

CTD/WIT 2019

Connecting the Dots and Workshop on Intelligent Trackers Valencia, April 2 - 5, 2019

LHCb Upgrade II

VRAN

Olaf Steinkamp on behalf of the LHCb collaboration

Physik-Institut der Universität Zürich Winterthurerstrasse 190 CH-8057 Zürich olafs@physik.uzh.ch

Main goal of LHCb: search for physics "Beyond Standard Model"

Main goal of LHCb: search for physics "Beyond Standard Model"

- \rightarrow most BSM physics models predict additional heavy particles
- \rightarrow can cause additional amplitudes in processes with internal loops

CTD/WIT 2019 – LHCb Upgrade II (3/53)

Main goal of LHCb: search for physics "Beyond Standard Model"

- \rightarrow most BSM physics models predict additional heavy particles
- \rightarrow can cause additional amplitudes in processes with internal loops

 \rightarrow can lead to sizeable modifications of observables (rates, angular distributions, *CP* violating phases)

Main goal of LHCb: search for physics "Beyond Standard Model"

- \rightarrow most BSM physics models predict additional heavy particles
- \rightarrow can cause additional amplitudes in processes with internal loops

 \rightarrow can lead to sizeable modifications of observables (rates, angular distributions, *CP* violating phases)

Uncover deviations from Standard Model expectations by comparing its predictions with <u>precision measurements</u>

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (5/53)

Efficient and precise track reconstruction vital for LHCb physics

- \rightarrow identify primary and secondary vertices
 - \rightarrow measure impact parameters (trigger)
- \rightarrow measure decay time of *b* and *c* hadrons

 \rightarrow resolve fast $B_s^0 - \overline{B}_s^0$ oscillations

 \rightarrow momentum resolution & invariant mass resolution

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (6/53)

Efficient and precise track reconstruction vital for LHCb physics

- \rightarrow identify primary and secondary vertices
 - \rightarrow measure impact parameters (trigger)
- \rightarrow measure decay time of *b* and *c* hadrons

 \rightarrow resolve fast $B_s^0 - \overline{B}_s^0$ oscillations

 \rightarrow momentum resolution & invariant mass resolution

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (7/53)

Efficient and precise track reconstruction vital for LHCb physics

- \rightarrow identify primary and secondary vertices
 - \rightarrow measure impact parameters (trigger)
- \rightarrow measure decay time of *b* and *c* hadrons

 \rightarrow resolve fast $B_s^0 - \overline{B}_s^0$ oscillations

→ momentum resolution & invariant mass resolution

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (8/53)

Efficient and precise track reconstruction vital for LHCb physics

- \rightarrow identify primary and secondary vertices
 - \rightarrow measure impact parameters (trigger)
- \rightarrow measure decay time of *b* and *c* hadrons

 \rightarrow resolve fast $B_s^0 - \overline{B}_s^0$ oscillations

→ momentum resolution & invariant mass resolution

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (9/53)

111 (2013) 101804

[PRL

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (10/53)

Most results limited by statistical uncertainty

 \rightarrow will need 4 × statistics to improve by another factor 2

→ 15 years of data taking at current conditions

Scenario

[arXiV:1808.08865]

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (12/53)

Scenario

HL-LHC, ATLAS / CMS upgrades

Scenario

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (14/53)

LHCb now

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (15/53)

LHCb ~ 2025

CTD/WIT 2019 – LHCb Upgrade II (16/53)

LHCb Upgrade II reach

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (17/53)

CTD/WIT 2019 – LHCb Upgrade II (18/53)

Table 10.1: Summary of prospects for future measurements of selected flavour observables for LHCb, Belle II and Phase-II ATLAS and CMS. The projec LHCb sensitivities take no account of potential detector improvements, apart from in the trigger. The Belle-II sensitivities are taken from Ref. 608.

