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Abstract. We detail here the convergence properties of a new model-
independent imaging method, the Lévy expansion, that seems to play an im-
portant role in the analysis of the differential cross section of elastic hadron-
hadron scattering. We demonstrate, how our earlier results concerning the Odd-
eron effects in the differential cross-section of elastic proton-proton and proton-
antiproton scattering as well as those related to apparent sub-structures inside
the protons were obtained in a convergent and stable manner.

1 Introduction

The model-independent Lévy imaging technique [1–3] has recently become a useful, simple
and unambiguous tool for extracting the physics information from the elastic hadron-hadron
scattering data in a statistically acceptable manner. The power of this technique has been first
demonstrated in our earlier analysis of the most recent data sets from the total, elastic and dif-
ferential cross-section measurements in elastic pp collisions

√
s = 13 TeV performed by the

TOTEM Collaboration at the Large Hadron Collider (LHC) (for a few most recent TOTEM
publications, see Refs. [4–7]). These TOTEM results, and in particular the comparison of the
differential cross-section of elastic proton-proton scattering at

√
s = 2.76 TeV with D0 re-

sults on elastic proton-antiproton scattering at 1.96 TeV [8] indicate several Odderon effects,
as discussed recently in Refs. [1, 7]

In particular, indirect signatures of the Odderon exchange in differential elastic pp and
pp̄ cross-sections have been identified by using the Lévy imaging technique, also known
as the model-independent Lévy expansion method. Another important implication of this
technique is that it enables to probe the internal structure of the proton by identifying its
smaller substructures imprinted in the behaviour of the t-dependent elastic slope B(t). In
particular, the proton substructures of two distinct sizes in the low (a few tens of GeV) and
high (a few TeV) energy regimes, respectively, have been found and discussed in Refs. [1–3].
A remarkable feature of the Lévy expansion of the elastic amplitude is that the diffractive cone
is described fairly well by the Lévy-stable (or stretched exponential) distribution in terms of
two free parameters only, the Lévy scale parameter R characterising the length-scale of the
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scattered systems, and the exponent α = αL/2. One of the conventions of elastic scattering is
to parameterize the diffractive cone with an exponential behaviour, corresponding to α = 1,
i.e. to a Gaussian scattering amplitude in the impact parameter space. The exponent αL = 2α
is known as the Lévy index of stability providing a small but significant deviation of the
cone shape from the classically expected Gaussian shape. A detailed presentation of this
sophisticated new imaging technique is detailed in Ref. [1], while for a brief summary of the
main results, see Refs. [2, 3].

Given a power of the Lévy imaging technique operating with very few initial assumption
for description of a large amount of data, a natural question arises about the stability and
convergence of the associated Lévy series that are used for mapping the elastic amplitude
with this method. In this contribution, we attempt to give a short description of the main
results of the method, as well as demonstrate its convergence properties for a large variety
of data sets at different scattering energies. The main results were summarized recently in
two short contributions [2, 3], however the convergence properties of this model-independent
Lévy expansion method were not yet detailed in the literature before.

2 Model-independent Lévy expansion of the scattering amplitude

In order to study systematically the deviations of a given data set on the elastic cross section
dσ/dt, differential in four-momentum transfer t = (p1 − p3)2 < 0, from an approximate
Lévy-stable shape apparent at larger t beyond the diffractive cone, we adopt the Lévy series
expansion for the elastic amplitude Tel(∆), ∆ =

√
|t|, represented in terms of a complete

orthonormal set of Lévy polynomials (with complex coefficients) and a Lévy weight function
w(z|α) = exp(−zα) [1, 2]. While the Lévy polynomials exhibit an oscillatory behaviour in
dimensionless scaling variable z = |t|R2, the differential cross-section of elastic scattering is
proportional to a hit distribution which is, by construction, a positively-definite function of t,
i.e.

dσ
dt

=
1

4π
|Tel(∆)|2 , Tel(∆) = i

√
4 π Aw(z|α)

1 + ib0 +

∞∑
i=1

cili(z|α)

 , (1)

where c j = a j + ib j are the complex coefficients of the Lévy expansion ( j = 0, 1, ..., ) and
a0 = 1 fixed so that the overall normalization can be absorbed into the coefficient A. This
simple expansion form indicates three underlying physical assumptions, with further details
explained below.

