial consistency check of the result [34], since in order to fix the
contact terms we used Ward identities which involve integrals of the even shape over ζ, not
just the ζ → 0 and ζ → 1 limits.

To summarize, the full two loop energy-energy correlator is given by (7.79), where
c

(2)
0 and c

(2)
1 are given by (7.85). This completes the 0 < ζ < 1 result of [34]. We

checked numerically that the complete two-loop energy-energy correlator satisfies Ward
identities (7.17) and (7.18). This check was also performed in [31].

7.6 Three loops

Recently the three loop the energy-energy correlator have been computed in [35]. The
authors have verified that the leading ζ asymptotic of their result agrees with our prediction
(see section 7.7).42 In this section we extend this check to contact terms at ζ = 0, similarly
to what we did at the two-loop level above. Namely, we will use the results of [35] and Ward
identities to fix the contact terms at ζ = 0 and ζ = 1, and then compare to the ζ = 0 contact
terms predicted by the light-ray OPE. This provides a highly non-trivial consistency check
of the results of [35], since the Ward identities involve integrals of F (3)

E (ζ) over ζ.
42This was also independently verified in [32] based on the two-loop result [34] and the energy Ward

identity (7.17).
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Figure 13. Integrable part F (3),reg
E (ζ) of the two-loop energy correlator. Left: F (3),reg

E (ζ) as a
function of ζ. Right: ∂ζ

∂pF
(3),reg
E (ζ) as a function of p.

We proceed as before, by writing

4F (3)
E (ζ) = 4c(3)

0 δ(ζ)+ 1
2

[
log2 ζ
ζ

]
0
+
(
π2

3 −ζ3−5
)[

logζ
ζ

]
0
+
(
17− 4π2

3 + 5π4

144−ζ3+ 3
2ζ5
)[

1
ζ

]
0

+4c(3)
1 δ(y)− 1

8

[
log5 y
y

]
1
− π2

6

[
log3 y
y

]
1
− 11ζ3

4

[
log2 y
y

]
1
− 61π4

720

[
logy
y

]
1

−
(

7
2ζ5+ π2

3 ζ3
)[

1
y

]
1
+4F (3),reg

E (ζ), (7.88)

where y = 1 − ζ and F (3),reg
E (ζ) is integrable at ζ = 0 and ζ = 1. We show the plot of

F (3),reg
E (ζ) in the left panel of figure 13. Again, it only has integrable logk singularities. In

order to perform numerical integration of these singularities we change the variable from
ζ ∈ [0, 1] to p ∈ [0, 1] defined as

ζ = (1− p)2 + (1− p)3

log2 p

(
1 + p5(1− p)

log5(1− p)

)
. (7.89)

This change of variables is designed so that the Jacobian ∂ζ
∂p has appropriate 1/ logk behavior

to cancel logk singularities of F (3),reg
E (ζ) near ζ = 0, 1. We show the plot of the resulting

function ∂ζ
∂pF

(3),reg
E (ζ) in the right panel of figure 13.

The singular part, except from the delta functions (and distributional interpretation
of other pieces), can be obtained from the results of [35]. We can fix the coefficients c(3)

i by
requiring that the Ward identities (7.17) and (7.18) are satisfied. We find the equations

0 = c
(3)
0 + c

(3)
1 +

∫
dζ F (3),reg

E (ζ), (7.90)

0 = −c(3)
0 + c

(3)
1 + 4− 4π2

3 − π4

40 + 11ζ3
4 + π2ζ3

6 + 5ζ5
2 +

∫
dζ(2ζ − 1)F (3),reg

E (ζ). (7.91)

Integrating the result of [35] numerically we find∫
dζ F (3),reg

E (ζ) ≈ 9.53135,∫
dζ(2ζ − 1)F (3),reg

E (ζ) ≈ 4.84686. (7.92)
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In [35], F (3)
E (ζ) contains a piece expressed as a double integral, and the integrals above

are therefore effectively triple integrals. Because of this, it is non-trivial to control the
numerical errors, and we have not attempted to get an a priori error estimate for (7.92).
Based on the agreement with the light-ray OPE below, we expect that the errors in the
numbers above are in the last digit.

Using this data we find

c
(3)
0 ≈ −4.20195,

c
(3)
1 ≈ −5.32939. (7.93)

Using the same methods as above, and the OPE data described in section 7.7, we find the
light-ray OPE prediction for c(3)

0 ,

c
(3)
0 = −49

4 + π2 − π4

576 −
109π6

30240 + 5ζ3
4 −

7
24π

2ζ3 + 3ζ2
3

16 + 27ζ5
8

= −4.2019873198181 · · · . (7.94)

This agrees well with (7.93), and based on the accuracy of the agreement, we expect for c(3)
1

c
(3)
1 ≈ −5.3294(1). (7.95)

We show in appendix F that c(3)
1 is given by

c
(3)
1 = −197π6

40320 −
7ζ2

3
16 = −5.329425268 · · · , (7.96)

which precisely agrees with (7.95).43 This numerical check was also done in [31].
To summarize, the complete three-loop energy-energy correlator, including contact

terms, is given by (7.88), where c(3)
0 and c(3)

1 are given by (7.94) and (7.96), while F (3)
E (ζ)

follows from its definition and results of [35]. We checked numerically that the complete
three-loop energy-energy correlator satisfies Ward identities (7.17) and (7.18).

7.7 Four loops in the planar limit and finite coupling

Using known results for the OPE data of twist-2 operators, we can make new predictions
for the leading small-angle asymptotics of the energy-energy correlator. At finite coupling
the contribution of twist-two operators takes the form

F twist-two
E (ζ) = a

(+)
2,−1

4π4Γ
(
3 + γ

(+)
2,−1

)
Γ
(

2 + γ
(+)
2,−1
2

)3
Γ
(
−1− γ

(+)
2,−1
2

)f4,4
5+γ(+)

2,−1
(ζ) , (7.97)

where by (+) we indicate analytic continuation from even spin. Note that γ(+)
2,−1 can be

computed at any ’t Hooft coupling using integrability methods [70, 71]. At small angles we

have f4,4
5+γ(+)

2,−1
(ζ) ≈ ζ

γ
(+)
2,−1
2 −1. Therefore, at weak coupling (7.97) controls the small angle

43In deriving (7.96) we used the three-loop result for the so-called coefficient function H(a) [31].
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ζ → 0 expansion of the EEC. When the coupling becomes large, operators with twist two
at tree level become very heavy and the leading small-angle asymptotic is controlled by the
approximately twist-four double trace operators. This transition happens at a ≈ 2.645, see
figure 14.

At finite coupling there is no contact term coming from (7.97), since the anomalous
dimension of twist-two operators is finite. The term ξ(ζ) in (7.16) is completely canceled by
a contribution of a protected operator. This cancellation is the same as at strong coupling
and is described in the next section. In summary, the event shape at finite coupling is
integrable near ζ = 0 and the contact terms only appear at weak coupling through the
expansion (6.21).

Using (7.97) we can easily make a planar four-loop prediction for the leading asymptotic
of F(ζ).44 The relevant OPE data takes the form

γ
(+)
2,−1 = 2a+

(
−4 + π2

3 − ζ3

)
a2 +

(
16− 4

3π
2 + π4

120 − 3ζ3 + 3ζ5

)
a3

+
(
−80 + π2

6 [48− 13ζ3 + ζ5]− 1
720π

4[46 + 5ζ3]

−107π6

15120 + 14ζ3 + 9
2ζ

2
3 + 16ζ5 −

69
8 ζ7

)
a4 + . . . , (7.98)

a
(+)
2,−1

a
(0)
2,−1

= 1− 2a+
(

12− 2π2

3 + 11π4

360 + 1
2ζ3

)
a2

+
(
−80 + π2(6− 7

6ζ3)− π4

24 −
109
7560π

6 + 6ζ3 + 3
4ζ

2
3 + 12ζ5

)
a3 + a4a

4 + . . . ,

(7.99)
where for our normalization of the four-point function the tree-level three-point function
is a(0)

2,−1 = 1
32π4 . Up to three loops, the results can be found in [73], where the three-loop

correction to the structure constant was first explicitly computed.45 For the four-loop
anomalous dimensions, we combined the results of [75] and [76]. To analytically continue
in spin, we used the HPL package [77] together with the supplement developed in [78].46

Plugging these results into (7.97), we easily obtain the leading small-angle expansion
of the energy-energy correlator up to four loops. Due to the factor

1

Γ
(
−1− γ

(+)
2,−1
2

) , (7.100)

44Starting from the four loops there are non-planar corrections to the correlator [72].
45The currently available online version (arXiv v1) of [73] contains a typo. The corrected version of the

formula can be found for example in [74] which we used in our computation.
46In the papers cited above, the anomalous dimension and three-point coupling of Tr[ZDJZ] operator

are computed. These operators transform in the 20′ representation and their dimensions and couplings
are related to the anomalous dimension γτ=2,J and aτ=2,J of the superconformal primaries that appear
in (7.24) by a spin shift J → J + 2, see e.g. [79]. Therefore, the formulas of [73] should be evaluated at
J = 1 for our purposes.
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Figure 14. γ
(+)
2,−1 as a function of the coupling constant a = λ

4π2 . The plot was kindly made for
us by Nikolay Gromov. The actual numerics was done for J = −1 + 10−5. The blue dotted line
represents a four-loop weak coupling approximation to γ(+)

2,−1, the red dashed line corresponds to
the first four terms at the strong coupling expansion [71]. The solid line was obtained using the
quantum spectral curve technique [71]. The curve intersects γ(+)

2,−1 = 2 at a ≈ 2.645. At this point
the small angle expansion of the EEC becomes regular and dominated by the twist four double
trace operators .

only the three-loop correction to three-point coefficients is needed to compute the four-loop
result for 0 < ζ < 1. At ζ = 0, ζ = 1, there are contact terms that depend on additional
data at four loops (discussed below). The first two terms in the expansion in the coupling
reproduce the two-loop computation of [34]. The three- and four-loop predictions are new.
Our three-loop prediction was recently independently confirmed in [35].