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ [274]$	0.025	0.036	0.007	
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ 275$	0.031	0.032	0.008	—
$R_{\phi},~R_{pK},~R_{\pi}$	_	$0.08,\ 0.06,\ 0.18$	_	0.02,0.02,0.05	_
<u>CKM tests</u>					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ 136	4°	_	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 609	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad 44	$14 \mathrm{\ mrad}$	_	$4 \mathrm{mrad}$	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad 49	$35 \mathrm{\ mrad}$	_	$9 \mathrm{mrad}$	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	39 mrad	_	$11 \mathrm{\ mrad}$	Under study [611]
$a_{ m sl}^s$	$33 imes 10^{-4}$ 211	10×10^{-4}	_	$3 imes 10^{-4}$	
$ ec{V}_{ub} / V_{cb} $	6% 201	3%	1%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\frac{\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$	90% [264]	34%	_	10%	21% [612]
$\tau_{B^0 \rightarrow \mu^+ \mu^-}$	22% 264	8%	_	2%	
S_{s}^{a} , $\mu^{a}\mu^{\mu}$ $S_{\mu\mu}$	_	_	_	0.2	_
$b \to c \ell^- \bar{\nu_l} { m LUV} { m studies}$					
$\overline{R(D^*)}$	0.026 215 217	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 220	0.071	_	0.02	_
Charm					
$\overline{\Delta A_{CP}}(KK - \pi\pi)$	8.5×10^{-4} 613	$1.7 imes 10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} 240	4.3×10^{-5}	$3.5 imes 10^{-4}$	1.0×10^{-5}	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	3.2×10^{-4}	$4.6 imes 10^{-4}$	$8.0 imes 10^{-5}$	_
$x\sin\phi$ from multibody decays		$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{ m s}^0\pi\pi)$ 1.2×10^{-4}	$(K3\pi) \ 8.0 \times 10^{-6}$	_

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (19/53)

≤9 fb⁻¹

23 fb⁻¹

O. Steinkamp

300 fb⁻¹

022

ī Ś

201

CERN-LHCC

-016

014

N

[CERN-LHCC

2013-021

[CERN-LHCC

2014-001

[CERN-LHCC

Status

Upgrade I: 2019/2020

→ Technical Design Reports \rightarrow construction underway

Upgrade II: 2030

 \rightarrow Eol, Physics Case \rightarrow approved to proceed to TDR

CTD/WIT 2019 – LHCb Upgrade II (20/53)

O. Steinkamp

2 April 2019

Increase instantaneous luminosity $4 \times 10^{32} \rightarrow 2 \times 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}$

Abolish hardware trigger stage to fully exploit higher collision rate

- \rightarrow read out full detector at 40 MHz
 - → operate software trigger at 40 MHz input rate !

Replacement of tracking detectors

 \rightarrow finer granularity to cope with higher particle density \rightarrow new front-end electronics compatible with 40 MHz readout

Track reconstruction at collision rate !

LHCb Run I/II

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (22/53)

LHCb Upgrade I

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (23/53)

"Long tracks" most useful for physics analyses

- → precise vertex and impact parameter
- \rightarrow precise momentum

Challenge for pattern recognition:

 \rightarrow sparse hit information

 \rightarrow 5.5 m and 4 Tm in between UT and T stations

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (24/53)

"Long tracks" most useful for physics analyses

- → precise vertex and impact parameter
- \rightarrow precise momentum

"Track matching"

 \rightarrow extrapolate upstream and T tracks to middle of magnet

 \rightarrow look for matches

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (25/53)

"Long tracks" most useful for physics analyses

- → precise vertex and impact parameter
- \rightarrow precise momentum

"Forward tracking"

- → extrapolate upstream track to T stations
 - \rightarrow open search window (momentum dependent!)
 - \rightarrow search for clusters of hits

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (26/53)

"Long tracks" most useful for physics analyses

- → precise vertex and impact parameter
- \rightarrow precise momentum

Fringe field in between VELO and UT:

- \rightarrow determine charge
- \rightarrow determine momentum to 15 – 30 % precision

"Long tracks" most useful for physics analyses

- → precise vertex and impact parameter
- \rightarrow precise momentum

- → smaller search windows in downstream stations
 - \rightarrow fewer combinatorics
 - \rightarrow faster algorithm

CTD/WIT 2019 – LHCb Upgrade II (29/53)

Increase instantaneous luminosity from 2×10^{33} to $1 - 2 \times 10^{34}$ cm⁻² s⁻¹

→ $28-55 \langle pp \text{ interactions / crossing} \rangle$ → $1250-2500 \langle \text{charged particles} \rangle$ → 250-500 TB/s

Detectors / front-end electronics

- \rightarrow finer granularity
- \rightarrow timing resolution
- \rightarrow radiation hardness
- \rightarrow data preparation/processing

