INSTITUTO DE

UG OE

SCAN /9408203

FISICA

CERN LIBRARIES, GENEVA

| I

IF/UFRJ/94/01

GRASSMANN GREEN'S FU
Sitvio J. Rabello, Luiz C.

and

Arvind N. Vaidy

UNIVERSIDADE  FEDERAL DO RIO NP JANEIRO
INSTITUTO DE FISICA

Cx P 68528

21944 - RI0O DE JANEIRO

BRASIL

NCTIONS

de Albuquerque

a

UFRJ




IF-UFRJ-January 94

Grassmann Green’s Functions

Silvio J. Rabello®, Luiz C. de Albuquerque!
and
Arvind N. Vaidya

Instituto de Fisica
Universidade Federal do Rio de Janeiro
Rio de Janeiro RJ
Caiza Postal 68.528-CEP 21945-970
Brasil

Abstract

The Green’s function for an oscillator with anticommuting degrees
of freedom is obtained by extending two operator methods to the case
of a Grassmann algebra, the dynamical group approach and the Dirac-
Schwinger method. In both methods we verify that the canonical
anticommutation relations are responsible for the fact that this system
behaves as a negative dimensional one.
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1 Introduction

Grassmann variables are nowadays of widespread use in theoretical physics,
as in the description of fermions by the functional methods of quantum field
theory, in supersymmetry, in the Bechi-Rouet-Stora-Tyutin (BRST) theory
of classical and quantum constrained systems, just to mention a few [1]. In
order to explore the role of anticommuting coordinates in the supersymmetric
version of the Poincaré group, Finkelstein and Villasante [2] introduced a
Grassmann generalization of ordinary quantum mechanics, where the degrees
of freedom are considered to be elements of a Grassmann algebra. As an
application they studied a N-dimensional Grassmann Oscillator (GO), that
oposed to the usual first order Grassmann models of supersymmetry , is
of second order in time derivatives. This system is related to the usual
harmonic oscillator (HO) by the change N— —N as pointed by Dunne and
Halliday [3] using the path integral representation for the Green's function
and the properties of the gaussian Berezin integral. This fact allows one
to understand the Grassmann coordinates as negative dimensional degrees
of freedom and use them to explore the realm of the negative dimensional
groups [4]).

In this paper we follow [2] and obtain the Green's function for the GO
by extending two operator methods of ordinary quantum mechanics to anti-
commuting variables: The dynamical group method and the Dirac-Schwinger
method. In the following sections we introduce the notation and explain both
methods by explicit calculations of the Green's function.

2 The Grassmann Oscillator

The Grassmann version of ordinary quantum mechanics, studied by Finkel-
stein and Villasante [2], is described by the coordinate §, and conjugate mo-
mentum p, operators (a = 1,..N) that obey the canonical anticommutation
relations (& = 1):

wuﬁb]-{- =0. (1)

[§avﬁ5]+ = —1’5,,5, [4615514' = OY



They considered an oscillator with the Hamiltonian operator given by (sum-
mation convention assumed):

N 1 . 1w
H= 5(_1’604!1?5 + UzanaWbL (2)

where C is a hermitian antisymmetric matrix. As an antisymmetric matrix
has an inverse only for even dimensions, we are restricted to even values of
N.

To describe the Green's function for the Schrddinger equation with the
above H we introduce a basis of §, eigenvectors |g), where the eigenvalues g,
are elements of a Grassmann algebra and the normalization is of the Berezin
delta function type [1]: {g'lg) = 6(¢'—¢). With the above definitions we have
for the Green’s function:

(¢',tlg,0) = (¢'le™""lg)- (3)
Among the several ways of obtaining the above matrix element, in the follow-

ing sections we focus on two operator methods, the first in the Schrodinger
picture and the second in the Heisenberg picture.

