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1 Introduction

The production of photons, W ’s, Z’s and Higgs bosons are important processes which

allow us to test the Standard Model and extract its fundamental parameters. With precise

calculations of the cross sections, they also give opportunities to search for physics beyond

the Standard Model through deviations from Standard Model predictions. At hadron

colliders, initial state radiation caused by the strong interaction contributes and necessarily

affects the boson distributions. Moreover, energetic jets can be produced in association with

the boson production. Therefore the understanding of the boson distribution is always

complicated by the presence of hadronic activities in the events, which are governed by

quantum chromodynamics (QCD). Using fixed-order calculations in perturbative QCD

one can systematically improve the description of hadronic radiation. However, in certain

regimes the fixed-order perturbative expansion diverges so that an all-order resummation

is necessary for the validity of theoretical predictions. This happens when characteristic

energy scales relevant in the process become hierarchical so that large logarithms of scale

ratios can spoil the validity of fixed-order calculations. The transverse momentum pT
distribution of the lepton pair in the Drell-Yan process is a classic example which requires

the resummation of log(MV /pT ) in the regime of pT � mV , where MV is the vector

boson mass. This can be achieved to all-orders using the standard formalism by Collins,

Soper and Sterman (CSS) [1]. Alternatively, the logarithms can also be resummed using

renormalization group (RG) techniques and soft-collinear effective theory (SCET) [2–5]

(see [6] for a review) as discussed in [7–15]. More recently, the resummation has been

performed at next-to-next-to-next-to-leading logarithmic accuracy [16–19].

In this paper, we study the situation in which the boson has significant transverse

momentum recoiling against hadronic activities consisting of jets in the final states. Specif-

ically, we consider the qT distribution of the boson and the leading jet system where ~qT
is the vector sum of the transverse momenta of the two objects and qT = |~qT |, as illus-

trated in figure 1. In the 2→ 2 scattering, boson+jet back-to-back limit the value of qT is

zero, although the boson and the jet can have large transverse momenta. In the small qT
regime, the soft and collinear emissions induce large logarithms of log(Q/qT ) which need

to be resummed, where Q represents the hard scattering energy. The situation is similar in

di-jet production where ~qT is defined as the vector sum of the transverse momenta of the

two leading jets, and the resummation of log(Q/qT ) at next-to-leading logarithmic (NLL)

accuracy without non-global logarithms (NGLs) [20, 21] was carried out using the CSS for-

malism in [22, 23]. Similarly, the log(Q/qT ) resummation at NLL level was also performed

for photon(γ)+jet [24], Z+jet [25] and top quark+jet production [26–28]. More recently,

the NLL resummation in γ+jet production was also carried out using SCET [29].

The purpose of this paper is to derive an all-order expression in SCET for the sys-

tematic resummation of log(Q/qT ) in boson+jet production at small qT , including the

resummation of the associated jet radius logarithms logR as well as NGLs.1 The precise

understanding of this observable in proton-proton collisions then forms the baseline of such

hard probes in nucleus-nucleus collisions where a hot and dense QCD medium called the

1Recently, much progress was made in the study of NGL resummation [30–45].
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Figure 1. Boson+jet production in hadron collisions. Here pV and pJ are the momenta of the

color singlet boson and the jet, and R is the jet radius. By definition ~qT = ~pJT + ~pV
T . The modes

relevant for the observable qT include the soft modes with momentum ps, and the collinear modes

along the two beam directions (n1 and n2) and the jet direction (nJ). Small-angle soft modes are

taken as an independent degree of freedom from those emitting from the jet, and its momentum

is denoted as pt. The n1-collinear and n2-collinear modes and soft modes all have a transverse

momentum ∼ qT , while the nJ -collinear modes carry most of the jet momentum.

quark-gluon plasma (QGP) is produced. Through interactions with the medium, jets in the

event can be significantly modified while the color-singlet boson remains intact that can

serve as a robust reference of the hard scattering process. This makes boson+jet production

a useful channel for studying the properties of QGP though the relation between transverse

momentum broadening and energy loss of jets in high-energy nuclear collisions [46], which

requires a proper resummation of large logarithms [24, 47, 48]. The kinematic information

of the boson+jet system has been explored quite extensively [49–55]. For example, the qT ,

the boson-jet momentum imbalance XJV ≡ pJT /pVT , and the azimuthal angle decorrelation

|∆φJV |: the azimuthal angle between the jet and the boson as measured in the plane per-

pendicular to the beam direction, have been experimentally studied in Z+jet [56–60] and

γ+jet [61] events at the LHC.

The rest of the paper is organized as follows. In section 2, we analyze all the relevant

degrees of freedom which contribute to qT . We give a detailed derivation of our factorized

expression (2.28) using a two-step matching procedure in SCET. In section 3, we discuss the

renormalization of all the bare functions entering (2.28) and give an all-order resummation

formula in (3.13). We explain the relation between our resummation formula with those

in [24, 25, 29]. The anomalous dimensions relevant for the NLL resummation are also given

in this section. In section 4 we analyze the Sudakov double logarithms, while in section 5.2

we perform the resummation of log(Q/qT ) at NLL accuracy for Z+jet production, including

– 3 –
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logR and NGL resummation. In section 6 we summarize and discuss some intriguing issues

for future studies. In appendices A and B, we list the tree-level amplitudes of partonic

V+jet production and the anomalous dimensions used in this calculation. In appendix C

we give the LO singular terms for qT distribution.

2 Factorized expression for qT in boson+jet production

We derive a factorized expression of the differential cross section dσ/d2qT for the process

N1(P1) +N2(P2)→ boson(pV ) + jet(pJ) +X, (2.1)

where X stands for all the produced particles in the event except for the boson and the

particles of the leading jet. As defined previously, the observable ~qT is the sum of the

transverse momenta of the boson and the leading jet. The boson can be either the W , Z,

γ or the Higgs boson. We will first focus on the qT region where ΛQCD � qT � Q and

Q is a hard scattering energy scale depending on the leading-jet transverse momentum pJT
(and, for a massive boson, the boson mass mV ). We will discuss the factorization of the

cross section in SCET and resum large logarithms using RG techniques.

2.1 Degrees of freedom

For qT � Q, the dominant contributions to qT come from soft particles in all out-of-jet

directions or collinear particles along the beam directions, with transverse momenta of the

order qT . As illustrated in figure 1, such radiation can be either soft with ps ∼ qT , or

collinear to the two beam directions n1 and n2 with pn1
T ∼ qT or pn2

T ∼ qT . In this paper all

the calculations are carried out in the small R limit. In this case, the small-angle soft mode

along the jet direction can be singled out as an independent degree of freedom [33, 35, 62,

63]. Such soft radiation is sensitive to the jet direction and the jet boundary and will be

referred to as the coft mode in the following discussions, cf. [33, 35]. While wide-angle, soft

radiation is only sensitive to the total color charge of the jet, the coft mode can resolve any

possible collinear constituents of the jet. If a coft radiation is emitted outside the jet it will

contribute to the observable qT . We need to consider the coft mode in order to account

for multiple out-of-jet radiation and resum the potentially large logarithms of logR.

The above kinematic analysis shows that the relevant SCET degrees of freedom for

the calculation of qT in this process include the following modes as illustrated in figure 1,2

n1-collinear: pµn1
∼ Q (λ2, 1, λ)n1n̄1 ,

n2-collinear: pµn2
∼ Q (λ2, 1, λ)n2n̄2 ,

nJ -collinear: pµnJ ∼ p
J
T (R2, 1, R)nJ n̄J ,

soft : pµs ∼ Q (λ, λ, λ),

coft : pµt ∼ Qλ (R2, 1, R)nJ n̄J , (2.2)

2We do not include the Glauber mode which is responsible for the breakdown of the transverse-

momentum factorization at higher orders as discussed in [64–67]. Interested readers are referred to [68]

for a systematic study of the Glauber mode in SCET.
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where λ = qT /Q is the power counting parameter. The auxiliary light-like vectors n̄i satisfy

ni · n̄i = 2 for i = 1, 2 and J and we choose n̄1 = n2 and n̄2 = n1. As we shall discuss

in section 4, Q is the hard scattering scale in the process and it may be parametrically

different from pJT if the boson is massive. Here all the momenta pµ = (ni · p, n̄i · p, ~pni⊥)

are expressed using light-cone coordinates with light-like vectors ni and n̄i, as denoted by

the subscripts nin̄i in (2.2). We denote the transverse momenta perpendicular to the two

beam directions n1 and n2 by the subscript T , and the transverse momenta perpendicular

to nJ by the subscript ⊥.

2.2 Derivation of the factorized expression

We derive the factorized expression using SCET with all the degrees of freedom in (2.2).

The derivation is carried out in a two-step procedure similar to the one in [33, 35].