Pattern recognition algorithms

- \rightarrow "ghost" rate
- \rightarrow execution time

Increase instantaneous luminosity from 2×10^{33} to $1 - 2 \times 10^{34}$ cm⁻² s⁻¹

→ $28-55 \langle pp \text{ interactions / crossing} \rangle$ → $1250-2500 \langle \text{charged particles} \rangle$ → 250-500 TB/s

Detectors / front-end electronics

- \rightarrow finer granularity
- \rightarrow timing resolution
- \rightarrow radiation hardness
- \rightarrow data preparation/processing

Pattern recognition algorithms

- \rightarrow "ghost" rate
- \rightarrow execution time

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (31/53)

Increase instantaneous luminosity from 2×10^{33} to $1 - 2 \times 10^{34}$ cm⁻² s⁻¹

→ $28-55 \langle pp \text{ interactions / crossing} \rangle$ → $1250-2500 \langle \text{charged particles} \rangle$ → 250-500 TB/s

Detectors / front-end electronics

- \rightarrow finer granularity
- \rightarrow timing resolution
- \rightarrow radiation hardness
- \rightarrow data preparation/processing

Pattern recognition algorithms

 \rightarrow "ghost" rate \rightarrow execution time

CTD/WIT 2019 – LHCb Upgrade II (32/53)

Increase instantaneous luminosity from 2×10^{33} to $1 - 2 \times 10^{34}$ cm⁻² s⁻¹

→ $28-55 \langle pp \text{ interactions / crossing} \rangle$ → $1250-2500 \langle \text{charged particles} \rangle$ → 250-500 TB/s

Detectors / front-end electronics

- \rightarrow finer granularity
- \rightarrow timing resolution
- \rightarrow radiation hardness
- \rightarrow data preparation/processing

Pattern recognition algorithms

 \rightarrow "ghost" rate \rightarrow execution time

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (34/53)

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (35/53)

Two-day retreat in Swiss Alps, two weeks ago

→ 44 participants from 18 institutes
 → mechanics and cooling
 → detector technologies
 → trigger, reconstruction, physics

Two-day retreat in Swiss Alps, two weeks ago

→ 44 participants from 18 institutes
 → mechanics and cooling
 → detector technologies
 → trigger, reconstruction, physics

Low-Gain Avalanche Detectors

 \rightarrow thin, highly doped gain layer \rightarrow large signal despite thin sensor \rightarrow time resolution of 30 ps feasible

 \rightarrow pursued in ATLAS / CMS

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (37/53)

Two-day retreat in Swiss Alps, two weeks ago

- → 44 participants from 18 institutes
 → mechanics and cooling
 → detector technologies
 → trigger, reconstruction, physics

Low-Gain Avalanche Detectors

 \rightarrow thin, highly doped gain layer \rightarrow large signal despite thin sensor \rightarrow time resolution of 30 ps feasible

Performance for small pixels ?

- \rightarrow low-gain area between pixels \rightarrow non-uniform electric field
- \rightarrow ATLAS/CMS investigate 1.3 × 1.3 mm² \rightarrow VELO about 50 × 50 μm^2

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (38/53)

Two-day retreat in Swiss Alps, two weeks ago

- → 44 participants from 18 institutes
 → mechanics and cooling
 → detector technologies
 → trigger, reconstruction, physics
- **Low-Gain Avalanche Detectors**
- \rightarrow thin, highly doped gain layer \rightarrow large signal despite thin sensor \rightarrow time resolution of 30 ps feasible

Performance for small pixels ?

- \rightarrow low-gain area between pixels \rightarrow non-uniform electric field
- \rightarrow ATLAS/CMS investigate 1.3 × 1.3 mm² \rightarrow VELO about 50 × 50 µm²

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (39/53)

Two-day retreat in Swiss Alps, two weeks ago

 \rightarrow 44 participants from 18 institutes \rightarrow mechanics and cooling \rightarrow detector technologies

 \rightarrow trigger, reconstruction, physics

Low-Gain Avalanche Detectors

 \rightarrow thin, highly doped gain layer \rightarrow large signal despite thin sensor \rightarrow time resolution of 30 ps feasible

Radiation hardness ?