1. The leading order behaviour corresponds to a nearly exponential (in other words, a
non-exponential) distribution. This leading order behaviour is dσ

dt = A exp
[
−(R2|t|)α

]
,

which is consistent with the TOTEM observation of a non-exponential low-|t| behaviour
of the differential cross-section of elastic pp scattering at

√
s = 8 TeV [9]. In the limit

of α→ 1, the exponential cone behaviour is recovered, with limα→1
dσ
dt = A exp [−B|t|]

with B = R2.

2. The leading order scattering amplitude is assumed to be imaginary, with vanishing
real part, corresponding to b0 = 0 and to all the c j expansion coefficients vanish for
j ≥ 1. Such an assumption can be relaxed by assuming that b0 can be different from
zero, but so far all the fits that we have performed, we have found b0 to be consistent
within errors with zero, so we have fixed this possible expansion parameter to zero,
accordingly. The possibility of relaxing b0 to be different from zero is investigated in
Fig. 1 and it is briefly discussed there in the context of the

√
s = 13 TeV elastic pp

scattering data.



3. For predominantly imaginary scattering amplitudes with b0 = 0, the existence of a
non-vanishing real to imaginary ratio ρ(t), in particular, ρ0 = ρ(t = 0), is mapped one-
to-one to the existence of a diffractive interference structure, i.e. a diffractive minimum
in elastic scattering cross section. Given that for t , 0 the Lévy expansion is an ana-
lytic function, and that at the first diffractive minimum the imaginary part is expected
to vanish, the phase of the scattering amplitude can be uniquely determined with the
Lévy expansion method up to an overall sign, that can be fixed from measurements at
the Coulomb-nuclear interference region. This implies that the ρ0 parameter can be
determined from the Lévy expansions if the fit range includes a diffractive minimum.

)2-t (GeV

0 0.5 1 1.5 2 2.5 3 3.5 4

)2
/d

t (
m

b/
G

eV
σd

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310
pp: TOTEM - 13 TeV

Levy expansion
R  = 0.7216 fm

A -2 = 362 mbGeV
α  = 0.9032 

1a  0.0001233 ± = -0.3184 

1b  0.0008139 ± = 0.07059 

2a  5.738e-05 ± = 0.05673 

2b  0.0001848 ± = -0.03504 
3a  = -0.01934 
3b  = 0.02269 

4a  = 0.006749 

4b  = -0.002157 

N  0.0006614 ± = 1.085 
0b  0.002692 ± = 2.126e-05 totσ  = 110.6 mb           

elσ  0.023 mb± = 31.4 
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Figure 1. Fourth order Lévy expansion to
√

s = 13 TeV pp elastic scattering data using Eq. (1) with
a b0 as a free parameter. The comparision to the TOTEM data from Ref. [6] resulted in a statistically
acceptable description within quadratically added statistical and systematic errors. The fit parameter b0

was within errors found to be zero, hence it was fixed to zero in the subsequent analysis.

The set of orthonormal polynomials are denoted above by
{
l j(z|α)

}∞
j=0

, while the set of

orthogonal, but unnormalized Lévy polynomials are denoted by
{
L j(z|α)

}∞
j=0

. These unnor-
malized Lévy polynomials were introduced in Refs. [10, 11], to analyze nearly Lévy shaped
Bose-Einstein correlations in two-particle Bose-Einstein correlations or particle interferom-
etry. Their orthogonality is defined with respect to the weight function w(z|α) = exp (−|z|α)
where the dimensionless variable z = |t|R2. The weight function acts simultaneously as the
leading order approximate form of the measured distribution, and at the same time also as
a measure in an abstract Hilbert space, where the convergence properties of the Lévy series



can be investigated, following the general ideas proposed in Ref. [12]. Thus, this expansion
method allows to keep the number of expansion coefficients at the minimal necessary level.

The orthonormality of the Lévy polynomials ln(z |α) is expressed as∫ ∞

0
dz exp(−zα) ln(z |α) lm(z |α) = δn,m . (2)

These orthonormalized polynomials l j(z |α) are proportional to the orthogonal – but unnor-
malized — Lévy polynomials, L j(z |α),

l j(z |α) = D−
1
2

j (α) D−
1
2

j+1(α) L j(z |α) , for j ≥ 0, (3)

which in turn are given by a Gram-Schmidt orthogonalization procedure as

L0(z |α) = 1, (4)

L1(z |α) = det
(
µ0,α µ1,α

1 z

)
, (5)