2.2.1 Matching of QCD onto an intermediate SCET

The intermediate SCET (more specifically, SCETII [3]), includes n1-, n2- and nJ -collinear

fields and one soft gluon field. In this step, the hard mode is integrated out and encoded

in the Wilson coefficients C. The local collinear gauge invariance demands that collinear

fields along different directions do not directly interact with each other. That is, the hard

and collinear modes factorize.

Let us denote collectively the infrared (soft or collinear) particles by XIR and write

the differential cross section for the process N1(P1) +N2(P2)→ boson(pV ) +XIR as

dσ

dXIRdyV d2pVT
=

1

2s

1

2(2π)3

∫
d4xe−ipV ·x〈P1P2|H†(x)|XIR〉〈XIR|H(0)|P1P2〉, (2.3)

where |XIR〉 is a product of ni-collinear states |Xni〉 and soft state |Xs〉, dXIR denotes the

measure for the n−body relativistically invariant phase space of XIR and yV is the boson

rapidity. Generically, the leading-order operators are built out of three collinear fields along

the three collinear directions of the beams and the jet, and the effective Hamiltonian H
takes the form

H(x) =

∫
{dt}Ca1a2aJ

α1α2αJ
(ε,Q, {t})[φn1 ]α1

a1
(x+ t1n̄1)[φn2 ]α2

a2
(x+ t2n̄2)[φ†nJ ]αJaJ (x+ tJ n̄J), (2.4)

where {dt} ≡ dt1dt2dtJ is the integration measure and C is the Wilson coefficient. Due to

the soft and collinear gauge invariance, the low-energy effective operator should have the

follwing form

[φn1 ]α1
a1

[φn2 ]α2
a2

[φ†nJ ]αJaJ → [φn1 ]α1

a′1
(S)

a′1a1
n1 [φn2 ]α2

a′2
(S)

a′2a2
n2 [φ†nJ ]αJaJ (S†)

a′JaJ
nJ . (2.5)

Here (S)
a′iai
ni represents the soft Wilson line along ni direction and the field [φni ]

αi
ai represents

an ni-collinear field carrying a color index ai and a Dirac or Lorentz index αi, and it can be

either a collinear quark field or a collinear gluon field, which are given, respectively, by [69]

χni(x) = W †ni(x)
/ni /̄ni

4
ψni(x), Aµni⊥ =

1

g
W+
ni(x)

[
iDµ

ni⊥,Wni(x)
]
, (2.6)

– 5 –
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where the ni-collinear covariant derivative is defined as Dµ
ni⊥ ≡ ∂µ⊥ + gAµni⊥, and Wni is

the ni-collinear Wilson line. The set of fields {χni , χ̄ni ,A
µ
ni⊥} form the building blocks to

construct the effective operators.

Since the n1- and n2-collinear modes are not directly measured and will go along the

beams, we need to sum over these collinear states. Using the fact that initial colliding

hadrons are color neutral and keeping only the leading contribution in n̄i · Pi, we have∑∫
Xni

〈Pi|[φf†ni ]
α′i
a′i

(x+ t′in̄i)|Xni〉〈Xni |[φfni ]
αi
ai (tin̄i)|Pi〉

=
δa′iai
2di

∫ 1

0

dξi
ξi

P
α′iαi
ni Bf/Ni(ξi, xT , ε)e

iξin̄i·Pi(
ni·x

2
+t′i−ti), (2.7)

where ε = (4 − d)/2 in dimensional regularization and i = 1, 2 labeling the beam. The

factor di is the dimension of the color representation of the field φfni , and P
α′iαi
ni is the

projector defined as follows,3

P
α′iαi
ni =


1
2

(
/ni
)α′iαi ξin̄i · Pi for quarks and antiquarks,

n
αi
1 n

α′i
2 +n

α′i
1 n

αi
2

2 − gα′iαi ≡ −gα
′
iαi

T for gluons.
(2.8)

The function Bf/Ni is the beam function of the parton species f [71–73] in the xT space,

which is the Fourier transform of the transverse-momentum dependent (TMD) parton

distribution functions (PDFs).

Next, we sum over the nJ -collinear particles and perform multipole expansion so that

the nJ -collinear fields only depend on nJ · x. Assuming m nJ -collinear partons in the jet,

we have

pµJ =

m∑
i=1

pµJi with pµJi = pJiT (cosh ηJi , sinφJi , cosφJi , sinh ηJi) (2.9)

where the four-momentum of the i-th collinear particle in the jet pµJi is expressed in terms

of the transverse momentum pJiT , the azimuthal angle φJi and the pseudo-rapidity ηJi of the

particle. Also, the jet direction nJ = (1, sinφJ/ cosh ηJ , cosφJ/ cosh ηJ , tanh ηJ) with ηJ
and φJ respectively the rapidity and the azimuthal angle of the jet. For reasons that will be-

come clear later, we also assume that there are some nJ -collinear particles radiated outside

the jet with a total momentum pout
t . Similar to the discussion of beam functions, a color-

neutral jet function J k with the virtuality p2
J and the parton species k can be defined as

δa′JaJP
α′JαJ
nJ J k(p2

J , ~xT , ε) ≡ (2π)d−1 (2.10)

×
∑∫
XnJ

∫ ∞
0

dp2
J e

i
2
n̄J ·pout

t ~nJT ·~xT δ(d)

(
pJ −

m∑
i=1

pJi

)
〈0|[φknJ ]

α′J
a′J

(0) |XnJ 〉〈XnJ |[φ
k†
nJ

]αJaJ (0) |0〉,

3For gluon beam functions, another projector
x
α′
i
T
x
αi
T

x2
T
− g

α′
iαi

T
2

needs to be included in the study of, e.g.,

the Higgs pT distribution in the gg → H0 production channel [10, 70]. However, for the process studied

in this paper, one can show that the contribution from this projector vanishes at NLL level. Hence, it is

neglected here and in the following sections.

– 6 –
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where we have neglected the dependence of the jet function on n1 · x and n2 · x, which will

be justified in the next subsection. Likewise, P
α′JαJ
nJ is the projector defined as

P
α′JαJ
nJ =


1
2

(
/nJ
)α′JαJ n̄J · pJ for quarks and antiquarks,

n
αJ
J n̄

α′J
J +n

α′J
J n̄

αJ
J

2 − gα′JαJ ≡ −gα
′
JαJ
⊥ for gluons.

(2.11)

After decoupling the soft fields from (2.4), we will have the product of three soft Wilson

lines. Summing over the states of soft gluons gives

S ā1ā2āJ
ā′1ā
′
2ā
′
J

(~xT , ε) ≡ 〈0|T̄ [(S†)
ā′1a1
n1 (~xT )(S†)

ā′2a2
n2 (~xT )(S)

aJ ā
′
J

nJ (~xT )]

T [(S)a1ā1
n1

(0)(S)a2ā2
n2

(0)(S†)āJaJnJ
(0)]|0〉. (2.12)

The color structure of the soft function is the same as the gauge transformation of the

amplitude squared for the process. From the gauge invariance, or equivalently, color con-

servation [74], one can show that the above matrix element is always proportional to the

unit color matrix for the processes studied in this paper. That is,

S ā1ā2āJ
ā′1ā
′
2ā
′
J

(~xT , ε) ≡ S(~xT , ε)δ
ā′1ā1δā

′
2ā2δā

′
J āJ . (2.13)

Plugging (2.7), (2.10) and (2.12) into (2.3) (with XIR summed over as we have done), we

have

dσ

d2pJTd
2pVT dηJdyV

=
∑
ijk

∫
d2xT
(2π)2

ei~qT ·~xTSij→V k(~xT , ε)Bi/N1
(ξ1, xT , ε)Bj/N2

(ξ2, xT , ε)

×Hij→V k(ŝ, t̂,mV , ε)J k(p2
J , ~xT , ε), (2.14)

where the sum runs over all parton species i, j, k = q, q̄, g. The hard function is identified as

Hij→V k ≡
1

16π2s2

1

ξ1

1

ξ2

∣∣M (ξ1P1, ξ2P2 → pJ , pV )
∣∣2 , (2.15)

with ξ1 and ξ2 completely determined by the conservation of the + and − components of

the partonic momenta in the basis vectors n1 and n̄1.

2.2.2 Separating coft modes from nJ -collinear modes

In this step, we match the purely collinear theory along the jet direction onto an effective

theory where the collinear field is split into two submodes as

φnJ → φnJ + φt, (2.16)

and, accordingly,

|XnJ 〉 → |XnJXt〉. (2.17)

We distinguish genuine collinear momenta from the coft ones, and the corresponding mo-

mentum scalings are shown in (2.2). Here the coft field describes low energy radiation

which can resolve the substructure of the jet, and it is emitted from one of the collinear

partons in the jet at an angle θ . R. In effective theory languague one can take such coft

radiation as being an independent mode [33, 35]. In this effective theory the soft sector is

a combination of soft radiation which can not resolve the detailed structure of the three

collinear sectors, as well as coft radiation sourced by the collinear constituents of the jet.4

4This can also be justified with color coherence [75].
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In the limit qT � pJT , the genuine nJ -collinear particles are kinematically forbidden to be

radiated outside the jet while coft modes are allowed to be either inside or outside the jet.