In more detail, we can write the following expression for the planar four-loop energy-
energy correlator47

F (4),pl
E (ζ) = c

(4)
0 δ(ζ) + 1

24

[
log3 ζ

ζ

]
0

+
(
−7

8 + 1
16π

2 − 3
16ζ3

)[ log2 ζ

ζ

]
0

+ 1
4

(
31− 17

6 π
2 + 1

15π
4 − 1

6π
2ζ3 + 1

4ζ
2
3 + 3ζ5

)[ log ζ
ζ

]
0

+ 1
4

(
−111 + 65

6 π
2 − 3

16π
4 − 389

30240π
6 + 10ζ3 − 2π2ζ3 −

3
160π

4ζ3 + 3ζ2
3 + 20ζ5

+ 1
12π

2ζ5 −
69
16ζ7

)[1
ζ

]
0

+ c
(4)
1 δ(y) + 1

192

[
log7 y

y

]
1

+ 5
384π

2
[

log5 y

y

]
1

+ 95
192ζ3

[
log4 y

y

]
1

+ 29
1920π

4
[

log3 y

y

]
1

47By planar we mean that it was obtained from the planar four-loop correlation function. Starting from
four loops there are corrections to the energy correlator suppressed by 1

c
.
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+
( 67

192π
2ζ3 + 69

16ζ5

)[ log2 y

y

]
1

+
( 367

48384π
4 + 97

32ζ
2
3

)[ log y
y

]
1

+
( 187

5760π
4ζ3 + 95

192π
2ζ5 + 785

128ζ7

)[1
y

]
1

+ F (4),reg
E (ζ), (7.101)

where F (4),reg
E (ζ) is integrable at ζ = 0, 1. We also included the leading terms in the ζ → 1

limit, which we obtained using results of [31, 34, 80] as described in appendix F (recall
y = 1− ζ).48 The contact term coefficients c(4)

0 and c(4)
1 are equal to

c
(4)
0 = 1

4

(
−209 + 37

2 π
2 − 23

80π
4 − 389

30240π
6 + 20ζ3 −

8
3π

2ζ3 −
3

160π
4ζ3

+11
2 ζ

2
3 + 14ζ5 + 1

12π
2ζ5 −

69
16ζ7 + a4

)
,

c
(4)
1 = 17

144π
2ζ2

3 + 7
2ζ3ζ5 + 1

4H4 , (7.102)

where a4 is a four-loop correction to the three-point function at J = −1, see (7.99), and
H4 is a four-loop correction to the coefficient function, see appendix F, which are presently
unknown. The Ward identities (7.17), (7.18) thus take the form

c
(4)
0 +c(4)

1 +
∫ 1

0
dζF (4),reg

E (ζ) = 0,

−c(4)
0 +c(4)

1 +
∫ 1

0
dζ(2ζ−1)F (4),reg

E (ζ) = 45
2 −

245
24 π

2− 13
240π

4− 151
17280π

6+ 39
2 ζ3+ 37

16π
2ζ3

+ 107
1440π

4ζ3−
119
16 ζ

2
3 + 35

4 ζ5+ 91
96π

2ζ5+ 923
64 ζ7

≈−9.784125919 . . . . (7.103)

As was the case at three loops, these identities provide a nontrivial test for any future
four-loop computation. Because we explicitly isolated all the distributional terms it is
particularly suited for numerical tests. Alternatively, given a four-loop result for F (4),pl

E ,
one can use (7.103) to predict a4 and H4. These values can then be used to predict leading
five-loop asymptotics at ζ → 0 and ζ → 1.

7.8 Strong coupling in the planar limit

The four-point function at strong-coupling is simple enough that we can directly compute
C+,sugra(∆, J) and use the celestial block expansion to obtain the full scalar flow observable
as a function of ζ. The four-point function is [81]

Φ(sugra)(u, v) = uvD2422(u, v). (7.104)

For a review of D-functions see e.g. [79].
As explained in [64], remarkably the tree-level supergravity answer is fixed by the

protected half-BPS data and is given by

dDisc[G(105)(z, z)] = dDisc
[

zz

(1− z)(1− z)

]
f(z, z), (7.105)

48Here we again made use of the three-loop result for H(a) [31].

– 77 –



J
H
E
P
0
1
(
2
0
2
1
)
1
2
8

where f(z, z) is regular at z, z = 1 and is symmetric under permutations of z and z. The
relation to the G(z, z) used in [64] is G(105)(z, z) = c1

2
1

(2π)4 (zz)2G(z, z). Thus,

C+,sugra(∆, J) = 2κ∆+J
4

∫ 1

0

dz

z2

∫ 1

0

dz

z2
z − z
zz

×(k∆+J(z)k4+J−∆(z)− k∆+J(z)k4+J−∆(z)) 2(sin πδ)2z1+δz1+δ

(1− z)1+δ(1− z)1+δ f(z, z)
∣∣∣∣∣
δ→0

, (7.106)

where we have regulated the integral by introducing δ in the same way as we did in
section 7.3.

To isolate the contribution that survives as δ → 0, we rewrite z− z = (1− z)− (1− z).
By the symmetry of the integral under the exchange of z and z, each of the terms produces
an identical contribution, giving a factor of 2. We can rewrite the integral as

C+,sugra(∆, J) = κ∆+J
(2π)4 (sin πδ)2

∫ 1

0

dz

z2

∫ 1

0

dz

z2

(1
2D(D − 2)z log z

1− z

)
× (k∆+J(z)k4+J−∆(z)− k∆+J(z)k4+J−∆(z)) z1+δ

(1− z)1+δ

∣∣∣∣∣
δ→0

, (7.107)

where we set z = 1 in f(z, z) since it does not affect the δ = 0 result, and used f(z, 1) =
1
2

1
(2π)4

(
−1

2D(D − 2) z log z
1−z

)
, see [64]. We have also introduced the differential operator

D = z2∂z(1− z)∂z , (7.108)

which is the Casimir operator of which kβ(z) is an eigenfunction with eigenvalue β(β−2)
4 .

Doing the integrals, we get

C+,sugra(∆, J) =
Γ(∆+J

2 )2

64π4Γ(∆ + J − 1)

(
−Ĩ(4 + J −∆) +

Γ(4 + J −∆)Γ(∆+J
2 )2

Γ(∆ + J)Γ(4+J−∆
2 )2

Ĩ(∆ + J)
)
,

(7.109)

where

Ĩ(β) =
∫ 1

0

dz

z2 kβ(z)D(D − 2)z log z
1− z

= 1
16(β + 2)β(β − 2)(β − 4)

∫ 1

0

dz

z2 kβ(z)z log z
1− z + β

16
(β2 − 2β − 10)Γ(1 + β)

Γ(1 + β
2 )2

,

(7.110)

where the second term in the second line comes from boundary terms when we integrate
by parts. Its contribution to C+,sugra(∆,−1) is equal to zero.

Specializing to J = −1, we find

C+,sugra(∆,−1) 4π4Γ(∆− 2)
Γ(∆−1

2 )3Γ(3−∆
2 )

= −π
(∆ + 1)(∆− 1)(∆− 5)Γ(∆−1

2 )2

256Γ(∆− 3) cos π∆
2

. (7.111)
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This provides the data needed to compute F (sugra) using the celestial block expansion.
Formula (7.12) gives an integral which we can evaluate by residues when 0 < ζ < 1,

F (sugra)
E (ζ) =

∫ 2+i∞

2−i∞

d∆
2πiC(∆,−1) 4π4Γ(∆− 2)

Γ(∆−1
2 )3Γ(3−∆

2 )
f4,4

∆ (ζ)

=
∞∑
n=0

(−1)n

8 (n+ 1)(n+ 2)(n+ 3)(n+ 4) rn+3f
4,4
7+2n(ζ)

= 1
2 , 0 < ζ < 1. (7.112)

where rh was defined in (7.54). This answer coincides with the one obtained in [5]. Alter-
natively, we could have directly continued the known OPE decomposition of the correlation
function to J = −1. Indeed, in the one-loop example above the sum above is equal to

F (sugra)
E (ζ) = 2π4

∞∑
n=0

(−1)n+1〈a(0)
τ=4+2n,−1γ

(sugra)
τ=4+2n,−1〉

1
rn+3

f4,4
7+2n(ζ), (7.113)

where the sum goes over the Regge trajectories of double trace operators with scaling di-
mension ∆(J) = 4+2n+J+γ(sugra)

τ=4+2n,J . Note that in our normalization a(0)
τ=4+2n,−1 ∼ O(c),

see (7.44), whereas γ(sugra)
τ=4+2n,−1 ∼ O(1

c ). After an appropriate overall rescaling related to
the normalization of the conformal blocks the coefficients in the celestial block expan-
sion (7.112) and (7.113) coincide with the analytic continuation of the OPE data worked
out in [64] to J = −1.

The result (7.112) already satisfies Ward identities (7.17) and (7.18), so we do not need
to add any distributional terms at ζ = 0 or ζ = 1. Let us now check this using the light-ray
OPE. Using (7.111) and formulas from 6.2 we find for the distributional terms at ζ = 0

− res∆=3C(∆,−1)f̂3(ζ)− res∆=5C(∆,−1)f̂5(ζ) + ξ(ζ)

= 1
16π4

(
4π4δ′(ζ)− 2π4δ(ζ)

)
− 3

64π4 8π4δ(ζ) + ξ(ζ)

= 1
4
(
δ′(ζ)− 2δ(ζ)

)
+ ξ(ζ) = 0. (7.114)

Similarly, to probe distributional terms at ζ = 1 we consider
∫ 1

0 dζ ζ
NF (sugra)(ζ) and eval-

uate the integral over ∆. The result is that distributional terms are absent.
To summarize, the complete strong coupling result takes the form

F (sugra)
E (ζ) = 1

2 . (7.115)

7.9 Comments on supergravity at one loop

Recently, the function G(105)(u, v) was also computed at strong coupling to the 1
N4 or-

der [82], see also [64, 83, 84]. It corresponds to a one-loop computation in supergravity.
It is therefore natural to ask if we can use it to compute the corresponding correction to
the two-point energy correlator. As discussed in [1] the existence of the two-point energy
correlator is guaranteed in the non-perturbative theory as well as in the planar theory.
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This, however, does not have to be the case in 1
N2 perturbation theory. Indeed, in this case

the Regge behavior of the correlation function becomes more and more singular and the
condition for the existence of the energy correlator J0 < 3 can be violated (here J0 is the
Regge intercept of the correlator).

