

CTD/WIT 2019

Connecting the Dots and Workshop on Intelligent Trackers Valencia, April 2 - 5, 2019

LHCb Upgrade II

Olaf Steinkamp *on behalf of the LHCb collaboration*

VCANT

Physik-Institut der Universität Zürich Winterthurerstrasse 190 CH-8057 Zürich olafs@physik.uzh.ch

Main goal of LHCb: search for physics "Beyond Standard Model"

Main goal of LHCb: search for physics "Beyond Standard Model"

- \rightarrow most BSM physics models predict additional heavy particles
- \rightarrow can cause additional amplitudes in processes with internal loops

Main goal of LHCb: search for physics "Beyond Standard Model"

- \rightarrow most BSM physics models predict additional heavy particles
- \rightarrow can cause additional amplitudes in processes with internal loops

 \rightarrow can lead to sizeable modifications of observables (rates, angular distributions, *CP* violating phases)

Main goal of LHCb: search for physics "Beyond Standard Model"

- \rightarrow most BSM physics models predict additional heavy particles
- \rightarrow can cause additional amplitudes in processes with internal loops

 \rightarrow can lead to sizeable modifications of observables (rates, angular distributions, *CP* violating phases)

Uncover deviations from Standard Model expectations by comparing its predictions with precision measurements

Efficient and precise track reconstruction vital for LHCb physics

- \rightarrow identify primary and secondary vertices
	- \rightarrow measure impact parameters (trigger)
- → measure decay time of *b* and *c* hadrons

 \rightarrow resolve fast B_s^0 – B_s^0 $^{\rm o}$ oscillations

 \rightarrow momentum resolution & invariant mass resolution

Efficient and precise track reconstruction vital for LHCb physics

- \rightarrow identify primary and secondary vertices
	- \rightarrow measure impact parameters (trigger)
- → measure decay time of *b* and *c* hadrons

 \rightarrow resolve fast $\boldsymbol{B_s^0}\!\!-\!\boldsymbol{B_s^+}$ **0 oscillations**

 \rightarrow momentum resolution & invariant mass resolution

Efficient and precise track reconstruction vital for LHCb physics

- \rightarrow identify primary and secondary vertices
	- \rightarrow measure impact parameters (trigger)
- → measure decay time of *b* and *c* hadrons

 \rightarrow resolve fast B_s^0 – B_s^0 $^{\rm o}$ oscillations

→ momentum resolution & invariant mass resolution

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (8/53) O. Steinkamp

Efficient and precise track reconstruction vital for LHCb physics

- \rightarrow identify primary and secondary vertices
	- \rightarrow measure impact parameters (trigger)
- → measure decay time of *b* and *c* hadrons

 \rightarrow resolve fast B_s^0 – B_s^0 $^{\rm o}$ oscillations

→ momentum resolution & invariant mass resolution

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (9/53) O. Steinkamp

[P RL

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (10/53) O. Steinkamp

Most results limited by statistical uncertainty

→ will need 4 × statistics to improve by another factor 2

→ 15 years of data taking **at current conditions**

Scenario

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (12/53) O. Steinkamp

Scenario

HL-LHC, ATLAS / CMS upgrades

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (13/53) O. Steinkamp

Scenario

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (14/53) O. Steinkamp

LHCb now

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (15/53) O. Steinkamp

LHCb ~ 2025

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (16/53) O. Steinkamp

LHCb Upgrade II reach

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (17/53) O. Steinkamp

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (18/53) O. Steinkamp

Table 10.1: Summary of prospects for future measurements of selected flavour observables for LHCb, Belle II and Phase-II ATLAS and CMS. The projec LHCb sensitivities take no account of potential detector improvements, apart from in the trigger. The Belle-II sensitivities are taken from Ref. [608].