Inside the jet, the contribution from the coft modes to the jet momentum can be neglected.

Hence, the m nJ -collinear particles introduced in the previous subsection are genunine nJ -

collinear particles while those outside the jet are coft particles with a total momentum pout
t .

The separation of the coft modes from the nJ -collinear modes modifies the jet func-

tion (2.10) by organizing the coft radiation into the coft Wilson lines [33]. In the following

discussion we use the notations adopted in [33, 35] and write the amplitude squared for

the nJ -collinear particles as ∣∣∣Mk
m(pJ ; {pJ})

〉〈
Mk†

m (pJ ; {pJ})
∣∣∣ , (2.18)

where the index m denotes the number of collinear partons in the jet and the compact

notation {pJ} stands for the set of collinear parton momenta pJi . Then, the collinear

Wilson line WnJ in the definition of the nJ -collinear field in (2.6) is replaced by

WnJ →WnJUn̄J (2.19)

with the coft Wilson line Un̄J along the n̄J direction which organizes coft radiation emitted

from the n1- and n2-collinear directions in the small R limit. Again, for brevity the collinear

field φnJ dressed with coft radiation along the n̄J -direction due to the replacement in (2.19)

is written as φnJ → φnJUn̄J . Also, each nJ -collinear parton is dressed with a coft Wilson

line UnJi with nJi = (1, ~pJi/|~pJi |). This means that separating out the coft modes is

equivalent to replacing
∣∣Mm(pJ ; {pJ})

〉
in (2.18) with

∣∣Mm(pJ ; {pJ})
〉
→ Un̄J (0)

m∏
i=1

UnJi
(0)
∣∣Mm(pJ ; {pJ})

〉
. (2.20)

Since nJ ·pJ � n̄J ·pJ , one has
√
p2
J � n̄J ·pJ . Multipole expanding the integrand around

p2
J = 0 in (2.18) gives

∫ ∞
0

dp2
J δ

(
nJ · pJ −

m∑
i=1

nJ · pJi

)
= n̄J · pJ . (2.21)

From the above two equations, one finally has

J k(p2
J , ~xT , ε)→

∞∑
m=1

〈J k
m({nJ}, R pJ , ε)⊗ Uk

m({nJ}, R ~xT , ε)〉 (2.22)

where 〈· · · 〉 ≡ 1
dJ

Tr[· · · ] denotes the trace over all the color indices divided by the dimension

of the color representation of φknJ , and ⊗ is a short-hand notation for
m∏
i=1

∫
dΩ~nJi

/(4π) with

Ω~nJi
the solid angle of ~nJi in d-dimension. The jet function J k

m with m collinear particles

– 8 –
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is defined as

P
α′JαJ
nJ J k

m({nJ}, R pJ , ε) ≡ 2n̄J · pJ(2π)d−1
∑
spins

m∏
i=1

∫
dEJiE

d−3
Ji

(2π)d−2
δ

(
n̄ · pJ −

m∑
i=1

n̄ · pJi
)

× δ(d−2)

( m∑
i=1

~pJi⊥

)
Θin({pJ})

∣∣∣Mk
m(pJ ; {pJ})

〉〈
Mk†

m (pJ ; {pJ})
∣∣∣ , (2.23)

and the coft function Um takes the form

Um({nJ}, R ~xT , ε) = (2.24)

=
∑∫
Xt

e
i
2
pout
t ·n̄J~nJT ·~xT 〈0|U †n̄J (0)U †nJ1

(0) · · ·U †nJm (0)|Xt〉〈Xt|Un̄J (0)UnJ1
(0) · · ·UnJm (0)|0〉.

The set of nJ -collinear particles is defined by the anti-kt algorithm [76] which is used in

jet reconstruction. The phase space constraint imposed by the sequential clustering can

be quite complicated. Alternatively, here we require the angle ∆Rij between each pair of

collinear particles be smaller than the jet radius R,

∆Rij ≡
√

(φi − φj)2 + (ηi − ηj)2 < R with i < j : 1, 2, · · · ,m. (2.25)

In the small R limit, the above requirement is equivalent to imposing the following step

functions,

Θin(pJi , pJj ) ≡ θ

(
R2 −

2pJi · pJj
pJiT p

Jj
T

)
, (2.26)

which collectively is denoted by Θin({pJ}). The jet algorithm constraint for a coft gluon

with momentum pt is then equivalent to a cone jet algorithm since collinear particles are

clustered and define the jet direction nJ ,

Θout(pt) ≡ 1−Θin(pt, nJ) = θ

[
nJ · pt
n̄J · pt

−
(

R

2 cosh ηJ

)2
]
. (2.27)

By making the replacement in (2.22), (2.14) then gives the final factorized expression

dσ

d2qTd2pTdηJdyV
=
∑
ijk

∫
d2xT
(2π)2

ei~qT ·~xTSij→V k(~xT , ε)Bi/N1
(ξ1, xT , ε)Bj/N2

(ξ2, xT , ε)

×Hij→V k(ŝ, t̂,mV , ε)

∞∑
m=1

〈J k
m({nJ}, R pJ , ε)⊗ Uk

m({nJ}, R ~xT , ε)〉. (2.28)

3 Resummation of large logarithms

In this section, we discuss the renormalization of the bare functions in (2.28) and the

resummation of large logarithms by solving the corresponding RG equations. We also

calculate the anomalous dimensions relevant for the resummation at NLL level.
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3.1 Renormalization and resummation

The cross section is finite in the limit ε→ 0 but all the bare functions in (2.28) are divergent.

In this paper, these functions are renormalized in the MS scheme. The divergent pieces

of the bare functions are removed by the renormalization constants, and the anomalous

dimensions can be calculated from them according to (B.2). Then the resummation of

large logarithms can be achieved by solving the RG equations.

3.1.1 Hard function

The Wilson coefficient C in (2.4) is determined order-by-order in perturbation theory by a

matching calculation in QCD and in SCET. In dimensional regularization, the ultraviolet

(UV) divergence in the Wilson coefficient is identical to the infrared (IR) divergence in

the corresponding on-shell amplitudes in perturbative QCD. Hence, the singularities in

the hard function can be subtracted by a multiplicative renormalization constant ZH
ij→V k.

From ZH
ij→V k one can calculate the anomalous dimensions of the hard functions and resum

large logarithms in µh/µ by solving the RG equation

d

d log µ
Hij→V k(ŝ, t̂,mV , µ) = ΓHij→V k(ŝ, t̂,mV , µ)Hij→V k(ŝ, t̂,mV , µ), (3.1)

with the initial condition Hij→V k(ŝ, t̂,mV , µh) at the hard scale µh ∼ Q calculated in a

matching calculation.

3.1.2 Soft function, beam function and collinear anomaly

The calculation of soft and beam functions involves extra complication which is not seen

in the calculation of the hard function. Singularities unregularized by dimensional regular-

ization arise in the calculation of these functions. However, such divergences are artificial

because the product of the soft and beam functions is in fact finite, which is a result inde-

pendent of the regulator. In this paper, we regularize such divergences by modifying the

phase-space integrals as [77] ∫
ddk →

∫
ddk

(
ν

n1 · k

)α
. (3.2)

Note that we have chosen the common factor of n1 ·k in the regulator. Moreover, the scale

separation in (2.2) is broken due to loop corrections, and the hard scale shows up in the

perturbative calculation of soft and beam functions. This is referred to as the collinear

anomaly by the authors of [9].5 By refactorizing out the collinear anomaly, the product of

beam and soft function can be written as [80]

Bi/N1
(ξ1, xT , µ)Bj/N2

(ξ2, xT , µ)Sij→V k(~xT , µ) = (3.3)

=

(
x2
T ŝ

b20

)−(Ci+Cj)F⊥(xT ,µ)

Bi/N1
(ξ1, xT , µ)Bj/N2

(ξ2, xT , µ)Sij→V k(~xT , µ),

5Alternatively, the collinear anomaly can be dealt with using the rapidity RG method [78, 79].
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where the hard scale dependence is factored out with the exponent F⊥ only depending on xT
and the scale µ. Here b0 = 2e−γE and Ci is the Casimir operator of the color representation

of the parton i. The divergence in the product of the soft and beam functions on the l.h.s.

of (3.3) is to be removed by an overall multiplicative renormalization factor, denoted by

ZSBB(~xT , µ, ε). In order to construct a universal definition of the beam function (at least

in the boson+jet processes considered in this paper), we take ZSBB as a product of the

renormalization constants of the collinear anomaly ZCA, the soft function ZS, and the

beam functions ZB
i/N1

and ZB
j/N2

,

ZSBBij→V k = ZCA
ij ZS

ij→V k Z
B
i/N1

ZB
j/N2

. (3.4)

From these renormalization constants one can calculate the corresponding anomalous di-

mensions. The collinear anomaly exponent function F⊥(xT , µ), beam and soft functions

Bf/N and Sij→V k satisfy the following RG equations, respectively

d

d log µ
F⊥(xT , µ) = γcusp(αs),

d

d log µ
Bf/N (ξ, xT , µ) = ΓBf (αs)Bf/N (ξ, xT , µ),

d

d log µ
Sij→V k(~xT , µ) = ΓSij→V k(αs)Sij→V k(~xT , µ). (3.5)

3.1.3 Jet function, coft function and non-global logarithms

The calculations of jet and coft functions contain NGLs because of the restricted phase

space due to jet definition. As discussed in [33, 35], the RG running of the jet and coft

functions in the factorized expression (2.28) automatically resums both global and non-

global logarithms.