At infinite ’t Hooft coupling and order 1
N4 we have J0 = 3 and thus the energy correlator

becomes ill-defined. In other words, to compute it we have to first re-sum 1
N2 corrections

before doing the light transforms and taking the coincident limit, see [1]. It is very easy to
see the manifestation of the problem at the level of the OPE as well. If we are to try to
evaluate corrections to the spectrum at J = −1 as we did above in section (7.5) we find a
pole in 〈aτ,−1[γτ,−1]2〉, see e.g. (3.15) in [64]. It is an interesting question how to compute
subleading large N corrections to the energy correlator. We leave this question for the
future.

7.10 Multi-point event shapes

It is also interesting to consider higher-point event shapes. To our knowledge, the only
higher-point event shapes available in the literature are the ones due to Hofman and Mal-
dacena [5] for planar N = 4 SYM at strong coupling. In principle, higher-point event
shapes can be computed via repeated light-ray OPEs, in the same way that correlation
functions of local operators can be computed by repeated local OPEs. (Alternatively, we
can use the t-channel block decomposition introduced in [1].) Although we have not de-
veloped the formalism for taking OPEs of completely general light-ray operators in this
work, it is reasonable to conjecture that the light-ray OPE closes on the light-ray opera-
tors of [23]. This is already enough information to make nontrivial predictions about the
small-angle limit of multi-point event shapes.

As a simplest nontrivial example, consider a three-point event shape of null-integrated
scalars. We assume that the Regge behavior of the theory is such that the event shape
exists, and the null-integrated scalars commute. By taking consecutive OPEs, we have

L[φ1](~y1)L[φ2](~y2)L[φ3](~y3) =
∑
i

C∆i−1(~y12, ∂~y2)O+
i,−1(~y2)L[φ3](~y3)

=
∑
i,j

C∆i−1(~y12, ∂~y2)C∆j−1(~y23, ∂~y3)O+
j,−2(~y3), (7.116)

where for simplicity we have ignored transverse spins in the second OPE and we are drop-
ping overall constants. We have also abused notation and written the light-ray operators
as a function of the transverse position ~y, as opposed to x, z used in most of this work.

Inserting the above expression into an event shape, we obtain a sum of multi-
point celestial blocks (which would be interesting to compute explicitly). In the limit
|~y12| � |~y23| � 1, the product of operators is dominated by the lightest-dimension terms
in each OPE

lim
~y23→0

lim
~y12→0

L[φ1](~y1)L[φ2](~y2)L[φ3](~y3)

∝ |~y12|∆
+
−1−∆1−∆2+1|~y23|∆

+
−2−∆+

−1−∆3+1O+
lightest,−2(~y1),

(7.117)

where ∆+
−1 and ∆+

−2 represent the lightest dimensions at spin −1 and −2.
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Similarly, we can take repeated OPE limits of an arbitrary number of scalar light-ray
operators (assuming their products exist). This leads to a very simple formula for the
multi-collinear limit of scalar event shapes

lim
θ1k→0

· · · lim
θ12→0

〈L[φ1](∞, z1) · · ·L[φk](∞, zk)〉ψ(p)

∝ |θ1k|∆
+
1−k−∆+

2−k−(∆k−1) · · · |θ12|∆
+
−1−∆1−∆2+1,

(7.118)

where we have suppressed subleading terms and an overall proportionality constant that
does not depend on relative angles.

Of course, a more physically interesting case is to consider multi-point energy correla-
tors. A difference compared to the scalar case is that the OPE of ANEC operators contains
light-ray operators transforming nontrivially under SO(d−2) (except for d = 3), see (3.99)
and [5]. Let us ignore this for the moment. Repeated OPEs give

lim
θ1k→0

· · · lim
θ12→0

〈E(z1) · · · E(zk)〉ψ(p) ∝ |θ1k|τ
+
k+1−τ

+
k

+2−d · · · |θ12|τ
+
3 +4−2d. (7.119)

Here τ+
J represents the leading twist at spin J . When operators transform non-trivially

under SO(d− 2), the overall scaling with respect to the corresponding small angle will not
change — it will still be controlled by the minimal twist [5].

A fascinating property of repeated ANEC OPEs is that alternating steps are controlled
by local operators. Specifically, after a single OPE, we obtain light-ray operators with even
signature and spin 3. After taking an additional OPE with an ANEC operator, we obtain
light-ray operators with even signature and spin 4. These are the quantum numbers of a
light-transformed local operator. We expect that arguments like the ones in sections 4.1
and 4.2 establish that the resulting operator is indeed the light-transform of a local spin-4
operator. Thus, the structure of the light-ray OPE is49

L[local]× L[local] ∼ (nonlocal)
(nonlocal)× L[local] ∼ L[local]. (7.120)

We have already determined the form of the first line above. To understand OPEs for
multi-point event shapes, it suffices to understand the second line.

8 Discussion and future directions

8.1 Generalizations

In this work, we derived an OPE for a product of null-integrated operators on the same
null plane. There are several possible generalizations that would be interesting to consider.

One possibility is to derive OPEs of more general continuous-spin light-ray opera-
tors [23]. Such an OPE would enable repeated OPEs in multi-point event shapes. For
example, a three-point energy correlator could be computed by applying the OPE in this

49In writing (7.120) we assumed that the nonlocal spin-3 operators that appear in the OPE of two ANEC
operators commute with the ANEC operator. This is consitent with the fact that [E(z1)E(z2), E(z3)] = 0.
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paper to merge two ANEC operators into nontrivial light-ray operators, followed by a gen-
eralized OPE with the remaining ANEC operator to produce additional light-ray operators.
From symmetries, the low transverse-spin terms in a multi-point OPE of n ANEC opera-
tors will produce light-ray operators with spin n + 1. The average null energy condition
implies positivity of the leading light-ray operator in this product, which is presumably
the lowest-twist light-ray operator with spin n + 1.50 This gives an alternative derivation
of the higher-even-spin ANEC [12] that additionally includes the case of odd spins, but is
not as general as the continuous spin version in [23].

A possible application of repeated OPEs for multi-point event shapes is to set up
a bootstrap program for event shapes similar to the bootstrap program for four-point
functions of local operators [19, 20].51 Specifically, one could demand that the light-ray
OPE is associative and use this condition to study the space of possible event shapes
abstractly. One can also consider mixed light-ray and t-channel OPEs of the type discussed
in [1]. With sufficient positivity conditions, perhaps one could apply numerical bootstrap
techniques [85–87]. Even without deriving the details of the generalized light-ray OPE,
it is reasonable to conjecture that it closes on the light-ray operators of [23], and thus
multi-point event shapes should admit an expansion in multi-point celestial blocks (which
would be interesting to compute).

It would also be interesting to study OPEs of other types of null-integrated operators,
such as those studied in [8, 10]. As explained in [1], these can be viewed as descendants
of light-transformed operators L[O]. Consider two such descendants inserted at the same
point, say x = 0,

(P k1L[O1])(0, z1)(P k2L[O2])(0, z2), (8.1)

where we denoted the descendants schematically by P kiL[Oi] and suppressed polarizations
associated to P . Acting on this with Kk1+k2+1 we get 0, and so we must conclude that this
product has an expansion in terms of descendants of light-ray operators at level at most
k1 + k2. A conformally-invariant way to think about descendants P kiL[Oi] is in terms of
weight-shifting operators [1, 88]. It is likely that the derivation of the light-ray OPE in this
paper can be dressed appropriately with weight-shifting operators using methods described
in [23, 88].

Another generalization is to allow null-integrated operators to be on different null
planes that approach each other. It should still be possible to relate matrix elements of
such a product to the Lorentzian inversion formula.

In [1], we introduced shock amplitudes, which describe the flat-space limit of the bulk
dual of a null-integrated operator. In theories with bounded Regge growth, it should be
possible to analytically continue shock amplitudes in spin, giving a vast generalization of
the amplitudes usually considered. This work suggests a simple way to partially achieve
this generalization: one can take coincident limits of shock particles to produce other types
of shocks with different (integer) spin. For example, a coincident limit of shock gravitons
can produce the spin-3 “stringy” shock studied by Hofman and Maldacena [5].

50We thank Clay Córdova for discussions on this point.
51We discuss a different kind of bootstrap program for event shapes in the next subsection.
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A more speculative possible direction is to derive a nonperturbative OPE for ampli-
tudes, describing a convergent expansion around the collinear limit. Such an OPE ex-
pansion exists in planar N = 4 [89–94], relying on special properties of the theory like
amplitude-Wilson-loop duality and integrability; it would be nice to generalize to a generic
CFT. (Presumably, this would also require finding a good nonperturbative definition of an
amplitude in a generic CFT.) Perhaps the conformal basis [95, 96] could be helpful for this.
The soft limit of an external particle should correspond to the insertion of a null-integrated
operator, so perhaps the hypothetical amplitudes OPE would be related to the light-ray
OPE in this limit.