3 The dynamical group method

In the Schrodinger picture we can use the coordinate representation da = ¢.
and p, = —iss-.- (hereafter all derivatives act by the left), so that (3) now
reads

(¢'le™"*|q) = e ™6(q — ¢)- (4)
To find the action of exp(—iHt) on the Berezin delta function, we make
use of the fact that the GO Hamiltonian displays a 50(2,1) dynamical or
non invariance group [5]. This can be seen if we decompose H as a linear
combination of the self conjugate operators:

1. . 1, N
T, = —Epucablpbv Ts= ancn“u’ (5)

which obey the commutation relation

[Ty, T3]~

—izldp- D =il )

and also
[leTZ]— = —iTl, [T3,T2]_ = l'Ta. (7)

The above commutation relations generate the SO(2,1) Lie algebra. A more
familiar form for this algebra is achieved by introducing the I'; operators:

1 1
= -\/—i(TI - Ty), [ =1y, = E(Tx +T3), (8)
that obey
[0, Tj]- = ieiag* T, (9)
with the SO(2,1) metric g*/ given by
¢ = diag(1,1,-1). (10)

The fact that the Hamiltonian is a linear combination of the generators
of the SO(2,1) algebra does not means that we have a SO(2,1) symmetry
but indicates that we can use the representations of the SO(2,1) group to
obtain the spectrum and eigenstates for the problem at hand [5]. In the
following we take an alternative route and use a SO(2,1) Baker-Campbell-
Hausdorff (BCH) formula to disentangle the expression for the propagator of
the Schrodinger equation. It is interesting to note that the dynamical algebra
of the N-dimensional GO is the same as for the N-dimensional oscillator [6].
To better understand this point let us use the canonical anticommutation
relations (1) in the T; generator:

1, . . o 1N _
Tz-—z(Q'P"P q)—z(t2+q P)- (11)

We can see that T, has a c-number term i%, that can be identified as a
central extension to the Poisson-Lie algebra due to the quantum conditions
(1). The point is that this term happens to be proportional to the dimension
N and has the opposite sign of the similar one that appears in the study of
the HO dynamical group [6]. This fact give us a hint that the quantities
obtained for the GO can be related to the equivalent ones for the HO by a
shift N— —N. It should be pointed out that besides the SO{2,1) spectrum
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generating algebra the GO has a SU(~N) degeneracy group and also an
obvious Sp(N)~SO(~N) geometrical invariance [4]. We now use the above
S0(2,1) Lie algebra to obtain the Green's function for the GO. Using the

generators T; we have that:

e—iins(q ~q)= e—-’l(T,+2u’T,)6(q -4 (12)

To find (g, t|g,0) we have to disentangle the above expression in a product
of exponential factors of the T;. For this purpose we need a BCH formula for
the SO(2,1) generators. A way to obtain this formula is to write a faithful
representation for the T} in terms of the Pauli matrices o, and expand (12)
in a Taylor series:

T1=5‘%/.%"—’, T, = _'2”’, T,=ﬂ§+7’§53. (13)
Using the above in the equation
e-.‘«('nnu"n) = omisTs—isyTs ,~isT} , (14)
we have that
z = 2w tan(wt), y = 2In(cos(wt)), z= 5 tan{wt). (15)

With the above BCH formula we now verify the action of e~ on 8(g—-14').

It is convenient to introduce a Berezin integral representation for the delta
function:

bg-q) = /d"p gpe(1=1)e (16)

where the p, are also elements of a Grassmann algebra.
It is now easy to verify that the action of each exponential factor in (14)
on the delta function is given by:

e"i'T‘5(q -q)= /de eiixﬂ-l’«'.’.‘mﬂ'-(~1-f1’)-Y (17)

eI f(g) = e ¥ f(e ), (18)
f(q) being any function of ¢,.

With these results the propagator reads

.z _ z N . _
(¢',tlg,0) = /d"p erp{—'[—gpac,.b‘pﬁ ancasqs+'Ty+'pa(e LEEPON) S
(19)

If we now insert the values of z,y and 2, and appeal to the following Berezin
integral identity [1]:

/ dNp emrMartpte = 0¥ /it cteMiln (20)
we get
, 1 sin(wt)]% is
,tlg,0) = - a 21
(g tlg,0) = == | =] ¢ (21)
where w
_ v 't _ '
—2sin(wt)0us[(qaqs+q.q;)c08(wt) 2¢aq3)- (22)

Thus the propagator for the GO has the same phase as the HO, but with
an opposite signal for N in the amplitude. This sign reversal of N can be
regarded as a continuation N— —N in the result for the HO. In the next
section we get (¢', t|g,0) working in the Heisenberg picture.