 \rightarrow donor removal in gain layer \rightarrow higher bias voltage to maintain gain

 \rightarrow few × 10¹⁵ 1-MeV *n* / cm² feasible \rightarrow VELO expect up to 6 × 10¹⁶ 1-MeV *n* / cm²

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (40/53)

Two-day retreat in Swiss Alps, two weeks ago

→ 44 participants from 18 institutes
 → mechanics and cooling
 → detector technologies
 → trigger, reconstruction, physics

Possible hybrid approach:

→ emphasis on pixel size and extreme radiation hardness in inner region of each detection layer

 \rightarrow emphasis on fast timing in outer region of each detection layer

 \rightarrow but ... 2 detector technologies

Lнср гнср

Upgrade II: VELO

Two-day retreat in Swiss Alps, two weeks ago

→ 44 participants from 18 institutes
 → mechanics and cooling
 → detector technologies
 → trigger, reconstruction, physics

→ software (CPU/GPU) ? → firmware (FPGA) ? → hardware ???

VELO likely to play important role

 \rightarrow low magnetic field, simple algorithms

decar

циср

Upgrade II: VELO

Two-day retreat in Swiss Alps, two weeks ago

→ 44 participants from 18 institutes
 → mechanics and cooling
 → detector technologies
 → trigger, reconstruction, physics

Track reconstruction at 3 × 10⁷ events / s:

→ software (CPU/GPU) ? → firmware (FPGA) ? → hardware ???

VELO likely to play important role

 \rightarrow low magnetic field, simple algorithms

Minimize time spent on data preparation

 \rightarrow parallelize inside front-end electronics ?

Design study for internal review

 \rightarrow 23 authors from 9 institutes

- \rightarrow size and layout
- \rightarrow detector technology
- \rightarrow mechanics, cooling
- \rightarrow readout, pattern recognition

Silicon detector for inner part of downstream tracking stations

Staged approach:

- → "small" Inner Tracker for LS 3 (Upgrade Ib)
- → full-size Middle Tracker for LS4 (Upgrade II)

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denysenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

CTD/WIT 2019 – LHCb Upgrade II (44/53)

Design study for internal review

 \rightarrow 23 authors from 9 institutes

\rightarrow size and layout

 \rightarrow detector technology \rightarrow mechanics, cooling \rightarrow readout, pattern recognition

Size and layout determined by occupancies and radiation damage in surrounding SciFi Tracker

 \rightarrow 3 m² per detection layer \rightarrow 18 m² for six detection layers

 \rightarrow largest silicon detector built for LHCb so far

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denysenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

CTD/WIT 2019 – LHCb Upgrade II (45/53)

Design study for internal review

 \rightarrow 23 authors from 9 institutes

 \rightarrow size and layout

\rightarrow detector technology

 \rightarrow mechanics, cooling \rightarrow readout, pattern recognition

Promising technology: HV-CMOS pixel detectors

- \rightarrow pioneered by mu3e at PSI, (ATLAS phase II upgrade)
 - → time resolution ≤ 10 ns achieved in mu3e
 - \rightarrow sufficiently radiation hard

 \rightarrow low power consumption (0.3 W/cm²)

<u>rncp</u>

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denysenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

E

Design study for internal review

 \rightarrow 23 authors from 9 institutes

- \rightarrow size and layout
- \rightarrow detector technology
- \rightarrow mechanics, cooling

 \rightarrow readout, pattern recognition

Promising technology: HV-CMOS pixel detectors

- \rightarrow pioneered by mu3e at PSI, (ATLAS phase II upgrade)
 - → time resolution ≤ 10 ns achieved in mu3e
 - \rightarrow sufficiently radiation hard

 \rightarrow low power consumption (0.3 W/cm²)

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denysenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

Design study for internal review

 \rightarrow 23 authors from 9 institutes

 \rightarrow size and layout

 \rightarrow detector technology

 \rightarrow mechanics, cooling

 \rightarrow readout, pattern recognition

Occupancy < 1 % for pixel size of 100 × 500 μm²

 \rightarrow c.f. 80 × 80 μm^2 for mu3e, 50 × 150 μm^2 for ATLAS phase II

Expect biggest challenge to be matching between upstream and downstream

 \rightarrow combinatorics depend on track density, not occupancy

<u>LHC</u>p

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denysenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (48/53)