8.2 More applications to event shapes

It would be interesting to understand whether the light-ray OPE can be applied to
asymptotically-free theories like QCD. The small angle behavior of the EEC in QCD
was analyzed in [97]. A more general factorization formula describing the collinear limit
ζ → 0 and applicable to any weakly coupled gauge theory was derived in [32]. The energy-
energy correlator (EEC) in QCD was recently computed at 2 loops (NLO) for arbitrary
ζ [98, 99]. The light-ray OPE gives a way to resum large logarithms using symmetries as
opposed to RG equations. The celestial block expansion is ultimately a consequence of
Lorentz symmetry, which is still present when conformal symmetry is broken. Thus, event
shapes in any theory should admit a celestial block expansion. However, when dilatation
symmetry is broken, the selection rule J = J1 +J2−1 will no longer hold. Thus, we expect
the celestial block expansion in asymptotically-free theories to involve light-ray operators
with other spins.52

In [5], it was shown how to relate the EEC to spin-3 moments of PDFs. Because these
spin-3 moments compute matrix elements of spin-3 light-ray operators, it is natural to
guess that spin-J moments of PDFs for general J ∈ C compute matrix elements of general
spin-J light-ray operators.53 It would be interesting to derive this connection directly.

The celestial block expansion suggests a way of “perturbatively bootstrapping” the
EEC in the same sense as the perturbative bootstrap for amplitudes and Wilson loops
in N = 4 SYM [100–106]. The idea of the perturbative bootstrap is to guess a basis of
functions for the answer at some loop order (for example, by guessing the symbol alphabet).
One then imposes consistency conditions to fix the coefficients in this basis. In the case
of amplitudes in N = 4, this program has been wildly successful, for example resulting in
expressions for the 6-point gluon amplitude up to 7 loops [107]. There, consistency with the
OPE for amplitudes [89–94] and data from integrability provide powerful constraints. The
celestial block expansion can provide analogous constraints for the EEC. Furthermore,
in [1], we gave a different expansion for the EEC in terms of “t-channel blocks”. OPE
data from integrability can be used in either channel to make predictions that could help
bootstrap the EEC.

52We thank Ian Moult for discussions on this point.
53We thank Juan Maldacena and Aneesh Manohar for making this suggestion, and Ian Moult and Cyuan

Han Chang for discussions.
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An important ingredient in the perturbative bootstrap is the presence of contact terms
in perturbative event shapes at ζ = 0 and ζ = 1. Because of Ward identities, the coefficients
of contact terms serve as a check on the entire event shape. The light-ray OPE gives a
systematic way to compute contact terms at ζ = 0. Furthermore, it provides a connection
between the ζ = 0 contact term at L loops and the leading non-contact term as ζ → 0 at
L+ 1 loops.54

It would also be interesting to understand event shapes in N = 4 SYM in a systematic
expansion in 1/λ and 1/N . The leading 1/λ corrections to energy-energy correlators were
computed in [5], see also [108]. They take the form of a finite sum of the t-channel event-
shape blocks defined in [1]. This suggests that t-channel blocks could be simple ingredients
for setting up a perturbative expansion in 1/λ. One advantage of the t-channel expansion is
the absence of contributions from double-trace operators in the planar limit. (By contrast,
the light-ray OPE discussed in this paper gets contributions from both single- and double-
trace operators.) The extreme simplicity of the 1/λ corrections in [5] stems from the fact
that the string shockwave S-matrix, expanded to leading order in α′, only mixes adjacent
levels on the string worldsheet, see e.g. [1].

The problem of developing a 1/N expansion at large λ is conceptually interesting
because the condition J0 < 3 for the event shape to be well-defined is violated in naïve
1/N perturbation theory. To study 1/N corrections, it will be necessary to re-sum the
four-point function in the Regge regime.

8.3 Other applications and future directions

Null-integrated operators arise naturally in information-theoretic quantities in quantum
field theory. For example, the full modular Hamiltonian in the vacuum state of a region
bounded by a cut v = f(~y) of the null plane u = 0 is [8]

Hf = 2π(K − Pf ),

Pf =
∫
dd−2~yf(~y)

∫ ∞
−∞

dvTvv(u = 0, v, ~y) =
∫
dd−2~yf(~y)L[T ](~y), (8.2)

where K is the generator of a boost in the u-v plane. Here, we have abused notation and
written L[T ] as a function of the transverse position ~y, instead of the usual arguments x, z.

The vacuum modular flow operator is Uf (s) = e−isHf . It is interesting to ask how
Uf changes as we deform the cut f(~y)→ f(~y) + δf(~y). Because the ANEC operator L[T ]
appears in the modular Hamiltonian, we can use the algebra of K and Pf together with

54Meanwhile, the back-to-back expansion (F.1) provides a description of contact terms and leading non-
contact terms at ζ = 1, given knowledge of the hard functionH(a) and cusp/collinear anomalous dimensions.
Given this, one could imagine a poor-man’s version of the perturbative bootstrap, where one uses contact
terms at L loops to predict leading non-contact terms at L+ 1 loops, fits the leading non-contact terms to
a simple ansatz, integrates the ansatz to obtain contact terms at L+ 1 loops, and repeats.
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the light-ray OPE to do perturbation theory in δf(~y):

Uf+δf (s)Uf (−s) = exp
(
− i

2π (e2πs−1)(Hf+δf−Hf )
)

= exp
(
it

∫
dd−2~y δf(~y)L[T ](~y)

)
= 1+it

∫
dd−2~y δf(~y)L[T ](~y)

−(−iπ) t
2

2
∑
i

∫
dd−2~y1d

d−2~y2δf(~y1)δf(~y2)C∆i−1(~y12,∂~y2)Oi,J=3(~y)+. . . ,

(8.3)

where t = e2πs − 1. The expression (8.3) gives a direct connection between the spectrum
of a CFT and the shape dependence of the vacuum modular flow operator. It may be
useful for understanding aspects of the quantum null energy condition (QNEC) [9, 109–
111]. Furthermore, it would be interesting to see whether it (or other manifestations of the
light-ray OPE) has implications for bulk locality in holographic theories.

It would also be interesting to study the light-ray OPE for strongly-coupled theories
like the 3d Ising model. With enough CFT data, it may be possible to compute event
shapes and study modular flow quantitatively in this theory.

Particle colliders like the LHC have given us a wealth of data on event shapes in the
Standard Model. In principle, it should be possible to measure event shapes in condensed
matter systems using a tabletop collider. One must prepare a material in a state described
by a QFT, excite it at a point, and measure the pattern of excitations on the boundary of the
material. Several quantum critical points have both Euclidean and Lorentzian avatars in
the laboratory. Traditionally, the most precise measurements are available for the Euclidean
avatars, in the form of scaling dimensions of low-dimension operators. Event shapes for
these systems could reveal intrinsically Lorentzian dynamics that would otherwise remain
deeply hidden in the Euclidean measurements.

Finally, it could be interesting to study event shapes in gravitational theories in an
asymptotically flat spacetime, see e.g. [112] and references therein.55 In this case, physi-
cal measurements are performed at the future null infinity I +. As in a particle collider
experiment, one can measure energy flux through the celestial sphere created in a gravita-
tional collision. In addition to energy carried away by matter fields, there is a contribution
due to gravity waves E(~n) ∼

∫
I + News2 which is quadratic in the so-called news tensor.

In a gravitational theory, however, it is also natural to consider light-ray operators that
are linear in the metric, similar to the ones measured in the current gravitational wave
experiments. One such example is a memory light-ray operator M(~n) ∼

∫
I + News which

measures the memory effect on the celestial sphere. As in the main body of the paper, we
can consider multi-point gravitational event shapes and possibly study the corresponding
light-ray OPE. One appealing feature of these observables is that they are IR safe — in
other words all IR divergencies that arise in the computations of scattering amplitudes

55The same comment applies to electromagnetism.
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should cancel in the event shapes. BMS symmetry [113] and familiar soft theorems [114]
should become statements that relate different gravitational event shapes.56
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A Notation

In this appendix, we summarize some of our notation. Many of our conventions are taken
from [23].

It is useful to distinguish between physical correlation functions and conformally in-
variant structures. A correlation function in the state |Ω〉 represents a physical correlation
function in a CFT. For example,

〈Ω|O1 · · · On|Ω〉 (A.1)

is a Wightman n-point function in a physical theory, and

〈O1 · · · On〉Ω (A.2)

is a time-ordered n-point function in a physical theory.
Two- or three-point functions in the fictitious state |0〉 represent conformally-invariant

functions that are fixed by conformal invariance. If conformal symmetry allows a finite set
of possible tensor structures, then we index the possibilities by a label (a), (b), etc. . For
example,

〈0|O1O2O3|0〉(a) (A.3)

represents a conformally-invariant tensor structure for the representations of O1,O2,O3,
and a runs over the possible solutions to the conformal Ward identities. The above structure
has an iε prescription appropriate for a Wightman function. Meanwhile,

〈O1O2O3〉(a) (A.4)
56For example, an integral of the energy flux operator over the celestial sphere is related to the insertion

of the memory operator [115].
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represents a conformally-invariant structure with the iε prescription of a time-ordered cor-
relator.

Primary operators are labeled by weights (∆, ρ) with respect to the conformal group
S̃O(d, 2). Here, ∆ ∈ C and ρ is an irreducible representation of SO(d − 1, 1). (∆ is
constrained to be real and sufficiently positive for local operators in unitary theories.) The
weights of ρ can be futher decomposed into ρ = (J, λ), where J is a positive integer for
local operators, but in general J ∈ C can be continuous in Lorentzian signature. Here, λ
is a finite-dimensional representation of SO(d− 2). We can think of J as the length of the
first row of the Young diagram of ρ, while λ encodes the remaining rows. Altogether, we
specify a conformal representation by the triplet (∆, J, λ).