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (19/53) O. Steinkamp

≤ 9 fb-1 23 fb-1 300 fb-1

Status

Upgrade I: 2019/2020 → Technical Design Reports

 \rightarrow construction underway

Upgrade II: 2030

 \rightarrow EoI, Physics Case \rightarrow approved to proceed to TDR

rtunities in flavour physics, and
beyond, in the HL-LHC era

[C E

RN -L

HCC $\boldsymbol{\alpha}$ **014-016]**

[C E

RN -L

HCC $\boldsymbol{\alpha}$ **014-001]**

[C E

[C E

RN -L

HCC $\boldsymbol{\alpha}$ **01**<u>ო</u> **-0** $\boldsymbol{\alpha}$ **2]**

RN -L

HCC $\boldsymbol{\alpha}$ **01**<u>ო</u> **-0** $\boldsymbol{\alpha}$ **1]**

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (20/53) O. Steinkamp

Increase instantaneous luminosity 4 × 1032 → 2 × 1033 cm-2 s -1

Abolish hardware trigger stage to fully exploit higher collision rate

- **→** read out full detector at 40 MHz
	- \rightarrow operate software trigger at 40 MHz input rate !

Replacement of tracking detectors

→ finer granularity to cope with higher particle density \rightarrow new front-end electronics compatible with 40 MHz readout

Track reconstruction at collision rate !

LHCb Run I/II

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (22/53) O. Steinkamp

LHCb Upgrade I

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (23/53) O. Steinkamp

"Long tracks" most useful for physics analyses

- \rightarrow precise vertex and impact parameter
- \rightarrow precise momentum

Challenge for pattern recognition:

 \rightarrow sparse hit information

 \rightarrow 5.5 m and 4 Tm in between UT and T stations

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (24/53) O. Steinkamp

"Long tracks" most useful for physics analyses

- \rightarrow precise vertex and impact parameter
- \rightarrow precise momentum

"Track matching"

 \rightarrow extrapolate upstream and T tracks to middle of magnet

 \rightarrow look for matches

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (25/53) O. Steinkamp

"Long tracks" most useful for physics analyses

- \rightarrow precise vertex and impact parameter
- \rightarrow precise momentum

"Forward tracking"

- \rightarrow extrapolate upstream track to T stations
	- \rightarrow open search window (momentum dependent!)
	- \rightarrow search for clusters of hits

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (26/53) O. Steinkamp

"Long tracks" most useful for physics analyses

- \rightarrow precise vertex and impact parameter
- \rightarrow precise momentum

Fringe field in between VELO and UT:

- \rightarrow determine charge
- \rightarrow determine momentum to $15 - 30$ % precision

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (27/53) O. Steinkamp

"Long tracks" most useful for physics analyses

- \rightarrow precise vertex and impact parameter
- \rightarrow precise momentum

- \rightarrow smaller search windows in downstream stations
	- \rightarrow fewer combinatorics
		- \rightarrow faster algorithm

Increase instantaneous luminosity from 2 × 1033 to 1 – 2 × 1034 cm-2 s -1

 \rightarrow 28 – 55 \langle *pp* interactions / crossing \rangle \rightarrow 1250 – 2500 \langle charged particles \rangle \rightarrow 250 – 500 TB/s

Detectors / front-end electronics

- \rightarrow finer granularity
- \rightarrow timing resolution
- \rightarrow radiation hardness
- \rightarrow data preparation/processing

Pattern recognition algorithms

- \rightarrow "ghost" rate
- \rightarrow execution time

Increase instantaneous luminosity from 2 × 1033 to 1 – 2 × 1034 cm-2 s -1

 \rightarrow 28 – 55 \langle *pp* interactions / crossing \rangle \rightarrow 1250 – 2500 \langle charged particles \rangle \rightarrow 250 – 500 TB/s

Detectors / front-end electronics

- \rightarrow finer granularity
- **→ timing resolution**
- \rightarrow radiation hardness
- \rightarrow data preparation/processing

Pattern recognition algorithms

- \rightarrow "ghost" rate
- \rightarrow execution time

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (31/53) O. Steinkamp

Increase instantaneous luminosity from 2 × 1033 to 1 – 2 × 1034 cm-2 s -1 \rightarrow 28 – 55 \langle *pp* interactions / crossing \rangle

 \rightarrow 1250 – 2500 \langle charged particles \rangle

 \rightarrow 250 – 500 TB/s

Detectors / front-end electronics

- \rightarrow finer granularity
- → timing resolution
- \rightarrow radiation hardness
- \rightarrow data preparation/processing