In the definition of the jet function in (2.23), the energy of the nJ -collinear constituents

are integrated over, which results in additional singularities. However, such singularities

can be cancelled by the jet functions with lower parton multiplicity. Therefore, in general

the renormalization constant of jet functions is a matrix [35], which is defined as

Jm({n}, R pJ , ε) =
m∑
l=1

J l({n}, R pJ , µ)ZJ
lm({n}, µ, ε). (3.6)

Similarly, the renormalized coft function is written as

U l({n}, R ~xT , µ) =

∞∑
m=l

ZU
lm({n}, R ~xT , µ, ε)⊗̂Um({n}, R ~xT , ε), (3.7)

where ⊗̂ denotes the integration over the (m − l) additional directions. Note that ZU
lm is

defined in a reversed way as opposed to the other renormalization constants. By the RG

invariance of the physical cross section, the renormalization matrix of the coft function

satisfies

ZU
lm = ZHZSBBZJ

lm. (3.8)

In [35, 36] one of the authors has explicitly verified that this matrix satisfies a renormal-

ization group equation at two-loop level for non-global jet observables in electron-positron

collisions.
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For the coft function we specifically extract the global renormalization constant ZU

which removes the divergence in the coft function U1,

U1({n}, R ~xT , ε) = U1({n}, R ~xT , µ)ZU. (3.9)

Accordingly, we define the non-global renormalization constant as

Ẑlm ≡ ZU
lmZ

U (3.10)

by separating out the global contribution. From (3.8), ZJ
lm can hence be expressed as the

product of non-global and global renormalization constants

ZJ
lm = Ẑlm(ZUZHZSBB)−1 ≡ ẐlmZ

J, (3.11)

where we also introduce a global renormalization constant ZJ for the jet function. The

evolution equations that resum both the global and non-global logarithms in the jet and

coft functions can be obtained from (3.6) and (3.7). Differentiating both sides of these

equations gives

d

d log µ
Jm({n}, µ) =

m∑
l=1

J l({n}, µ)
[
ΓJδlm1− Γ̂lm({n}, µ)

]
︸ ︷︷ ︸

ΓJ

,

d

d log µ
U l({n}, µ) =

∞∑
m=l

[
ΓUδlm1 + Γ̂lm({n}, µ)

]
︸ ︷︷ ︸

ΓU

⊗̂Um({n}, µ), (3.12)

where the diagonal entry represents the global anomalous dimensions ΓJ and ΓU, which

can be calculated from ZJ and ZU according to (B.2).

3.1.4 Resummed expression

Using the RG equations we can evolve each function from its characteristic scale where

there are no large logarithms, and we get the following resummed expression

dσ

d2qTd2pTdηJdyV
=
∑
ijk

∫
d2xT
(2π)2

ei~qT ·~xT e
∫ µ
µh

dµ̄
µ̄

Γ
Hij→V k (µ̄)Hij→V k(ŝ, t̂,mV , µh)

×
(
x2
T ŝ

b20

)−(Ci+Cj)F⊥(µ)

e
∫ µ
µb

dµ̄
µ̄

Γ
Wij→V k (µ̄)

Sij→V k(~xT , µb)Bi/N1
(ξ1, xT , µb)Bj/N2

(ξ2, xT , µb)

× e
∫ µ
µt

dµ̄
µ̄

ΓUk (µ̄)+
∫ µ
µj

dµ̄
µ̄

ΓJk (µ̄)
UkNG(µt, µj), (3.13)

where ΓWij→V k ≡ ΓBi + ΓBj + ΓSij→V k . The function UkNG includes NGL resummation,

which is defined as

UNG(µt, µj) ≡
∞∑
l=1

〈
J l({n′}, R pT , µj)⊗

∞∑
m≥l

Ulm({n}, µt, µj) ⊗̂ Um({n}, R ~xT , µt)
〉

(3.14)

with U({n}, µt, µj) = P exp
[ ∫ µj

µt
d log µ Γ̂({n}, µ)

]
, where P denotes the path ordering in

log µ. This evolution matrix generates additional collinear partons with m ≥ l, therefore
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we define {n′} = {n1, . . . , nl} and {n} = {n1, . . . , nl, nl+1, . . . , nm} to distinguish these two

configurations. According to the momentum scalings in (2.2), one should choose the hard

scale µh, the soft and beam scale µb, the jet scale µj and the coft scale µt with the following

typical values

µh ∼ Q, µb ∼ b0/xT , µj ∼ R pT , µt ∼ Rb0/xT , (3.15)

so that there are no residual large logarithms in the corresponding functions at these scales.6

3.2 Anomalous dimensions for NLL resummation

To perform NLL resummation, one needs to include tree-level hard, jet, beam, soft, and

coft functions, and evolves them using two-loop cusp anomolous dimension and one-loop

regular anomolous dimensions. In this section we will provide all the regular one-loop

anomalous dimensions relevant for the NLL resummation. In the calculation we neglect

the difference between pT and pJT (recall that ~pT ≡ (~pJT − ~pVT )/2).

3.2.1 Anomalous dimensions of hard, soft and beam functions

The one-loop hard anomalous dimension is given by [81]

ΓHij→V k = γcusp(αs)

[
Ci log

(
û2

p2
Tµ

2

)
+ Cj log

(
t̂ 2

p2
Tµ

2

)
+ Ck log

(
p2
T

µ2

)]
+γHij→V k , (3.16)

with

γHij→V k ≡ 2γi(αs) + 2γj(αs) + 2γk(αs), (3.17)

where γcusp is the cusp anomalous dimension, and γf is the anomalous dimension of the

parton species f (see appendix B). In dimensional regularization, at one-loop only real

emission diagrams contribute to the soft function. Using the covariant gauge one has

Sij→V k(~x⊥, ε) = g2
s µ̃

2ε

∫
ddk

(2π)d−1

(
ν

n1 · k

)α
δ+(k2)eikT ·xT

[
(Ci + Cj − Ck)

n1 · n2

n1 · k k · n2

+ (Ci + Ck − Cj)
n1 · nJ

n1 · k k · nJ
+ (Cj + Ck − Ci)

n2 · nJ
n2 · k k · nJ

]
, (3.18)

with δ+(k2) = δ(k2)θ(k0) and µ̃2 ≡ µ2eγE
4π . The evaluation of the soft function boils down

to the calculation of the following master integrals,

ωab = g2
s µ̃

2ε

∫
ddk

(2π)d

( ν

k+

)α
(2π)δ+(k2)eikT ·xT

na · nb
na · k k · nb

. (3.19)

With the regulator we use, ω12 involves a scaleless integral and hence vanishes. The

divergent parts of the other two integrals are given by

ω1J =
αs
4π
e(ε+α/2)L⊥

(
ν

µ

)α [ 2

α ε
+

2

ε

[
ηJ + log(−2i cosφx)

]]
,

ω2J =
αs
4π
e(ε+α/2)L⊥

(
ν

µ

)α [ 2

ε2
− 2

α ε
− 2

ε

[
ηJ − log(−2i cosφx)

]]
, (3.20)

6As shown in section 4, the hard function can have additional logarithms because it depends on two

scales pJT and mV .
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where L⊥ ≡ log
(
x2
Tµ

2

b20

)
and φx represents the azimuthal angle between ~xT and ~nJT . From

the above expressions we can identify the soft anomalous dimension.

For 1/xT ∼ qT � ΛQCD, one can calculate the beam functions from PDFs by an

operator-product expansion [1, 71, 72]

Bi/N (ξ, xT , µ) =
∑
j

∫ 1

ξ

dz

z
Ii←j(z, xT , µ)fj/N (ξ/z, µ). (3.21)

If one chooses µ = µb ≡ b0
xT

, the logarithms ln(xTµ) in I vanish. Since we are only

resumming large logarithms of ln(µ/µb) at NLL level in this paper, we will neglect the

non-logarithmic terms in I at O(αs) in the following sections and only need the anomalous

dimensions of the beam functions.