We often use the symbol O to stand for the conformal representation with quan-
tum numbers (∆, J, λ). We use φ to represent a scalar operator with quantum numbers
(∆φ, 0, •), where • is the trivial representation. (An exception is in section 7, where OIJ

refers to a 20′ operator in N = 4 SYM.)
If O is a local operator, then ρ is a finite-dimensional representation. In this case, we

define shadow and Hermitian conjugate representations as follows

Õ : (d−∆, ρR),
O† : (∆, (ρR)∗), (A.5)

where ρR denotes the reflection of ρ and (ρR)∗ is the dual of ρR.
For continuous-spin operators, ρ = (J, λ) is infinite-dimensional. The light transform

turns a local operator into a continuous spin operator

L[O] : (1− J, 1−∆, λ) . (A.6)

To define a conformally-invariant pairing for continuous spin operators we define

OS : (d−∆, 2− d− J, λ),
OS† : (d−∆, 2− d− J, λ∗). (A.7)

Similarly, we define OF as an operator that can be paired with L[O] (upon Hermitian
conjugation)

OF : (J + d− 1,∆− d+ 1, λ),
OF † : (J + d− 1,∆− d+ 1, λ∗). (A.8)

To describe the causal relation between two points we use the following symbols:

• x ≈ y if x and y are space-like;

• x > y (x < y) if x lies in the future (past) light-cone of y;

• x & y (x . y) if x is on the future (past) null cone of y.

In section 3, we extensively use Euclidean and Lorentzian pairings between the 2-,
3- and 4-point functions. These are described in detail in appendix C and D of [23]
correspondingly.
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B Representations of orthogonal groups

B.1 General index-free notation

A finite-dimensional representation of SO(d) is labeled by a sequence md = (md,1, . . . ,md,n)
such that

md,1 ≥ md,2 ≥ · · · ≥ md,n−1 ≥ |md,n| d = 2n (B.1)
md,1 ≥ md,2 ≥ · · · ≥ md,n ≥ 0 d = 2n+ 1 (B.2)

The md,i are either all integers (in the case of tensor representations) or all half-integers.
When they are integers, we can think of them as lengths of rows of a Young diagram.
See [116] for a recent review.

A spin-J traceless symmetric tensor has labels md = (J, 0, . . . , 0), corresponding to a
single-row Young diagram with length J . More generally, an object in the representation
md is a tensor with indices

fµ1···µmd,1 ν1···νmd,2 ··· ρ1···ρmd,n . (B.3)

For a given Young diagram, we can choose to make either symmetry of the rows manifest or
antisymmetry of the columns manifest. We choose to make symmetry of the rows manifest.
Thus, f is symmetric in each of its n groups of indices

fµ1···µmd,1 ν1···νmd,2 ··· ρ1···ρmd,n = f (µ1···µmd,1 )(ν1···νmd,2 )···(ρ1···ρmd,n ). (B.4)

Furthermore, it is traceless in all pairs of indices. Antisymmetrization of columns of the
Young diagram is reflected in the fact that if we try to symmetrize too many indices, we
get zero. For example,

f (µ1···µmd,1ν1)ν2···νmd,2 ··· ρ1···ρmd,n = 0. (B.5)

It is useful to encode the tensor f using index-free notation. We introduce polarization
vectors z1, . . . , zn ∈ Cd for each row of the Young diagram and contract them with the
corresponding indices to form a polynomial

f(z1, . . . , zn) ≡ fµ1···µmd,1 ν1···νmd,2 ··· ρ1···ρmd,nz1µ1 · · · z1µmd,1z2ν1 · · · z2νmd,2 · · · znρ1 · · · znρmd,n .
(B.6)

By construction, f(zi) is homogeneous in each polarization vector

f(α1z1, · · · , αnzn) = α
md,1
1 · · ·αmd,nn f(z1, · · · , zn) (αi ∈ C). (B.7)

Because f is traceless, we can impose the conditions

z2
i = 0, zi · zj = 0. (B.8)

These conditions mean that shifting f by anything proportional to δµν leads to the same
polynomial f(zi). The traceless tensor f can thus be recovered from the polynomial f(zi)
by choosing any tensor leading to the correct polynomial and subtracting traces.

– 88 –



J
H
E
P
0
1
(
2
0
2
1
)
1
2
8

In index-free notation, the antisymmetrization condition (B.5) becomes

f(z1, z2 + βz1, z3, . . . , zn) = f(z1, z2, z3, . . . , zn). (B.9)

In other words, f is gauge-invariant under shifts z2 → z2 + βz1. (Note that this gauge-
redundancy is consistent with the orthogonality conditions (B.8).) More general antisym-
metrization conditions show that f is invariant under the gauge redundancies

z2 → z2 + #z1

z3 → z3 + #z2 + #z1

...
zn → zn + #zn−1 + · · ·+ #z1. (B.10)

Finally, in even dimensions, the tensor f can satisfy

εµ1···ρ1
µ0···ρ0f

µ0µ2···µmd,1 ··· ρ0ρ2···ρmd,nz1µ1 · · · z1µmd,1z2ν1 · · · z2νmd,2 · · · znρ1 · · · znρmd,n
= ±pnf(z1, . . . , zn) (B.11)

where pn is a constant depending only on n. This is equivalent to imposing an (anti-)self-
duality condition on the polarization vectors

εµ1···ρ1
µ0···ρ0z1µ1 · · · znρ1 = ±pdn!z[1µ0 · · · znρ0]. (B.12)

To summarize, the representation md is equivalent to the space of homogeneous poly-
nomials of polarization vectors z1, . . . , zn ∈ Cd with degrees md,1, . . . ,md,n, satisfying the
orthogonality conditions (B.8), duality condition (B.12) in even dimensions, and subject
to gauge-redundancy (B.10).

We have essentially arrived at the Borel-Weil theorem, specialized to orthogonal
groups. The theorem states that each irreducible finite-dimensional representation of a
reductive Lie group G is equivalent to the space of global sections of a holomorphic line
bundle on the flag manifold G/B, where B ⊂ G is a Borel subgroup. In the case G = SO(d),
the flag manifold G/B is the projectivization of the space of vectors z1, . . . , zn satisfying
the above conditions and gauge-redundancies. A section of a line bundle on this space is a
homogeneous polynomial of the polarization vectors.

It is sometimes useful to use mixed index-free notation, where only some of the polar-
ization vectors are contracted. For example, we could consider

fν1···νmd,2 ··· ρ1···ρmd,n (z1) ≡ fµ1···µmd,1 ν1···νmd,2 ··· ρ1···ρmd,nz1µ1 · · · z1µmd,1 . (B.13)

The object fν1···νmd,2 ··· ρ1···ρmd,n (z1) is a tensor on the null cone z2
1 = 0. Its indices satisfy

all the symmetry conditions appropriate for the Young diagram (md,2, . . . ,md,n) obtained
by discarding the first row of the Young diagram (md,1,md,2, . . . ,md,n). Furthermore,
antisymmetry conditions like (B.5) mean that if we contract any of the indices of (B.13)
with z1, the result is zero. We say that (B.13) is “transverse”.
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B.2 Poincare patches

We can think of the polarization vector z1 as an embedding-space coordinate in d − 2
dimensions. It is natural to ask what the function f(z1, . . . , zn) looks like in flat coordinates.
Let us write the metric on Cd as

z · z = −z+z− + z⊥ · z⊥, (B.14)

where z⊥ ∈ Cd−2. For generic z1, we can use homogeneity to set

z1 = (z+
1 , z

−
1 , z

⊥
1 ) = (1, (y⊥)2, y⊥), y⊥ ∈ Cd−2. (B.15)

Using the gauge redundancies (B.10), we can set z+
2 = · · · = z+

n = 0. The orthogonality
conditions (B.8) then imply that the other zi take the form

zi = (0, 2z⊥i · y⊥, z⊥i ), z⊥i ∈ Cd−2, (B.16)

where

z⊥i · z⊥j = 0 (i, j = 2, . . . , n). (B.17)

Thus, we obtain a function

f↓(y⊥; z⊥2 , . . . , z⊥n ) ≡ f(z1, . . . , zn)| z1=(1,~y⊥2,y⊥)
zi=(0,2z⊥i ·y

⊥,z⊥i ).
(B.18)

The function f↓ is not homogeneous in y⊥, but it is a homogeneous polynomial in the
remaining arguments z⊥2 , . . . , z⊥n ∈ Cd−2. Furthermore, the z⊥2 , . . . , z⊥n are subject to the
same orthogonality and gauge redundancies as before, except now in 2-fewer dimensions.
Thus, f↓ is equivalent to a tensor field on Cd−2, transforming in the SO(d−2) representation
(md,2, . . . ,md,n)

f↓(y⊥; z⊥2 , . . . , z⊥n ) = f↓α1···αmd,2 ···β1···βmd,n (y⊥)z⊥2α1 · · · z
⊥
2αmd,2

· · · z⊥nβ1 · · · z
⊥
nβmd,n

, (B.19)

where αi, βi are vector indices in d−2-dimensions. This is the usual procedure of restricting
to a Poincare patch in the embedding formalism.

The function f(z1, . . . , zn) can easily be recovered from f↓(y⊥; z⊥2 , . . . , z⊥n ) by imposing
the correct homogeneity and gauge redundancy

f(z1, . . . , zn) = (f↓)↑(z1, . . . , zn)

= (z+
1 )m1f↓

(
z⊥1
z+

1
; z⊥2 −

z+
2
z+

1
z⊥1 , . . . , z

⊥
n −

z+
n

z+
1
z⊥1

)
. (B.20)

This is the usual procedure of lifting to the embedding space.
If we like, restriction to a Poincare patch can be iterated again to obtain a tensor field

on Cd−2 × Cd−4 with indices valued in the SO(d− 4) representation (md,3, . . . ,md,n),

f↓↓(y⊥, x⊥⊥; z⊥⊥3 , . . . , z⊥⊥n ),

= f↓↓α1···αmd,3 ··· ,β1···βmd,n (y⊥, x⊥⊥)z⊥⊥3α1 · · · z
⊥⊥
3αmd,3

· · · z⊥⊥nβ1z
⊥⊥
nβmd,n

x⊥⊥, z⊥⊥j ∈ Cd−4.