Pattern recognition algorithms

 \rightarrow "ghost" rate \rightarrow execution time

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (32/53) O. Steinkamp

Increase instantaneous luminosity from 2 × 1033 to 1 – 2 × 1034 cm-2 s -1 \rightarrow 28 – 55 \langle *pp* interactions / crossing \rangle \rightarrow 1250 – 2500 \langle charged particles \rangle

 \rightarrow 250 – 500 TB/s

Detectors / front-end electronics

- \rightarrow finer granularity
- **→ timing resolution**
- \rightarrow radiation hardness
- \rightarrow data preparation/processing

Pattern recognition algorithms

 \rightarrow "ghost" rate \rightarrow execution time

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (33/53) O. Steinkamp

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (34/53) O. Steinkamp

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (35/53) O. Steinkamp

Two-day retreat in Swiss Alps, two weeks ago

 \rightarrow 44 participants from 18 institutes \rightarrow mechanics and cooling \rightarrow detector technologies \rightarrow trigger, reconstruction, physics

Two-day retreat in Swiss Alps, two weeks ago

 \rightarrow 44 participants from 18 institutes \rightarrow mechanics and cooling **→ detector technologies** \rightarrow trigger, reconstruction, physics

Low-Gain Avalanche Detectors

 \rightarrow thin, highly doped gain layer \rightarrow large signal despite thin sensor \rightarrow time resolution of 30 ps feasible

 \rightarrow pursued in ATLAS / CMS

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (37/53) O. Steinkamp

Two-day retreat in Swiss Alps, two weeks ago

 \rightarrow 44 participants from 18 institutes \rightarrow mechanics and cooling **→ detector technologies** \rightarrow trigger, reconstruction, physics

Low-Gain Avalanche Detectors

 \rightarrow thin, highly doped gain layer \rightarrow large signal despite thin sensor \rightarrow time resolution of 30 ps feasible

Performance for small pixels ?

- \rightarrow low-gain area between pixels \rightarrow non-uniform electric field
- \rightarrow ATLAS/CMS investigate 1.3 \times 1.3 mm² \rightarrow VELO about 50 \times 50 µm²

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (38/53) O. Steinkamp

Two-day retreat in Swiss Alps, two weeks ago

 \rightarrow 44 participants from 18 institutes \rightarrow mechanics and cooling **→ detector technologies** \rightarrow trigger, reconstruction, physics

Low-Gain Avalanche Detectors

 \rightarrow thin, highly doped gain layer \rightarrow large signal despite thin sensor \rightarrow time resolution of 30 ps feasible

Performance for small pixels ?

- \rightarrow low-gain area between pixels \rightarrow non-uniform electric field
- \rightarrow ATLAS/CMS investigate 1.3 \times 1.3 mm² \rightarrow VELO about 50 \times 50 µm²

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (39/53) O. Steinkamp

Two-day retreat in Swiss Alps, two weeks ago

 \rightarrow 44 participants from 18 institutes \rightarrow mechanics and cooling **→ detector technologies** \rightarrow trigger, reconstruction, physics

Low-Gain Avalanche Detectors

 \rightarrow thin, highly doped gain layer \rightarrow large signal despite thin sensor \rightarrow time resolution of 30 ps feasible

Radiation hardness ?

 \rightarrow donor removal in gain layer \rightarrow higher bias voltage to maintain gain

→ few × 10¹⁵ 1-MeV *n* / cm² feasible \rightarrow VELO expect up to 6 \times 10¹⁶ 1-MeV *n* / cm²

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (40/53) O. Steinkamp

Two-day retreat in Swiss Alps, two weeks ago

 \rightarrow 44 participants from 18 institutes \rightarrow mechanics and cooling **→ detector technologies** \rightarrow trigger, reconstruction, physics

Possible hybrid approach:

 \rightarrow emphasis on pixel size and extreme radiation hardness in inner region of each detection layer

 \rightarrow emphasis on fast timing in outer region of each detection layer

 \rightarrow but \ldots 2 detector technologies

Two-day retreat in Swiss Alps, two weeks ago

 \rightarrow 44 participants from 18 institutes \rightarrow mechanics and cooling \rightarrow detector technologies → **trigger, reconstruction**, physics

Track reconstruction at 3 × 107 events / s:

 \rightarrow software (CPU/GPU) ? \rightarrow firmware (FPGA) ? \rightarrow hardware ???