Let us focus on the non-PDF anomalous dimensions. The divergent pieces of the bare

beam functions using the rapidity regulator in (3.2) take the form

Bi/N1
(ξ1,xT , ε) =

αs
4π

[
4Cie

(ε+α)L⊥

(
ν

µ

)α(ξ1n̄1 ·P1

µ

)α( 1

ε2
− 1

εα

)
− γ

i
0

ε

]
fi/N1

(ξ1,µ)+ · · · ,

Bj/N2
(ξ2,xT , ε) =

αs
4π

[
4Cje

εL⊥

(
ν

µ

)α(ξ2n̄2 ·P2

µ

)−α 1

εα
− γ

j
0

ε

]
fj/N2

(ξ2,µ)+ · · · . (3.22)

From (3.18), (3.20) and (3.22) one can easily verify the cancellation of all the α-dependent

terms in the soft and beam functions.

Since the soft and beam functions have the same characteristic momentum scale ∼
1/xT , one can evolve the product of these functions from µb ∼ 1/xT to µ instead of

running each one of them individually. We write

Bi/N1
(ξ1, xT , µ)Bj/N2

(ξ2, xT , µ)Sij→V k(~xT , µ)

=

(
x2
T ŝ

b20

)−(Ci+Cj)F⊥(x⊥,µ)

Wij→V k(~xT , µ), (3.23)

where the function Wij→V k satisfies the following evolution equations,

d

d log µ
Wij→V k =

[
(Ci + Cj + Ck) γcusp(αs) log

(
x2
Tµ

2

b20

)
+ γWij→V k(αs)

]
︸ ︷︷ ︸

Γ
Wij→V k

Wij→V k (3.24)

with the anomalous dimension at one-loop level

γ
Wij→V k
0 = 8Ck log(−2i cosφx)−2γi0−2γj0−γ

cusp
0

[
Ci log

(
û2

ŝp2
T

)
+ Cj log

(
t̂2

ŝp2
T

)]
. (3.25)

3.2.2 Anomalous dimensions of jet and coft functions

The global coft anomalous dimension ΓU can be derived from the one-loop calculation of the

coft function U1. Explicitly, U1 contains two Wilson lines, one along the nJ direction and
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the other one along the n̄J direction. After expanding Wilson lines in (2.24), at one-loop

we have

Uk
1(~xT , ε) = 2Ck g

2
s µ̃

2ε

∫
ddpt
(2π)d

(2π)δ+(p2
t )e
− i

2
(n̄J ·pt)nJ ·xT 2

nJ · pt pt · n̄J
Θout(pt). (3.26)

We only need the divergent terms in order to obtain the anomalous dimension, and we find

ZU ≡ 1 +
αs
4π

{
− 2

ε2
Ck −

1

ε
2Ck

[
L⊥ + 2 log

(
−2i cosφx

R

)]}
, (3.27)

which gives,

ΓUk = Ckγcusp log

(
R2b20
µ2x2

T

)
+ γUk , with γUk

0 ≡ −8Ck log(−2i cosφx). (3.28)

From the definition (3.11), the global jet renormalization constant at one-loop is written as

ZJ ≡ 1 +
αs
4π

{
2

ε2
Ck +

1

ε

[
2Ck log

(
µ2

p2
TR

2

)
− γk0

]}
, (3.29)

and the anomalous dimension ΓJ
k has the form

ΓJk = −Ckγcusp log

(
p2
TR

2

µ2

)
+ γJk , with γJk

0 = −2γk0 . (3.30)

At one-loop level, it is the same as the one for the unmeasured jet function defined in [82].

In our framework, ZJ is given by 〈ZJ
12⊗̂1〉 at this order, where ZJ

12 removes the divergence

in the jet function J 2. However, beyond one-loop level a simple correspondence between

ZJ and the renormalization constants of the unmeasured jet function does not exist [35].

Finally, we will discuss the NGL resummation. At the NLL level, the non-global

evolution matrix from the coft scale to the jet scale reduces to

UNG(µt, µj)
NLL−−−→

∞∑
m≥1

〈
U1m({n}, µt, µj) ⊗̂ 1

〉
(3.31)

where we truncate the first sum in (3.14) at the tree-level jet function J 1 =

4πδ(d−2)(~nJ1⊥)1, and we only include the tree-level coft function Um = 1. The non-global

anomalous dimension defined in (3.12) has the following form [35]

Γ̂lm({n}) =
αs
4π


V 1 R1 0 0 . . .

0 V 2 R2 0 . . .

0 0 V 3 R3 . . .

0 0 0 V 4 . . .
...

...
...

...
. . .

+O(α2
s) (3.32)
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where we only need the one-loop results for the NLL resummation. The matrix elements

are given by

V m = 2
∑
i,j

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ (nk)

4π
W k
ij

− 2 (T0,L · T1,L + T0,R · T1,R)

∫
dΩ (nk)

4π
W k

01Θout(nk), (3.33)

Rm = −4
∑
i,j

Ti,L · Tj,RWm+1
ij Θin (nm+1) , (3.34)

where Ti,L are the color generators acting on the i-th particle in the amplitude and Ti,R are

the ones acting on the conjugate amplitude. The angular dipole factor W k
ij is defined as

W k
ij =

ni · nj
ni · nknk · nj

. (3.35)

The second line in (3.33) corresponds to the global anomalous dimension subtracted out

from V m, where we define n0 = n̄J . By expanding UkNG(µt, µj) as a series of

t ≡
∫ µj

µt

dµ

µ

αs(µ)

4π
, (3.36)

we have the evolution factor UNG(µt, µj) = tU (1)
1 + t2U (2)

1 + · · · with one- and two-loop

coefficients as

U (1)
1 = 0, (3.37)

U (1)
2 = −16CkCA

∫
dΩ(n2)

4π

dΩ(n3)

4π
Θin(n2)Θout(n3)

[
W 2

01(W 3
12 +W 3

02)−W 2
01W

3
01

]
.

From this, one can show that the coefficient of the leading NGL at two loops is

−4CkCAπ
2/3, which is the same as the results in [20]. As shown in [35, 83], the coft

function maps onto the hemisphere soft function under a Lorentz boost along the jet axis.

Therefore, the evolution of the function UNG should be the same as Dasgupta and Salam’s

parametrization in [20]. Explicitly, in our numerical calculations we have

UkNG (µt, µj) ≈ exp

(
−CACk

π2

3
u2 1 + (au)2

1 + (bu)c

)
. (3.38)

Here u = 2t = 1
β0

log αs(µt)
αs(µj)

, and the constants are given as a = 0.85CA, b = 0.86CA and

c = 1.33.

3.3 NLL resummed expression

After plugging in with the above expressions, the all-order resummed expression (3.13)

could be reduced to

dσNLL

d2qTd2pTdηJdyV
=
∑
ijk

∫
d2xT
(2π)2

ei~qT ·~xTBi/N1
(ξ1,xT ,µ)Bj/N2

(ξ2,xT ,µ)

(
x2
T ŝ

b20

)−(Ci+Cj)F⊥(µ)

×exp

[∫ µ

µh

dµ̄

µ̄
ΓHij→V k(µ̄)+

∫ µ

µb

dµ̄

µ̄
ΓWij→V k(µ̄)+

∫ µ

µj

dµ̄

µ̄
ΓJk(µ̄)+

∫ µ

µt

dµ̄

µ̄
ΓUk(µ̄)

]
×Hij→V k(ŝ, t̂,mV ,µ)UkNG(µt,µj). (3.39)
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Let us compare our NLL resummed expression with those in [24, 25, 29]. The large loga-

rithms log(Q/qT ) were resummed in γ+jet [24] and Z+jet [25] events at NLL level using

the CSS formalism [1]. In these references, the calculations were carried out in the small

R limit, but the terms with logR in the coefficients are not completely resummed. NGLs

were also neglected. In the effective field theory language, this simply means that one does

not distinguish the nJ -collinear mode from the hard mode, and also not distinguishing the

coft mode from the soft mode. By taking µj = µh, µt = µb and switching off the NGL

resummation, our resummed expression reduces to those used in [24, 25]. This can be

shown more explicitly if one takes µ = µb and

Bi/N1
(ξ1, xT , µb)Bj/N2

(ξ2, xT , µb) = fi/N1
(ξ1, µb)fj/N2

(ξ2, µb). (3.40)

On the other hand, in [29] the authors performed a resummation of logR and log(Q/qT )

without resumming non-global logarithms. If we take UkNG = 1, our resummed expression

formally reduces to their results.