(B.21)
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Here, αi, βi are vector indices in d − 4 dimensions. Similarly, we can obtain f↓↓↓ which is
a tensor field on Cd−2×Cd−4×Cd−6, etc. . All of these functions can be lifted back to the
original homogeneous polynomial f(z1, . . . , zn).

B.3 Application to CFT

Most of the above constructions still work when some of the weights md,i become continu-
ous. We can now no longer demand that f is a polynomial in the polarization vectors with
continuous weights. However, we can still demand that f is a homogeneous function. Such
homogeneous functions yield infinite-dimensional representations of SO(d).57

We are interested in studying infinite-dimensional representations of S̃O(d, 2), corre-
sponding to operators in CFT. These are labeled by a weight md+2 = (−∆,md,1, . . . ,md,n),
where ∆ is not necessarily a negative integer. To describe light-ray operators, we must ad-
ditionally allow md,1 = J to be non-integer. We often use the notation

md+2 = (−∆, J, λ),
λ = (md,2, . . . ,md,n), (B.22)

where λ are weights of a finite-dimensional representation of SO(d − 2). When J is an
integer satisfying J ≥ md,2, we can also define the finite-dimensional representation of
SO(d− 1, 1)

ρ = (J,md,2, . . . ,md,n). (B.23)

The elements of the representation with weights md+2 are homogeneous functions of
the kind described in section B.1. Here, we simply introduce some specialized notation for
the case at hand. The functions are

O(X,Z,W1, . . . ,Wn−1), X, Z ∈ Rd,2, Wi ∈ Cd+2, (B.24)

where the vectors X,Z,Wi are null and mutually orthogonal. Furthermore, they satisfy
gauge redundancies

Z ∼ Z + #X
W1 ∼W1 + #Z + #X

...
Wn−1 ∼Wn−1 + #Wn−2 + · · ·+ #X. (B.25)

The homogeneity condition is

O(αX, βZ, α1W1, . . . , αn−1Wn−1) = α−∆βJα
md,2
1 · · ·αmd,nn−1 O(X,Z,W1, . . . ,Wn−1).

(B.26)
Furthermore, O is constrained to be a polynomial in the Wi’s (but not in X,Z).

57An index-free formalism for CFT operators in general tensor representations was introduced in [117].
That formalism introduces fermionic polarization vectors, and essentially differs from the one here by
privileging the columns of Young tableaux instead of the rows.
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The restriction of O to a Poincare patch is given by

O↓(x, z, w1, . . . , wn−1) = O(X,Z,W1, . . . ,Wn−1)| X=(1,x2,x)
Z=(0,2x·z,z)

Wi=(0,2x·wi,wi)

. (B.27)

Here, z, wi are mutually orthogonal null vectors, subject to the gauge redundancies

w1 ∼ w1 + #z
w2 ∼ w2 + #w1 + #z
...

wn−1 ∼ wn−1 + #wn−2 + · · ·+ #z. (B.28)

The function O↓ satisfies the homogeneity condition

O↓(x, βz, α1w1, . . . , αn−1wn−1) = βJα
md,2
1 · · ·αmd,nn−1 O

↓(x, z, w1, . . . , wn−1). (B.29)

The transverse coordinates ~y discussed in section 2.1 come about when we do an
additional restriction to a Poincare patch in the z variable:

O↓↓(x, ~y; ~w1, . . . , ~wn−1) = O↓(x, z, w1, . . . , wn−1)
∣∣∣ z=(1,~y2,~y)
wi=(0,2~y·~wi, ~wi)

, (B.30)

where

x ∈ Rd−1,1, ~y ∈ Rd−2, ~wi ∈ Cd−2. (B.31)

We can equivalently think of O↓↓(x, ~y) as a tensor field on Rd−1,1 × Rd−2 transforming in
the SO(d− 2) representation λ. When O is a traceless symmetric tensor (i.e. λ is trivial),
we have ∫ ∞

−∞
Ov···v(u = 0, v, ~y) ∝ L[O]↓↓(−∞z0, ~y), (B.32)

where z0 = (1, 1, 0, . . . , 0) is a null vector in the v direction.
We almost always abuse notation and drop the ↓ superscripts, relying on the arguments

of O to distinguish between the embedding-space function and its restrictions to Poincare
patches. We also often use mixed index-free notation, where we strip off the wi’s to obtain
a tensor operator

O(x, z, w1, . . . , wn−1) = Oµ1···µmd,2 ··· ν1···νmd,n (x, z)w1µ1 · · ·w1µmd,2 · · ·wn−1ν1 · · ·wn−1νmd,n .

(B.33)

The tensor Oµ1···µmd,2 ··· ν1···νmd,n (x, z) has indices symmetrized using the Young tableau
λ = (md,2, . . . ,md,n), and furthermore all its indices are transverse to z. Finally, we often
suppress tensor indices and simply write O(x, z), where it is understood that O can carry
indices transverse to z.

All of these different formalisms for representing O are equivalent, and they are
convenient for different purposes. For example, to define the celestial map in sec-
tion 3.4.4, it is convenient to use embedding-space operators O(X,Z,W1, . . . ,Wn−1).
To define the Lorentzian pairings (3.45) and (3.47), it is convenient to use the object
Oµ1···µmd,2 ··· ν1···νmd,n (x, z) which caries a finite set of indices transverse to z. We move
freely between the different formalisms as needed.

– 92 –



J
H
E
P
0
1
(
2
0
2
1
)
1
2
8

C More on analytic continuation and even/odd spin

In this section, we give more detail on the relationship between CRT and the generalized
Lorentzian inversion formula. In particular, we explain how to go from the formula in [23]
to the formula (3.42) in the main text.

The formula derived in [23] is

C±ab(∆, J, λ) = − 1
2πi

∫
4>1
2>3

ddx1 · · · ddx4

vol(S̃O(d, 2))
〈Ω|[O4,O1][O2,O3]|Ω〉

× T −1
2 T

−1
4

(
T2〈O1O2L[O†]〉(a)

)−1 (
T4〈O4O3L[O]〉(b)

)−1

〈L[O]L[O†]〉−1

+ (1↔ 2). (C.1)

It involves light-transforms of time-ordered structures 〈O1O2L[O†]〉(a) and
〈O3O4L[O]〉(b).58 Time-ordered structures only make sense for integer J (see ap-
pendix A of [23]), so we must give a prescription for how to analytically continue (C.1)
in J . Such a prescription was described in [23].59 However, for our purposes, it will be
helpful to phrase it in a different way. In particular, this requires clarifying the role of the
± sign in the definition of O±∆,J,λ(a).

Note that there are two terms in the Lorentzian inversion formula. The t-channel term
written explicitly in (C.1) depends on

T2〈O1O2L[O†](x0, z0)〉(a) = T2〈0|O2L[O†](x0, z0)O1|0〉(a) ((1 > 2) ≈ 0), (C.2)

T4〈O3O4L[O](x0, z0)〉(b) = T4〈0|O4L[O](x0, z0)O3|0〉(b) ((3 > 4) ≈ 0). (C.3)

On the right, we indicate the causal relationship between points for which the structure
is needed. We also give light-transformed Wightman structures that equal the light-
transformed time-ordered structures when those causal relationships hold. Meanwhile,
the u-channel term (1↔ 2) depends on

T1〈O1O2L[O†](x0, z0)〉(a) = T1〈0|O1L[O†](x0, z0)O2|0〉(a) ((2 > 1) ≈ 0), (C.4)

instead of (C.2).
We see from (C.2) and (C.4) that the Lorentzian inversion formula actually depends

on a pair of Wightman structures

〈0|O2O†(x0, z0)O1|0〉(a), 〈0|O1O†(x0, z0)O2|0〉(a). (C.5)
58By a “time-ordered structure”, we mean a conformally-invariant function of positions, with the iε

prescription appropriate for a time-ordered correlator. By a “Wightman structure”, we mean a conformally-
invariant function of positions, with the iε prescription appropriate for a Wightman function with the given
ordering.

59It is as follows: we should first compute 〈O1O2L[O†]〉(a) for general nonnegative integer J (where J is
the spin of O). The result is no longer a time-ordered structure (e.g. it has θ-functions of positions). It can
then analytically continued from even or odd J , depending on whether we are computing C+

ab(∆, J, λ) or
C−ab(∆, J, λ). The analytic continuations are fixed by demanding that they are well-behaved in the right-half
J-plane.
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It is easy to separately analytically continue each Wightman structure in spin. However,
we should take care to preserve the correct relationship between the structures. Let us
describe this relationship when J is an integer, and then generalize to non-integer J .

The simplest way to relate the structures (C.5) for integer J is to demand that they are
equal when all operators are spacelike separated. Unfortunately, this type of relationship
does not generalize to non-integer J due to branch cuts in the spacelike region [23].

A different way to state the relationship between the structures (C.5) for integer J is
to say how they transform under a combination of CRT and Hermitian conjugation. Recall
that CRT is an anti-unitary symmetry that takes x = (x0, x1, x2, . . . , xd−1) to its Rindler
reflection x = (−x0,−x1, x2, . . . , xd−1). Its action on a local operator is given by

(CRT)Oαlocal(x)(CRT) =
(
(e−iπM01)αβOβlocal(x)

)†
, (C.6)

where α, β are indices for the Lorentz representation of O, andM01 is the generator of a
boost in the 01 plane. (We assume Olocal is bosonic, for simplicity.) In general, we define
the “Rindler conjugate” of any (not necessarily local) operator O by

O ≡ (CRT)O(CRT). (C.7)

Note that Rindler conjugation preserves operator ordering, since it is simply conjugation
by a symmetry.

If we combine Rindler conjugation with Hermitian conjugation, we obtain a linear map
that reverses operator ordering

O → O†. (C.8)

For local operators, this is equivalent to a rotation by π in the plane spanned by x1 and
Euclidean time ix0,

Oαlocal(x)† = (e−iπM01)αβOβlocal(x). (C.9)

(One way to understand why this reverses operator ordering is that such a rotation reverses
all the iε’s.) However, for non-local operators, (C.8) cannot be described in terms of a
Euclidean rotation. We call the eigenvalue of an operator under (C.9) its “signature”.