Design study for internal review

 \rightarrow 23 authors from 9 institutes

 \rightarrow size and layout

 \rightarrow detector technology

 \rightarrow mechanics, cooling

 \rightarrow readout, pattern recognition

Occupancy < 1 % for pixel size of 100 × 500 μm²

 \rightarrow c.f. 80 × 80 μm^2 for mu3e, 50 × 150 μm^2 for ATLAS phase II

Expect biggest challenge to be matching between upstream and downstream

 \rightarrow combinatorics depend on track density, not occupancy

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denysenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

Explore and investigate novel algorithms

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (49/53)

Upgrade II: Timeline

CTD/WIT 2019 – LHCb Upgrade II (50/53)

Summary

Upgrade I in LS2 (now):

 \rightarrow factor 5 in luminosity \rightarrow full software trigger at 30 million events/s

 \rightarrow detectors with finer granularity and 40 MHz readout

Upgrade Ib in LS3 (around 2025):

 \rightarrow overall consolidation \rightarrow e.g. silicon Inner Tracker

Upgrade II in LS4 (around 2030):

 \rightarrow another factor 5-10 in luminosity

 \rightarrow detectors with 4D resolution (space and timing) \rightarrow radiation hardness

 \rightarrow pattern recognition algorithms

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (51/53)

Summary

Upgrade I in LS2 (now

Lsoftware

Tough, interesting challenges \rightarrow detector technologies \rightarrow reconstruction algorithms Good initial ideas, lots more work needed **New collaborators** welcome ! (space and timing) dness → pattern recognition algorithms

CTD/WIT 2019 – LHCb Upgrade II (52/53)

Summary

Upgrade I in LS2 (now):

 \rightarrow detectors with 4D resolution (space and timing) \rightarrow radiation hardness

 \rightarrow pattern recognition algorithms

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (53/53)

Upgrade I: Luminosity

Increase instantaneous luminosity $4 \times 10^{32} \rightarrow 2 \times 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}$

Remember: LHCb operates at lower luminosity than ATLAS/CMS

→ achieved by colliding beams with small relative offset in LHCb interaction point

 \rightarrow higher luminosity for LHCb does not require LHC upgrade

(very old plot, but illustrates the point)

CTD/WIT 2019 – LHCb Upgrade II (55/53)

Upgrade I: Trigger

CTD/WIT 2019 – LHCb Upgrade II (56/53)

Upgrade I: Trigger/Reconstruction

CTD/WIT 2019 – LHCb Upgrade II (57/53)

Upgrade I: Track Reconstruction

Upgrade I: Track Reconstruction

26 layers of silicon pixel detectors \rightarrow VeloPix Closer to beam \rightarrow active area 8.2 \rightarrow 5.1 mm Less material \rightarrow thinner sensors (300 \rightarrow 200 µm) \rightarrow thinner aluminium foil (300 \rightarrow 150-250 µm)

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (60/53)

Upgrade I: Upstream Tracker

4 layers of silicon micro-strips → 190 and 95 µm pitch → 10 and 5 cm in length (finer granularity in inner region)

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (61/53)

Upgrade I: Downstream Tracker

3 stations of scintillating fibres, four detection layers each → 2.5 m long, 250 µm diameter → read out with silicon photomultipliers

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (62/53)

Upgrade Ib: Low-Momentum Tracking

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (63/53)

Upgrade Ib: Low-Momentum Tracking

2 April 2019

CTD/WIT 2019 – LHCb Upgrade II (64/53)

Upgrade Ib: TORCH

"Time Of interally Reflected CHerenkov light"
→ 250 cm long, 1 cm thin slabs of quartz glass
→ PID below 10 GeV/c
→ time resolution of ≈ 15 ns per track

CTD/WIT 2019 – LHCb Upgrade II (65/53)

LHC Run Year	Integrated Luminosity fb^{-1}				
	$1 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$1.5 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$2.0 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$		
Run 1-4	50	50	50		
LS4	-	-	-		
Run 5 Year 1	21	25	26		
Run 5 Year 2	43	50	51		
Run 5 Year 3	43	50	51		
LS5	-	-	-		
Run 6 Year 1	43	50	51		
Run 6 Year 2	43	50	51		
Run 6 Year 3	43	50	51		
Total	284	325	331		
Run 6 Year 4	43	50	51		
Total	326	374	381		