4 The Dirac-Schwinger method

To obtain the Green’s function for the Schrédinger equation Dirac [7] wrote
(3) in the following way:

(¢',tlg,0) = e Uu, (23)
where W (¢', ¢; t) is a complex function of the end point coordinates and time.
q P

It is easy to verify from (1) and (3) that this function is determined by the
following relations:

- a_vK(_gt,_q_;t_) (¢, t1H (), B(t))la, 0)/{d", tg, 0), (24)
———aw(aqq',’ 50 = (¢, (0la,0)/d" tla,0), 25)

- ————Wf.,"q"“ D = (¢, t.0)la, OV/a', tha, O, (26)
W(¢',q;0) = —ilné(q' —q). (27)

These equations surely have a flavor of the classical Hamilton-Jacobi method
(HJ), so Dirac imagined W(g',¢;t) to be a matrix element between position
eigenstates of a time ordered operator W(4(t), §(0)), that could be termed
the “quantum action operator” , satisfying an operator version of the HJ
equation. To solve for W((j(t),é(o)) one must proceed as in the classical HI
way replacing p(t) by the derivative of W (4(t), §(0)) with respect to §(t) and
so on, integrating the equations with the noncommutativity of the variables
in mind [8].

In his classical paper on the effective interaction of quantum fields with
a classical background Schwinger [9] obtained an expression for the effective
action in terms of the Green's function of a nonrelativistic quantum mechan-
ical problem. He followed Dirac to solve this problem, but instead of relying
on the HJ method he noticed that the above equations relate the transition
amplitude to the solution of the Heisenberg equations for §(t) and p(t):

4 _ e, -, é%(:t_) -

m —ilp(e), H]-. (28)

If we solve for p(t) in terms of §(t) and §(0) and insert this, in a time ordered
fashion, on (24)-(26) we are left with a set of first order equations to integrate.
For the GO the equations in (28) are

10 _ onun, B - —wroai), (29)

with solutions
() = 2(0) cos(wt) + ZC(0)sinuwt), (30)
Pa(t) = ws(0)Cha sin(wt) + Pa(0) cos(wt). (31)

As H is time-independent, H(§(2), p(t)) = H(4(0),5(0)), only equation (30)
is really needed to put it in a time ordered way. Solving (30) for $(0) and
inserting it in (2):

A= 3(is) Cal0m(O + 20RO cor'wn) = 20,0 o)
~ cos(wt)[1(0), #(t))+] + 5-8.(0)Cudh(0).  (32)

The above anticommutator can be found using (30) and (1),

. . . 8in(wt)
Carlda(0), @s(8))+ = —iN——=. (33)
Note that this is the negative of the corresponding commutator for the N-
dimensional HO, a fact that is due to the canonical anticommutation relations

(1) as we have verified earlier in the realization of the S0(2,1) generator Ts.



Now, if we define the expectation value

(H) = (¢, 1H (§(£), §(0))1g, 0}/ (¢, tlg, 0}, (34)

we have that

@ w? 2 vt ! wN
(H) = 5 osc (wt)Cas{(dias + 9a08) — 2g0qs cos(wt)] + 1—2—cot(wt). (35)
With the above result we are now in position to integrate (24):

N ,
W(d\q;t) = 5(¢',g5t) — i Insinwt) + 8(¢', 9), (36)

where S(g,¢';t) is given by (22) and ®(q’, ¢) is a time independent function.
In order to determine ® we substitute W in (25) and (26) to get

0%(¢q) _ 8%(¢"9) _ (37)

9. 84a
By using the boundary condition (27), we have

& = —iln|(iw)~ ¥ VdetC-1). (38)

So, the final answer for Dirac’s “quantum action” is given by

. 1 sin{wt)1¥
Wi(q, q:t) = S(q', ;t—;ln{ —_— } 39
(¢ q:t) (¢ o t) Vaetc !l w (39)
As we can see the real part of Wis the classical action whilst its imaginary

part give us the pre-exponential factor, as it was expected since our system
is quadratic [8], even if in a Grassmann sense.

5 Conclusions

In this paper we explored the possibility of a Grassmann realization of non-
relativistic quantum mechanics, computing the Grassmann oscillator Green’s
function by two different operator methods. In the first we explored the fact
that the Hamiltonian is a sum of SO(2,1) Lie algebra generators, allowing
one to use a BCH formula to disentangle the evolution operator as a product

9

of exponential factors, each one with a simple realization in the configura-
tion space and so avoiding the need of solving differential equations. Next
we turned to a method due to Dirac and Schwinger that relates the solution
of the Heisenberg equations for §(t) and p(t) to the transition amplitude by
a simple integration of first order differential equations. In both methods we
observed that the canonical anticommutation relations are responsible for the
interpretation of the Grassmann coordinates as negative dimensional degrees
of freedom.
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