Let z0 = (1, 1, 0, . . . , 0) be a null vector satisfying z0 = −z0. Given a local operator
Olocal with dimension ∆ and spin-J , it is easy to check using (C.6) that L[Olocal](−∞z0, z0)
has signature (−1)J ,

L[Olocal](−∞z0, z0)† = (−1)JL[Olocal](−∞z0, z0). (C.10)

However, more general light-ray operators can have a signature that is not necessarily
related to J , and this is what the superscript ± encodes:

O±∆,J(−∞z0, z0)
†

= ±O±∆,J(−∞z0, z0). (C.11)
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Let us understand how signature is encoded in the inversion formula. Since (C.8) acts
as a complexified Lorentz transformation (C.9) on local operators, it is an operator-order-
reversing “symmetry” of three-point functions of local operators. Let O1,O2 be any local
operators. We have

〈0|O1O†local(x, z)O2|0〉 = 〈0|O†2O
†
local(x, z)

†
O†1|0〉

= 〈0|O†2O
†
local(x, z)O†1|0〉

= (−1)J〈0|O†2O
†
local(x,−z)O†1|0〉. (C.12)

In the last line, we used that O†local(x, z) is a degree-J polynomial in z to give it a future-
pointing polarization vector −z. Here, O†1,2 are given by (C.6).

The natural generalization to non-integer J is that the Wightman structures (C.5)
should be related by

〈0|O1O†(x, z)O2|0〉(a) = ±〈0|O†2O†(x,−z)O†1|0〉(a), (C.13)

where ± indicates whether we have analytically continued from even or odd spin. Again,
O†i is given by (C.9). Plugging this in to (C.1) gives equation (3.42).

D Checking the celestial map with triple light transforms

For symmetric traceless tensors O1 and O2, our OPE formula (3.89) relies on the com-
putation of the coefficient q(a)

δ,j defined by the triple light-transform in (3.85). For more
general representations of O1 and O2, our formula (3.99) requires computation of the map
defined by (3.98). We claim that this map is determined by the celestial map (3.103). In
this appendix, we will prove the celestial map for operators in symmetric traceless tensor
representations. We leave proving it for more general representations for the future.

Let O1 and O2 be symmetric traceless tensors of spins J1 and J2, and consider the
three-point structures

〈0|O1(X1, Z1)O2(X2, Z2)O(X0, Z0)|0〉(a) . (D.1)

For simplicity, we consider the case with O in a symmetric traceless tensor representation,
(∆, J = J1+J2−1, λ = •), as well. Then, the relevant three-point structures were classified
in [42]. In embedding space, we can use the following basis of tensor structures;

〈0|O1(X1, Z1)O2(X2, Z2)O(X0, Z0)|0〉(a) =
∏
i(−2Vi)mi

∏
i<j(−2Hij)nij

X
τ1+τ2−τ0

2
12 X

τ2+τ0−τ1
2

20 X
τ0+τ1−τ2

2
01

, (D.2)

where i, j = 0, 1, 2, τ i = ∆i + Ji and the basis index (a) is determined by six numbers
{mi, nij} satisfying

mi +
∑
j 6=i

nij = Ji. (D.3)
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Recall that Xij ≡ −2Xi ·Xj . The building blocks for the structures are [42]

Xij ≡ −2Xi ·Xj , (D.4)

Vi,jk ≡
Zi ·Xj Xi ·Xk − Zi ·Xk Xi ·Xj

Xj ·Xk
, (D.5)

Hij ≡ −2 (Zi · Zj Xi ·Xj − Zi ·Xj Zj ·Xi) . (D.6)

For brevity, we define Vi ≡ Vi,jk for {i, j, k} in cyclic order. We have shown in [1] that

〈0|O2L[O]O1|0〉(a) = (−2V0)m0
∏
i<j

(−2Hij)nij 〈0|O′2L[φ]O′1|0〉(a
′) . (D.7)

The new structure 〈0|O′2φO′1|0〉(a
′) is the unique one that has

n′ij = 0, m′0 = 0, m′1 = m1, m′2 = m2 . (D.8)

The new formal operators O′i have spin J ′i = mi and dimension ∆′i = ∆i + Ji −mi. (Note
that τ i = τ ′i.) The formal scalar φ has dimension ∆φ = τ . The light-transform of the
structure (a′) is [1]

〈0|O′2L[φ]O′1|0〉(a
′)

=L(O′1O′2[φ]) (−2V0)1−τ (−2V1)m1(−2V2)m2

(−X02)
τL+τ2−τ1

2 X
τL+τ1−τ2

2
01 X

τ1+τ2−τL
2

12

f

(
− H01

2V0V1
,− H02

2V0V2

)
((2> 0)≈ 1),

(D.9)

where τL = (1− J) + (1−∆) = 2− τ ,

L(O′1O′2[φ]) = −2πi Γ(∆φ − 1)
Γ(∆φ+τ ′1−τ ′2

2 )Γ(∆φ−τ ′1+τ ′2
2 )

, (D.10)

and

f(x, y) = F2(τ − 1;−m1,−m2; 1
2(τ + τ ′1 − τ ′2), 1

2(τ − τ ′1 + τ ′2);x, y) . (D.11)

F2 is the Appell hypergeometric function

F2(α;β, β′; γ, γ′;x, y) ≡
∞∑
k=0

∞∑
l=0

(α)k+l(β)k(β′)l
k!l!(γ)k(γ′)l

xkyl . (D.12)

Now, we’d like to specialize X0 = (1, 0, 0) and compute the remaining light transforms
L−[O1](X∞, Z1) and L+[O2](X∞, Z2).

〈0|L+[O2](X∞, Z2)L[O](X0, Z0)L−[O1](X∞, Z1)|0〉(a)

vol SO(1, 1)

= 1
vol SO(1, 1)

∫ ∞
0

dα2

∫ 0

−∞
dα1(2V0)m0

∏
i<j

(−2Hij)nij 〈O′1L[φ]O′2〉(a
′)

= 1
vol SO(1, 1)

∫ ∞
0

dα2

∫ 0

−∞
dα1

∏
i<j

(−2Hij)nij L(O′1O′2[φ])

(2V0)1−τ+m0(2V1)m1(2V2)m2

(−X02)
τL+τ1−τ2

2 X
τL+τ2−τ1

2
01 X

τ1+τ2−τL
2

12

f

(
− H01

2V0V1
,− H02

2V0V2

)
(D.13)
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Inside the integral, the light-transform instructs us to replace

X1 → Z1 − α1X∞ = (0,−α1, z1)
X2 → Z2 − α2X∞ = (0,−α2, z2)
Z1,2 → −X∞ = (0,−1,~0) (D.14)

where Zi = (0, 0, zi), and accordingly,

V1 = −z1 · z2
α2

V2 = z1 · z2
α1

V0 = α2z1 · z0 − α1z2 · z0
2z1 · z2

H01 = z0 · z1

H02 = z0 · z2

H12 = 0. (D.15)

Since H12 = 0, only structures with n12 = 0 will survive. In that case, the selection rule
J = J1 + J2 − 1 implies

m0 = m1 +m2 − 1. (D.16)

Expanding the Appell F2 sum, we evaluate the integral for each term;∫ ∞
0

dα2

∫ 0

−∞
dα1

(−2H01)J1−m1+k(−2H02)J2−m2+l(2V0)1−τ+m0−k−l(2V1)m1−k(2V2)m2−l

(−X02)
τL+τ1−τ2

2 X
τL+τ2−τ1

2
01 X

τ1+τ2−τL
2

12

= zk+J1−m1
01 zl+J2−m2

02

z
τ1+τ2−τ

2
12

∫ ∞
0

dα2

∫ 0

−∞
dα1

(α2z01 − α1z02) 1−τ−k−l+m0

α
τL−τ1+τ2

2 −k+m1
2 (−α1)

τL+τ1−τ2
2 −l+m2

=
Γ( δ+δ12

2 + J1 −m1 + k)Γ( δ+δ21
2 + J2 −m2 + l)

Γ(δ + J −m0 + k + l)

(∫ ∞
0

dα2
α2

)
〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉

(D.17)

Combining with the remaining factors, we have

〈0|L+[O2](X∞, Z2)L[O](X0, Z0)L−[O1](X∞, Z1)|0〉(a)

vol SO(1, 1) = q
(a)
δ,0 〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉

(D.18)

with

q
(a)
δ,0 = −2πi δn12,0

(δ + J −m0)m0

( δ+δ1−δ22 + J1 −m1)m2( δ+δ2−δ12 + J2 −m2)m1

×
∞∑

k,l=0

1
k! l!

(−m1)k(−m2)l(δ + J)k+l( δ+δ1−δ22 + J1 −m1)k( δ+δ2−δ12 + J2 −m2)l
(δ + J −m0)k+l( δ+δ1−δ22 + J1 −m1 +m2)k( δ+δ2−δ12 + J2 −m2 +m1)l

.

(D.19)
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Quite remarkably, this sum completely simplifies, yielding a pair of Kronecker delta func-
tions. Finally, we have

q
(a)
δ,0 = −2πiδn12,0

(δ + J −m0)m0

( δ+δ1−δ22 + J1 −m1)m2( δ+δ2−δ12 + J2 −m2)m1

δm1,0 δm2,0

= −2πi 1
δ + J

δn12,0 δm1,0 δm2,0 . (D.20)

Recalling that

rδ,0 = − 2πi
δ + J

, (D.21)

the OPE differential on the celestial sphere is given by

D(a)
δ,0 (z1, z2, ∂z2) =

q
(a)
δ,0
rδ,0
Cδ,0 = δn12,0 δm1,0 δm2,0 Cδ,0 . (D.22)

In other words, the differential is Cδ,0 if (a) is the structure

(a) = {m0,m1,m2, n01, n02, n12} = {−1, 0, 0, J1, J2, 0} (D.23)

is proportional to

V −1
0 HJ1

01H
J2
02 , (D.24)

and zero otherwise. This precisely agrees with the celestial map (3.103).