VELO likely to play important role

 \rightarrow low magnetic field, simple algorithms

decay ti

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (42/53) O. Steinkamp

Two-day retreat in Swiss Alps, two weeks ago

 \rightarrow 44 participants from 18 institutes \rightarrow mechanics and cooling \rightarrow detector technologies → **trigger, reconstruction**, physics

Track reconstruction at 3 × 107 events / s:

 \rightarrow software (CPU/GPU) ? \rightarrow firmware (FPGA) ? \rightarrow hardware ???

VELO likely to play important role

 \rightarrow low magnetic field, simple algorithms

Minimize time spent on data preparation

 \rightarrow parallelize inside front-end electronics ?

Design study for internal review

 \rightarrow 23 authors from 9 institutes

- \rightarrow size and layout
- \rightarrow detector technology
- \rightarrow mechanics, cooling
- \rightarrow readout, pattern recognition

Silicon detector for inner part of downstream tracking stations

Staged approach:

- \rightarrow "small" Inner Tracker for LS 3 (Upgrade Ib)
- \rightarrow full-size Middle Tracker for LS4 (Upgrade II)

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denvsenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

Design study for internal review

 \rightarrow 23 authors from 9 institutes

→ size and layout

- \rightarrow detector technology
- \rightarrow mechanics, cooling
- \rightarrow readout, pattern recognition

Size and layout determined by occupancies and radiation damage in surrounding SciFi Tracker

 \rightarrow 3 m² per detection layer \rightarrow 18 m² for six detection layers

 \rightarrow largest silicon detector built for LHCb so far

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denvsenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (45/53) O. Steinkamp

Design study for internal review

 \rightarrow 23 authors from 9 institutes

 \rightarrow size and layout

→ detector technology

 \rightarrow mechanics, cooling \rightarrow readout, pattern recognition

Promising technology: HV-CMOS pixel detectors

- \rightarrow pioneered by mu3e at PSI, (ATLAS phase II upgrade)
	- \rightarrow time resolution \leq 10 ns achieved in mu3e
	- \rightarrow sufficiently radiation hard

 \rightarrow low power consumption (0.3 W/cm²)

LHCD

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denysenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

Design study for internal review

 \rightarrow 23 authors from 9 institutes

 \rightarrow size and layout

 \rightarrow detector technology

→ mechanics, cooling

 \rightarrow readout, pattern recognition

Promising technology: HV-CMOS pixel detectors

 \rightarrow pioneered by mu3e at PSI, (ATLAS phase II upgrade)

 \rightarrow time resolution \leq 10 ns achieved in mu3e

 \rightarrow sufficiently radiation hard

 \rightarrow low power consumption (0.3 W/cm²)

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denvsenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

Design study for internal review

 \rightarrow 23 authors from 9 institutes

 \rightarrow size and layout \rightarrow detector technology

 \rightarrow mechanics, cooling

→ readout, **pattern recognition**

Occupancy < 1 % for pixel size of 100 × 500 μm²

 \rightarrow c.f. 80 × 80 µm² for mu3e, 50×150 µm² for ATLAS phase II

Expect biggest challenge to be matching between upstream and downstream

 \rightarrow combinatorics depend on track density, not occupancy **LHCO**

╟╫╫╢║║║║║║

VeloPixel

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denvsenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