4 Analysis of leading logarithms

In this section we analyze the LL resummation. We shall study two cases of pT & mV

and pT . mV , respectively. The first case is relevant in the studies of γ+jet production

since photon is massless, or massive boson +jet production at high pT , while the second

case is relevant in massive boson+jet production at low pT . Since leading logarithms are

insensitive to scale choice, we choose µb = b0/xT , µt = Rb0/xT and µj = RpT in the

following discussions.

4.1 Leading logarithms for pT & mV

In this case all the collinear particles typically carry an energy of order pT . Therefore one

can simply make the following replacement

µ2
h → p2

T , ŝ→ p2
T , − û→ p2

T , − t̂→ p2
T . (4.1)

Then at LL level, (3.13) reduces to the following form

dn(qT )

dqT
≡ 2πqT

∫
d2xT
(2π)2

ei~xT ·~qT e
−αs

π

[
(Ci+Cj) log2

(
pT xT
b0

)
+Ck log

(
1
R2

)
log
(
pT xT
b0

)]
(4.2)

=
2αs
πqT

[
(Ci+Cj) log

(
pT
qT

)
+Ck log

(
1

R

)]
e
−αs

π

[
(Ci+Cj) log2

(
pT
qT

)
+Ck log

(
1
R2

)
log
(
pT
qT

)]
,

where dn(qT )/dqT is the differential probability of the boson+jet transverse momentum

qT . We have only kept the LL terms in performing the Fourier transformation by using

the relation

Fourier transform of logn
(
pTxT
b0

)
→ − 1

2πq2
T

n logn−1(pT /qT ). (4.3)

We find that the resummation formula used in [24, 25] give the same result at LL level.
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Figure 2. The double logarithmic phase-space for soft radiation along the two beam directions (a)

and the jet direction (b).

The double logarithms in (4.2) arise from soft radiation along the three collinear di-

rections. Using a physical gauge, such as the light-cone gauge, the soft gluon spectrum is

given by
dI

dω dkna⊥
=

2αs
π
Ca

1

ω

1

kna⊥
. (4.4)

Let us first calculate the beam contributions to the integral distribution n(qT ). The phase

space constraint for the soft gluon is as follows,

kT . qT , kT . ω . pT for real emissions,

kT . ω . pT for virtual contributions.
(4.5)

The real and virtual cancellation yields the phase space shown as the shaded region in

figure 2 (a) with Q = pT , and this gives

Ia = −2αs
π
Ca

∫ pT

qT

dkT
kT

∫ pT

kT

dω

ω
= −αs

π
Ca log2

(
pT
qT

)
for a = 1, 2. (4.6)

On the other hand, soft radiation along the jet direction results in the logR-dependent

terms. For simplicity, we assume that the jet is central. If a gluon is emitted inside the

jet, there is no additional constraint on its phase space since it does not change the value

of qT . If the gluon is emitted outside the jet, its energy has to satisfy ω . qT . Combined

with the virtual contribution, one can see that the phase space of the gluon is given by

figure 2 (b), which gives

Ik = −2αs
π
Ck

∫ pT

qT

dω

ω

∫ ω

ωR

dkT
kT

= −αs
π
Ck log

(
1

R2

)
log

(
pT
qT

)
. (4.7)

By including uncorrelated multiple soft gluon radiation, one obtains the Sudakov factor of

the form

n(qT ) = e
−αs

π

[
(Ci+Cj) log2

(
pT
qT

)
+Ck log

(
1
R2

)
log
(
pT
qT

)]
. (4.8)
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Figure 3. Illustration of the logR dependence in dn(qT )/dqT for the qg channel at LL. Here we

take αs(qT ) ≈ 0.18 with qT ≈ 10 GeV around the peak region.

It is easy to see that differentiating n(qT ) with respect to qT gives (4.2), which brings down

from the exponent a factor given by single-gluon emission along the three collinear direc-

tions. Note that n(qT = pT ) = 1 which recovers the whole probability. Also, dn(qT )/dqT
peaks at

qT
pT

= e−
1+
√

1+2ᾱ
ᾱ R

− Ck
Ci+Cj (4.9)

with ᾱ = 4(Ci + Cj)
αs
π . The peak location moves to a larger value of qT for smaller R

because the probability becomes larger for a gluon to be emitted outside the jet. Also, the

height of the peak
1

2

(√
2ᾱ+ 1 + 1

)
e

2(1+αs
π Ck logR2)2−ᾱ+

√
2ᾱ+1−1

2ᾱ , (4.10)

becomes lower. All the above-mentioned features are illustrated in the left plot of figure 3,

which shows dn(qT )/dqT with R = 0.4 and 0.8, and we set αs = 0.18.7

4.2 Leading logarithms for pT . mV

In this case the collinear radiation along the two beam directions typically has an energy

∼ mV , while the energy of the collinear particles inside the jet is of order ∼ pT . As a

result, the phase space for soft radiation collinear to the jet direction is unmodified as in

the previous case in figure 2 (b). On the other hand, mV , instead of pT , sets the phase

space of soft radiation along the two beam directions, which is given by figure 2 (a) with

Q = mV . Based on this physical argument, one expects the following logarithms to show

up in the calculation: −αs
π (Ci + Cj) log2(mV /qT ) and 2αs

π Ck log(pT /qT ) logR.

At LL accuracy, using (3.13) one can simply set

µ2
h → m2

V , ŝ→ m2
V , − û→ pTmV , − t̂→ pTmV . (4.11)

7As we will show in the next section, the peak of the differential qT distribution locates at qT ≈ 10 GeV,

and αs(10 GeV) ≈ 0.18.
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Plugging them into (3.13), we get

dn(qT )

dqT
≡ 2πqT

∫
d2xT
(2π)2

ei~xT ·~qT e
−αs

π

[
(Ci+Cj) log2

(
mV xT
b0

)
−Ck log2

(
mV
pT

)
+Ck log

(
1
R2

)
log
(
pT xT
b0

)]

=
2αs
πqT

e
αs
π
Ck log2 mV

pT

[
(Ci + Cj) log

(
mV

qT

)
+ Ck log

(
1

R

)]
× e−

αs
π

[
(Ci+Cj) log2

(
mV
qT

)
+Ck log

(
1
R2

)
log
(
pT
qT

)]
. (4.12)

Note the additional, qT -independent logarithms log2(mV /pT ) appearing in the resummed

result, which gives an overall normalization constant. In contrast, the LL result in [25]

is given by (4.2) with pT replaced by mV , which is different from our result (4.12). Such

differences can be seen in the right plot of figure 3, where we use the legend of “partial

logR” to distinguish these two cases. Note that in the pT � mV limit, the large logarithms

of log(mV /pT ) need to be properly resummed which requires a factorization of the hard

sector at the two scales mV and pT . We leave the study of constructing such an effective

theory for future work.

5 NLL resummation and phenomenology

In this section, we study the Z+jet production in proton-proton collisions at
√
s = 13 TeV

in the high pJT case (pJT > 200 GeV) and the low pJT case (pJT > 30 GeV). We impose

the constraint |ηJ | < 2.4 on the jet pseudo-rapidity and allow all values of boson rapidity.

We then compare our theoretical predictions at NLL accuracy with Pythia simulations

(version 8.2) [84] and the CMS data [57, 60].

5.1 Characteristic scales and numerical evaluations

We choose the following characteristic scales,

µh = Q ≡
√
p2
T +m2

Z , µj = RpT , µb =
b0
xT
, µt = R

b0
xT
. (5.1)

Note that both µb and µt depend on xT , and one needs to include nonperturbative con-

tributions when these scales approach ΛQCD. We focus on the effects of resummation in

perturbative QCD, and we simply impose an upper limit of xT < xmax
T = 1.5 GeV−1

in the xT -integral [11]. On the other hand, in the large qT & pT region where µt > µj
and µb > min(µh, pT ), the effective theory is no longer valid and we set µt = µj and

µb = min(µh, pT ). In this region we need to switch off resummation and match the re-

summed results with the fixed-order predictions. However, different matching schemes will

introduce additional source of uncertainties. We focus on estimating the theoretical un-

certainty from scale variation since it is the dominant uncertainty at NLL accuracy. We

leave the detailed studies of fixed-order matching and next-to-next-to-leading logarithmic

(NNLL) resummation for future work.

The differential qT distribution dσ/dqT is calculated by numerically integrating over

all the variables in (3.13). For the NLL resummation, we need all the one-loop anomalous
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Figure 4. Effects of logR resummation illustrated in the high pJT (left plot) and low pJT (right

plot) cases. Here, NLLp stands for the NLL resummed results excluding NGLs. The label “partial

log R” corresponds to the results from setting µj = µh and µt = µb.

dimensions in section 3.2 and the two-loop cusp anomalous dimension in appendix B. The

exponential factors in (3.13) are evaluated analytically according to (B.10) and (B.11).

We take the beam functions to be equal to the CT14 NLO PDF set [85] at the scale µb
according to (3.40). There is a constraint coming from requiring the φx-integral to be

convergent. Recall that both the soft and coft anomalous dimensions depend on cos φx.