E Swapping the integral and t-channel sum in the inversion formula

We would like to argue that

C±(∆, J) =
∑

∆′,J ′
p∆′,J ′B(∆, J ; ∆′, J ′) (E.1)

is a convergent sum, where B(∆, J ; ∆′, J ′) is the Lorentzian inversion of a single t-channel
block, and we have J > J0 and ∆ = d

2 + iν. We can argue for this using the Fubini-Tonelli
theorem. The theorem implies that we can exchange the sum over ∆′, J ′ and the integral
over z, z in the Lorentzian inversion formula if the result after replacing each term with its
absolute value is finite:∫ 1

0

∫ 1

0
dzdz

|z − z|d−2

(zz)d |GJ+d−1,∆−d+1(z, z)|

×
∑

∆′,J ′

∣∣∣∣∣p∆′,J ′dDisct

[(
zz

(1− z)(1− z)

)∆φ

G∆′,J ′(1− z, 1− z)
]∣∣∣∣∣ <∞. (E.2)

Because p∆′,J ′ is positive and dDisct[. . . ] is as well, we can write this condition more
simply as ∫ 1

0

∫ 1

0
dzdz

|z − z|d−2

(zz)d |GJ+d−1,∆−d+1(z, z)|dDisct[g](z, z) <∞. (E.3)
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Note that the Lorentzian inversion formula converges for J > J0 and ∆ = d
2 +iν on the

principal series [24, 54]. Thus, it suffices to bound the integral (E.3) by a constant times
the Lorentzian inversion formula with ∆ = d

2 (which is on the principal series). Specifically,
we will argue that

|GJ+d−1,∆−d+1(z, z)|
GJ+d−1, d2−d+1(z, z) < const, z, z ∈ [0, 1], ∆ = d

2 + iν, (E.4)

where the constant can depend on ∆ and J but is independent of z, z. Because the functions
in the numerator and denominator of (E.4) are smooth and nonzero in the interior of the
square, it suffices to argue that their ratio is bounded in a neighborhood of the boundary
of the square. By symmetry, it suffices to consider z ≤ z.

When z � z, the ratio takes the form

|GJ+d−1,∆−d+1(z, z)|
GJ+d−1, d2−d+1(z, z) ∼

∣∣∣z J−∆+2d−2
2 k∆+J(z)

∣∣∣
z
J− d2 +2d−2

2 k d
2 +J(z)

= |k∆+J(z)|
k d

2 +J(z) , z � z (E.5)

where kβ(x) is an SL2 block. The above ratio is equal to 1 (and hence bounded) when
z = 0. Since both SL2 blocks behave like log(1 − z) near z = 1, their ratio is bounded
near z = 1 as well. Because the numerator and denominator are smooth and nonzero for
0 < z < 1, the ratio (E.5) is bounded by a z-independent constant.

In the Regge limit z, z � 1 with z/z fixed, (E.4) is

|GJ+d−1,∆−d+1(z, z)|
GJ+d−1, d2−d+1(z, z) ∼

|C∆−d+1(x)|
C d

2−d+1(x) , z, z � 1, (E.6)

where CJ(x) is a Gegenbauer function and x = z+z
2
√
zz

ranges from 1 to ∞. Again, by
examining the limits x→ 1 and x→∞, one finds that the above ratio is bounded.

The z → 1 limit of a conformal block can be studied by solving the Casimir equation.
Again in this case, one finds that the numerator and denominator of (E.4) both behave as
the same function of 1− z, times functions of z whose ratios are bounded. This completes
our argument.

F Contact terms at ζ = 1 in N = 4 SYM

In the main text we described how one can recover the contact terms in the energy-energy
correlator FE(ζ) in N = 4 SYM at ζ = 0 and ζ = 1 using Ward identities (7.17) and (7.18).
We were also able to recover the ζ = 0 contact terms using the light-ray OPE formula (7.11).
In this appendix we explain how the ζ = 1 contact terms can be obtained by another
independent argument.

In the back-to-back region the energy-energy correlator in N = 4 SYM takes the
following form [31, 34, 80]

FE(ζ) ∼ζ→1
H(a)

8y

∫ ∞
0

e
−1

2 Γcusp(a) log2
(
b2

yb20

)
−Γcoll(a) log

(
b2

yb20

)
bJ0(b)db, (F.1)
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where y = 1 − ζ, b0 = 2e−γE , Γcusp(a) is the cusp anomalous dimension and Γcoll(a) is
the so-called collinear anomalous dimension. Both Γcusp(a) and Γcoll(a) are known at any
coupling a from integrability [118]. Note that starting from four loops there are non-planar
corrections to Γcusp(a) and Γcoll(a) which we do not write here [119–121].

At weak coupling Γcusp(a) is given by the following expansion [122]

Γcusp(a) = a− 1
2ζ2a

2 + 11
8 ζ4a

3 −
(1

8ζ
2
3 + 219

64 ζ6

)
a4 + · · · , (F.2)

Γcoll(a) is the collinear anomalous dimension given by [123, 124]

Γcoll(a) = −3
2ζ3a

2 + (1
2ζ2ζ3 + 5

2ζ5)a3 −
(21

16ζ3ζ4 + 5
8ζ2ζ5 + 175

32 ζ7

)
a4 + · · · , (F.3)

and H(a) is the so-called coefficient function given by60 [31, 35]

H(a) = 1− ζ2a+ 2ζ2
2a

2 +
(
−33

8 ζ
3
2 − 1

4ζ4ζ2 − 17
12ζ

2
3 + 1

64ζ6
)
a3 +H4a

4 + · · · . (F.4)

The coefficient H4 is at present unknown.
At finite a (F.1) is integrable near y = 0, and so does not have any contact terms. It

is possible that even at finite coupling there is an extra contact term that has to be added
to (F.1). We assume that this is not the case, and that there are no contact terms at ζ = 1
at finite coupling. Under this assumption, we can therefore obtain perturbative contact
terms at ζ = 1 if we carefully expand (F.1) in powers of a. Naïve expansion yields terms
of the form y−1 logk y. In our conventions for the distributional part of FE(ζ) we interpret
these terms as [y−1 log y]1, which satisfy∫ 1

0
dζ

[
logk(1− ζ)

1− ζ

]
1

= 0. (F.5)

Therefore, to determine the coefficient of δ(y) = δ(1 − ζ) in (F.1), it suffices to inte-
grate (F.1) from 0 to 1, and expand the result as a power series in a.

The y integral we need to perform is

Ia(b) =
∫ 1

0
dyy

−1+2Γcusp(a) log b
b0

+Γcoll(a)
e−

1
2 Γcusp(a) log2 y

= e

(2Γcusp(a) log b
b0

+Γcoll(a))2

2Γcusp(a)

√
πerfc

(
2Γcusp(a) log b

b0
+Γcoll(a)√

2Γcusp(a)

)
√

2Γcusp(a)
. (F.6)

This can be expanded in powers of a, with b-dependence entering as powers log b
b0
. Note

that naïvely this function has an expansion in powers of
√
a. However, all non-integer

powers of a will go away after performing b-integral.
We now want to perform the a-expansion of the integral∫ ∞

0
Ia(b)e

−2Γcoll(a) log b
b0 e
−2Γcusp(a) log2 b

b0 bJ0(b)db. (F.7)

60We thank Grisha Korchemsky for sharing the coefficient of a3 in H(a) with us.
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The product

Ia(b)e
−2Γcoll(a) log b

b0 (F.8)

can be expanded in a with coefficients polynomial in log b
b0
. This is legal since the integral

still converges after the expansion. This means that it suffices to compute the integrals∫ ∞
0

logk b
b0
e
−2Γcusp log2 b

b0 bJ0(b)db, (F.9)

where we treat Γcusp as arbitrary parameter. It suffices only to compute this in the case
k = 0, 1 since to get higher k we can simply take derivatives with respect to Γcusp. Let us
consider the case k = 0; k = 1 is completely analogous. We first integrate by parts,∫ ∞

0
e
−2Γcusp log2 b

b0 bJ0(b)db =
∫ ∞

0
e
−2Γcusp log2 b

b0 d(bJ1(b))

= 4Γcusp

∫ ∞
0

log b
b0
e
−2Γcusp log2 b

b0 J1(b)db. (F.10)

Now the integral converges even for Γcusp = 0, so we can expand the exponential since
Γcusp ∈ O(a). This way, we reduce to integrals∫ ∞

0
logk b

b0
J1(b)db =

(
∂kν

∫ ∞
0

(
b
b0

)ν
J1(b)db

)
ν=0

=
(
∂kν

(
2
b0

)ν Γ(1 + ν
2 )

Γ(1− ν
2 )

)
ν=0

. (F.11)

Using this algorithm we find that the coefficient c1 in front of δ(1− ζ) is given by

c1 = H(a)
8

(
2− 4[Γcoll(a)Γcusp(a)ζ3 + 5

3Γcusp(a)3ζ2
3 ]

+ 12ζ5[Γcoll(a)Γcusp(a)2 + 14
3 Γcusp(a)4ζ3] +O(a5)

)
= H(a)

8
(
2− 2

3ζ
2
3a

3 + (28ζ3ζ5 + 5ζ2ζ
2
3 )a4 +O(a5)

)
= 1

4 −
1
4ζ2a+ 1

2ζ
2
2a

2 −
(

197π6

40320 + 7ζ2
3

16

)
a3 + 1

144

(
17π2ζ2

3 + 504ζ3ζ5 + 36H4
)
a4 +O(a5).

(F.12)
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any medium, provided the original author(s) and source are credited.
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