Zbending

UT

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (48/53) O. Steinkamp

Sci-Fi

 \mathbf{z}

Design study for internal review

 \rightarrow 23 authors from 9 institutes

 \rightarrow size and layout

 \rightarrow detector technology

 \rightarrow mechanics, cooling

→ readout, **pattern recognition**

Occupancy < 1 % for pixel size of 100 × 500 μm²

 \rightarrow c.f. 80 × 80 µm² for mu3e, 50×150 µm² for ATLAS phase II

Expect biggest challenge to be matching between upstream and downstream

 \rightarrow combinatorics depend on track density, not occupancy

LHCb-INT-2019-007 February 14, 2019

Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

Thomas Ackernley⁴, Alexander Bitadze¹, Themis Bowcock⁴, Irene Cortinovis^{3,10}, Vadym Denvsenko³, Laurent Dufour⁷, Lars Eklund⁸, Stephen Farry⁴, Lucia Grillo¹, Christian Joram⁷, Blake Leverington⁸, Yunlong Li⁶, Michael McCann⁹, Dónal Murray¹, Matthew Needham², Preema Pais⁵, Chris Parkes¹, Mitesh Patel⁹, Olaf Steinkamp³, Ulrich Uwer⁸, Eva Villela⁴, Joost Vossebeld⁴, Zhenzi Wang³

Explore and investigate novel algorithms

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (49/53) O. Steinkamp

Upgrade II: Timeline

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (50/53) O. Steinkamp

Summary

Upgrade I in LS2 (now):

 \rightarrow factor 5 in luminosity \rightarrow full software trigger at 30 million events / s

 \rightarrow detectors with finer granularity and 40 MHz readout

Upgrade Ib in LS3 (around 2025):

 \rightarrow overall consolidation \rightarrow e.g. silicon Inner Tracker

Upgrade II in LS4 (around 2030):

 \rightarrow another factor 5-10 in luminosity

 \rightarrow detectors with 4D resolution (space and timing) \rightarrow radiation hardness

 \rightarrow pattern recognition algorithms

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (51/53) O. Steinkamp

Summary

software \rightarrow detectors with finer granularity and 40 MHz readout and 40 MHz r → detector technologies wasa dengin argoman **Good initial ideas, UPGRADE IN LOCAL CONDUCT** \sim another factor \sim 10 in luminosity \sim (space and timing) dness \rightarrow pattern recognition algorithms **Tough, interesting challenges → reconstruction algorithms lots more work needed New collaborators welcome !**

Upgrade I in LS2 (now)

 \rightarrow factor $\overline{}$ in $\overline{}$ in

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (52/53) O. Steinkamp

Summary

Upgrade I in LS2 (now):

 \rightarrow detectors with 4D resolution (space and timing) \rightarrow radiation hardness

 \rightarrow pattern recognition algorithms

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (53/53) O. Steinkamp

Upgrade I: Luminosity

Increase instantaneous luminosity 4 × 1032 → 2 × 1033 cm-2 s -1

Remember: LHCb operates at lower luminosity than ATLAS/CMS

 \rightarrow achieved by colliding beams with small relative offset in LHCb interaction point

 \rightarrow higher luminosity for LHCb does not require LHC upgrade

(very old plot, but illustrates the point**)**

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (55/53) O. Steinkamp

Upgrade I: Trigger

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (56/53) O. Steinkamp

Upgrade I: Trigger/Reconstruction

Upgrade I: Track Reconstruction

Upgrade I: Track Reconstruction

26 layers of silicon pixel detectors → VeloPix **Closer to beam** \rightarrow active area 8.2 \rightarrow 5.1 mm **Less material** \rightarrow thinner sensors (300 \rightarrow 200 µm) \rightarrow thinner aluminium foil (300 \rightarrow 150-250 µm)

Upgrade I: Upstream Tracker

4 layers of silicon micro-strips \rightarrow 190 and 95 µm pitch \rightarrow 10 and 5 cm in length **(**finer granularity in inner region**)**

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (61/53) O. Steinkamp

Upgrade I: Downstream Tracker

3 stations of scintillating fibres, four detection layers each \rightarrow 2.5 m long, 250 µm diameter \rightarrow read out with silicon photomultipliers

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (62/53) O. Steinkamp

LHCD **Upgrade Ib: Low-Momentum Tracking**

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (63/53) O. Steinkamp

LHCD **Upgrade Ib: Low-Momentum Tracking**

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (64/53) O. Steinkamp

Upgrade Ib: TORCH

"Time Of interally Reflected CHerenkov light" → 250 cm long, 1 cm thin slabs of quartz glass **→ PID below 10 GeV/c → time resolution of ≈ 15 ns per track**

2 April 2019 CTD/WIT 2019 – LHCb Upgrade II (65/53) O. Steinkamp