The φx-dependent terms can be combined and factored out as,

| cosφx|
4Ck
β0

log
αs(µb)

αs(µt) . (5.2)

The φx-integral is convergent only if

− 1 < p(µb, µt) ≡
4Ck
β0

log
αs(µb)

αs(µt)
≈ −2αs(µt)

π
log

1

R
. (5.3)

One encounters such a divergence when the coft scale approaches to the non-perturbative

region. It would be intriguing to see how one can introduce nonperturbative functions to

tame such a divergence. We instead only integrate xT over the region given by (5.3). In fig-

ure 5 we show the relation between xT and p(µb, µt) with µb = b0/xT , µt = Rb0/xT and R =

0.4. The constrain of p(µb, µt) > −1 corresponds to xT < 1.5 GeV−1 and xT < 0.7 GeV−1

for the qg and qq̄ channel, respectively. That is, this constrain effectively gives a smaller

cutoff in xT than xmax
T = 1.5 GeV−1. By varying the low limit of p(µb, µt) from −1.0 to

−0.5, we find our result only varies in the fourth significant digit for 5 GeV < qT < 20 GeV.

5.2 Effects of log R and non-global logarithm resummation

We study the effects of logR and NGL resummation at NLL accuracy.
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Figure 5. The relation between xT and p(µb, µt) where we choose µb = b0/xT , µt = Rb0/xT and

R = 0.4.

5.2.1 log R resummation

Here we switch off the contribution from NGLs by setting UkNG = 1 in (3.13). We define

the resummation accuracy without NGLs as NLLp where the subscript p means partial.

Furthermore, we compare the NLLp result with the one by setting µj = µh, µt = µb which

is denoted by “partial logR” resummation since part of the logR dependence is eliminated

in the scale ratios. Note that, in the high pT case µj = µh ∼ pT while in the low pT case

µj = µh ∼ mZ , and that the characteristic scale µj = pTR. Therefore in the low pT case

the “partial logR” results differ from the NLLp result by the missing contributions of the

form log(mZ/(pTR)) as discussed in section 4.2.

Figure 4 shows the effect of logR resummation in the high pT (left plot) and low pT
(right plot) cases. The NLLp cross section is always larger than that with partial logR

resummation. Note the significant effect on the overall cross section especially in the low

pT case. As discussed in section 4, one can see that the overall factor

e
αs
π
Ck log

mZ
pT

(
log

mZ
pT

+2 log 1
R

)
(5.4)

accounts for the cross section difference, which clearly comes from the running of the jet

function between mZ and pTR.

5.2.2 NGL resummation

As discussed in section 3, NGLs arise from one coft gluon radiated outside the jet. The

contribution at O(α2
s) takes the form

− α2
s

12
CACk log2 µj

µt
= −α

2
s

12
CACk log2 pT

qT
, (5.5)

and the contribution increases as the ratio pT /qT increases. Therefore NGLs are expected

to play a more important role at high pT . Figure 6 shows the cross sections calculated
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Figure 6. The effect of NGL resummation illustrated in the high pJT (left plot) and low pJT (right

plot) cases. Here, NLL stands for the full results calculated from (3.13), and NLLp corresponds to

the results without NGL resummation.

from (3.13) with (denoted by NLL) or without (denoted by NLLp) the NGL resummation.

One can see that the NGL resummation lowers the peak of the cross section and pushes it

to a larger value of qT .

5.3 Theoretical predictions and uncertainties

We compare our theoretical predictions with Pythia simulations and experimental data

at the LHC. We estimate the theoretical uncertainties by varying each characteristic scale

in (5.1) by a factor two and taking the envelope of all the results from scale variations.

For both the pT > 30 GeV and pT > 200 GeV cases, we calculate dσ(qT )/dqT with

R = 0.4, 0.6 and 0.8. As shown in figure 7, our theoretical predictions agree reasonably well

with the Pythia partonic results within the uncertainty band.8 However, some discrepancy

in the overall cross section exists, especially for R = 0.4 with a smaller jet radius.

We then compare our theoretical calculation with experimental data. In order to

impose the same cuts on kinematic variables as the experiments, we use the LO hard

function including the leptonic decay of Z/γ∗. We first compare with the data at
√
s =

13 TeV in [60]. We impose the same kinematic cuts as

pJT > 30 GeV, |ηJ | < 2.4, R = 0.4,

plT > 20 GeV, |ηl| < 2.4, 71 GeV < mll < 111 GeV. (5.6)

The left plot of figure 8 shows the comparison between our prediction for dσ(qT )/dqT with

the data.9 Our result is consistent with the experimental data in the small qT region.

8We checked that the major difference between the partonic and hadronic results comes from multi-

parton interaction contributions.
9Note that in experiment qT is defined as the sum of the transverse momenta of the Z boson and all
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Figure 7. Comparison between the NLL cross section calculations with Pythia simulations, in

the high pJT case (top row) and the low pJT case (bottom row). In all the plots, the red curves

are the theoretical predictions with the scale choice in (5.1), and the error bands are shown as the

shaded regions. The histograms are the Pythia results at parton (dashed lines) and hadron (solid

lines) levels.

We also show the result of the full LO distribution (black curve) calculated by MCFM

program [86, 87], and the one including only the logarithmic terms at LO (orange curve)

predicted using SCET. In appendix C we give the expressions of LO singular terms. In the

small qT region fixed-order expansion breaks down because of large logarithms of log(Q/qT ),

and SCET can reproduce this singular behavior.

For the large qT region, we need to include power corrections from fixed-order calcula-

tions. However, near qT ∼ 30 GeV where the pJT > pmin
T = 30 GeV selection is imposed, the

LO result has an artificial kink structure. The kink structure comes from neglecting two jet

events with pJT < 30 GeV due to such a kinematic cut. Explicitly, at LO pT and qT are the

transverse momenta of leading and subleading jets, respectively. When qT > 30 GeV, the

lower limit of the pT integral is qT . On the other hand, for qT < 30 GeV the lower limit is

frozen at 30 GeV. Hence, we observe such kink structure near qT ∼ 30 GeV. The investiga-

tion of the kink and its treatment is beyond the scope of this paper and left for future work.

the jets with pJT > 30 GeV and |ηJ | < 2.4 in the event [60], while in our calculation we only include the

leading jet in defining the qT . From Pythia simulations, we find that using the leading jet to define qT
brings down the first three bins of dσ/dqT (left plot of figure 8) by 6.2%, 8.9% and 5.7%, respectively.
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We also compare our theoretical calculation of the azimuthal angle decorrelation ∆φ

between the boson and the leading jet with the experimental result at
√
s = 7 TeV in [57].

In the numerical integration, we boost the tree-level partonic event such that the boson

and the leading jet have total transverse momentum ~qT as

~qT = qT (sinφq, cosφq). (5.7)

After performing this transformation, the Z boson and the leading jet are not back to back

in the transverse plane. Hence, we obtain the distribution of the azimuthal angle ∆φ(Z, j1)

between them. The comparison between NLL results and data is shown in the right plot

of figure 8. The same kinematic cuts as in the experiment are imposed:

pJT > 50 GeV, |ηJ | < 2.5, R = 0.5,

plT > 20 GeV, |ηl| < 2.4, 71 GeV < mll < 111 GeV, pZT > 150 GeV. (5.8)

In principle, one needs to perform a matching between the resummed result and the fixed-

order calculation to calculate the azimuthal angle decorrelation (see, e.g., [22, 24]). How-

ever, as we show in figure 7, at high pT our resummed result gives a good description even up

to qT ∼ pT . We then use it to calculate the normalized distribution dσ/d∆φ by integrating

out qT from 0 to 150 GeV. We find reasonable agreement with the experimental result.

6 Summary and perspective

In this paper, we construct an all-order formalism in SCET for the systematic resummation

of large logarithms of the form log(Q/qT ) when qT � Q in boson+jet production in the

small R limit. More precisely, the expression (3.13) resums the logarithms of log(Q/qT ),

logR and non-global logarithms, at NLL accuracy. We first carried out an analysis of

the leading logarithms. We find that in the case of pT . mV , the resummation of the

logarithms log2(mV /pT ) is missing in the literature. In the case of pT & mV the effect of

logR resummation only comes in at NLL accuracy. At the end, we compare our theoretical

predictions with Pythia simulations and available experimental data [57, 60]. Within

theoretical uncertainties, our results are consistent with the simulations and the data.

In the present work we obtained the resummed cross section at NLL accuracy. There

are several issues that we leave for future studies. First, as shown in the plots at NLL

accuracy, there are relatively large uncertainties both at small-qT and large-qT ∼ pT . The

small-qT region shows the sensitivity to non-perturbative physics. In this case one needs to

introduce non-perturbative functions to extend the xT -integral into the non-perturbative

regime, and to regularize the singularity in the integration over φx. To circumvent the

singularity in φx, cf. (5.2), one may choose a different coft scale µt of the form10

µt = R
b0

xT | cosφx|
. (6.1)

10One is allowed to do this because µt, like other scales, is not precisely given in EFT. The difference

from different choices of µt is only of higher orders.
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Figure 8. Comparison between theoretical calculations with experimental data for the processes:

pp → Z0/γ∗ → e+e− and µ+µ−. The left plot shows the comparison between our NLL result of

dσ/dqT with the measurement in [60], where the solid red curve is the result with the scale choice

in (5.1) and the shaded region indicates the error band from scale variation. The solid black and

orange curves are respectively the LO result and the LO result including only logarithmic terms

(LO singular). The right plot shows the comparison between our prediction of azimuthal angle

decorrelation with the measurement in [57], where ∆φ(Z, j1) is defined as the azimuthal angle

between the Z boson and the leading jet. The scale uncertainty for the red band is obtained within

the prescription that varying the scale in the denominator and numerator simultaneously, which is

named as “correlated scale choice”. While the yellow band is given from the “uncorrelated scale

choice”, where the scale variations in the denominator and nominator are independent.

In this case, the constraint µt < µb imposes a stronger condition than (5.3) and, hence,

makes the φx-integral finite. At NLL, we find no significant differences by choosing µt
according to (6.1). It is intriguing to see which choice of µt is favoured at NNLL. On the

other hand, the large uncertainties at large-qT is a signature of the breaking-down of the

scale separation in (2.2). The improvement in this region is usually obtained only after

matching the resummed result with a fixed-order calculation at higher-order in αs. In de-

tailed phenomenological studies, one needs to include all these improvements and possibly

perform the resummation at NNLL accuracy in order to reduce the overall theoretical un-

certainties. Second, the possible breaking of the transverse momentum factorization in the

processes studied in this paper is another intriguing issue. On the other hand, in Pythia

simulations we see only small non-perturbative corrections. This suggests that the qT dis-

tribution in boson+jet production can be a clean and useful probe of factorization violation

and Glauber contributions. Third, for a comprehensive comparison with experiments for

the isolated-photon-jet correlation, one needs also to include the fragmentation and con-

sider the additional constraint on the phase space corresponding to the photon isolation

procedure in experiments [61]. It would be intriguing to extend this formalism to include

all such complications. Last, but not least, the observables studied in this paper can be

used to measure the jet-quenching parameters in high-energy nuclear collisions [24, 47, 48].
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The formalism presented in this paper can be used as a unified formalism to study boson-jet

correlation in both proton-proton and high-energy nuclear collisions.
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A The hard function at LO

In this appendix, we document the amplitudes and the electroweak parameters that enter

the hard function in (2.15) at LO. At this order, the partonic processes for a vector bonson

produced associated with a jet include the following channels

q(p1) + q̄(p2)→ V (pV ) + g(pJ), q(p1) + g(p2)→ V (pV ) + q(pJ), (A.1)

where pi = ξiPi with Pi the proton momenta and ξi the longitudinal momentum fractions.

In these processes the partonic Mandelstam variables are defined as

ŝ ≡ (p1 + p2)2, t̂ ≡ (p1 − pV )2, û ≡ (p2 − pV )2. (A.2)

From the conservation of the + and − components of the momenta in the n1 and n̄1 basis,

one has

ξ1 =
pT√
s

(
eηJ + eyV βV

)
, ξ2 =

pT√
s

(
e−ηJ + e−yV βV

)
with βV =

√
1 +

m2
V

p2
T

. (A.3)

The amplitudes squared, averaged and summed over the color and spin indices in initial

and final states are given by

|M(qq̄ → V g)|2 =
16π2αsαeme

2
q(N

2
c − 1)

N2
c

t̂2 + û2 + 2ŝ m2
V

t̂û
,

|M(qg → V q)|2 = −
16π2αsαeme

2
q

Nc

ŝ2 + t̂2 + 2ûm2
V

ŝt̂
, (A.4)

where eq is the electric charge of the quarks in the case of photon production. For Z

production we need to replace eq by

e2
q →

(
1− 2 |eq| sin2 θW

)2
+ 4e2

q sin4 θW

8 sin2 θW cos2 θW
(A.5)

with θW the weak mixing angle. In our numerical calculation the electroweak parameters

we adopted are

αem = 1/132.34, cos θW = 0.88168, mZ = 91.1876 GeV (A.6)
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B Anomalous dimensions

In dimensional regularization with d = 4−2ε, the bare strong coupling constant is replaced

by the renormalized coupling constant via the relation

α0
s ≡

g2
s,0

4π
= Zααs(µ)

(
µ2eγE

4π

)ε
. (B.1)

An anomalous dimension is calculated from the corresponding renormalization constant

Z(µ, ε) according to

Γ = − lim
ε→0

Z−1(µ, ε)
d

d log µ
Z(µ, ε). (B.2)

We collect all the relevant anomalous dimensions for the NLL resummation. The running

coupling constant in the MS scheme is given by the solution of

dαs(µ)

d log µ
= −2εαs + β(αs(µ)), β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
(B.3)

with

β0 ≡
11

3
CA −

2

3
nf , β1 =

34

3
C2
A −

10

3
CAnf − 2CFnf . (B.4)

The anomalous dimensions are expanded as a series of αs/(4π). The cusp anomalous

dimension is

γcusp =
αs
4π
γcusp

0 +
(αs

4π

)2
γcusp

1 +O(α3
s) (B.5)

with

γcusp
0 = 4, γcusp

1 =

(
268

9
− 4π2

3

)
CA −

40

9
CFnf , (B.6)

and the one-loop non-cusp anomalous dimensions of jet and beam functions are

γq0 = −3CF , γg0 = −β0. (B.7)

All the anomalous dimensions except Γ̂ used in (3.13) consist of a cusp part, which

gives the leading logarithms, and a non-cusp part, which only contributes to sub-leading

logarithms. That is, these anomalous dimensions take the form

Γ(αs) = CΓγcusp(αs) ln
Q2

Γ

µ2
+ γ(αs). (B.8)

The corresponding RG running boils down to the evaluation of the following two functions:

S(ν, µ) =

∫ µ

ν

dµ̄

µ̄
ln
ν

µ̄
γcusp(αs(µ̄)), Aγ(ν, µ) = −

∫ µ

ν

dµ̄

µ̄
γ(αs(µ̄)). (B.9)

In terms of these two functions, the exponential functions in (3.13) are given by

e
∫ µ
ν
dµ̄
µ̄

Γ(µ̄)
=

(
Q2

Γ

ν2

)−CΓAγcusp (ν,µ)

e2CΓS(ν,µ)−Aγ(ν,µ). (B.10)
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For NLL resummation, the function S (ν, µ) and Aγcusp (ν, µ) are given explicitly as follows,

S (ν, µ) =
γcusp

0

4β2
0

{
4π

αs (ν)

(
1− 1

r
− ln r

)
+

(
γcusp

1

γcusp
0

− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

}
,

Aγcusp (ν, µ) =
γcusp

0

2β0
ln r (B.11)

with r = αs(µ)/αs (ν).

C LO singular terms

In this appendix we give the analytical expressions of the LO singular terms. After expand-

ing the resummed result (3.39) order by order in αs and performing the Fourier transform,

we can obtain the singular terms of the qT distribution. The LO results are given by

qT
dσ

dqTdyV dηJd2pT
= (C.1)

=
∑
ijk,ab

H(0)
ij→V k

∫ 1

ξ1

dz1

z1
fa/N1

(
ξ1

z1
, pT

)∫ 1

ξ2

dz2

z2
fb/N2

(
ξ2

z2
, pT

)[αs
2π

Σ
(1)
ij←ab(z1, z2, qT )

]
,

where the one-loop kernel Σ
(1)
ij←ab has the following form

Σ
(1)
ij←ab = Aijδiaδjbδ(1−z1)δ(1−z2)+

1

2
δ(1−z1)δiaP(1)

j←b(z2)+
1

2
δ(1−z2)δjbP

(1)
i←a(z1) (C.2)

with the coefficients

Aqq̄ = CF

(
4 log

ŝ

q2
T

− 6

)
− 4CA logR,

Aqg = CF

(
2 log

ŝû

q2
T t̂
− 4 logR− 3

)
+ 2CA log

ŝt̂

q2
T û
− β0. (C.3)

The one-loop Alatrelli-Parisi splitting functions are given as follows,

P(1)
q←q(z) = 4CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
,

P(1)
g←g(z) = 8CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)

]
+ 2β0δ(1− z),

P(1)
q←g(z) = 4TF

[
z2 + (1− z)2

]
, P(1)

g←q(z) = 4CF
1 + (1− z)2

z
. (C.4)
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