L2(z |α) = det

 µ0,α µ1,α µ2,α
µ1,α µ2,α µ3,α

1 z z2

 , . . . etc . (6)

introduced previously in Ref. [10]. The Gram-determinants of order j, D j ≡ D j(α) defined
as

D0(α) = 1, (7)
D1(α) = µ0,α, (8)

D2(α) = det
(
µ0,α µ1,α
µ1,α µ2,α

)
, (9)

D3(α) = det

 µ0,α µ1,α µ2,α
µ1,α µ2,α µ3,α
µ2,α µ3,α µ4,α

 , . . . etc. (10)

In the above expressions,

µn,α =

∫ ∞

0
dz zn exp(−zα) =

1
α

Γ

(
n + 1
α

)
, Γ(x) =

∫ ∞

0
dz zx−1e−z , (11)

where Γ(x) the Euler’s gamma function.

3 Observables

Observables can be calculated from Eq. (1). In what follows, we present the results for the
fixed b0 = 0.

The total cross-section is obtained, using the optical theorem, as follows

σtot ≡ 2 Im Tel(∆ = 0) = 2
√

4πA

1 +

∞∑
i=1

aili(0|α)

 . (12)

The elastic cross-section, σel can be obtained using the orthonormality, Eq. (2) as

σel =

∫ ∞

−t=0
dt

dσ
dt

=
A
R2

 1
α

Γ

(
1
α

)
+

∞∑
i=1

(a2
i + b2

i )

 . (13)

The following t-dependent functions have also been analyzed:
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Figure 2. Partial sums from leading order to fourth order Lévy expansion, as compared to the TOTEM
data from Ref. [13] at

√
s = 7 TeV pp (left) and to D0 data from Ref. [8] on pp elastic scattering at

√
s = 1.96 TeV (right) elastic scattering.

• The four-momentum transfer dependent elastic slope B(t), defined as

B(t) =
d
dt

(
ln

dσ
dt

)
. (14)

• The four-momentum dependent ρ(t), defined as the ratio of the real to imaginary parts of
Tel

ρ(t) ≡
Re Tel(t)
Im Tel(t)

= −

∑∞
i=1 bili(z|α)

1 +
∑∞

i=1 aili(z|α)

∣∣∣∣∣∣
z=tR2

. (15)

The value of ρ(t) at t = 0 can be measured in the Coulomb-nuclear interference region and
in this work we refer to this value as ρ0 = ρ(t = 0).

• The first definition for the nuclear phase φ1(t), that can be introduced as

Tel(t) = |Tel(t)| exp
[
iφ1(t)

]
. (16)

An alternative definition was used recently by the TOTEM collaboration, corresponding to
the principal value of the nuclear phase, that reads as

φ2(t) =
π

2
− arctan ρ(t). (17)

If the nuclear phase φ1(t) satisfies 0 ≤ φ1(t) ≤ π, then the above two definitions are equiv-
alent. However, for complex arguments, arctan(z) has branch cut discontinuities on the
complex plane hence in general the two definitions φ1(t) and φ2(t) are inequivalent, as
detailed recently in Ref. [1]. In the present work we plot the principal value of the nu-
clear phase, that corresponds to the definition with Eq. (17), which by definition satisfies
0 ≤ φ2(t) ≤ π.

• We shall also study the convergence properties of the shadow profile function,

P(b) ≡ 1 −
∣∣∣e−Ω(b)

∣∣∣2 = [2 − Im tel(b)]Im tel(b) − [Re tel(b)]2 , (18)

where Ω(b) is the complex-valued opacity function. These functions can be represented in
terms of the impact-parameter dependent elastic amplitude tel(b), see for example Ref. [1]:

tel(b) =

∫
d2∆

(2π)2 e−i∆b Tel(∆) = i
[
1 − e−Ω(b)

]
, ∆ ≡ |∆| , b ≡ |b| . (19)



4 Convergence properties

The Lévy series (1) enables one to precisely and model-independently characterise the t-
dependence of the elastic cross-section dσ

dt not only in the diffractive cone, but also signifi-
cantly away from it, namely, in a vicinity of the diffractive minimum as well as beyond it in
the large t regime (diffractive tail). This is achieved by a fit of Eq. (1) to the existing data
controlling the fit quality and the convergence of the Lévy ansatz to the data points in each
particular region of 4-momentum transfers.

We adopted the following procedure: a fourth order Lévy polynomial fit was performed
to the measured dσ

dt data for elastic pp scattering. The expansion coefficients (ai, bi) are
determined for i = 1, ..., imax = 4. On the subsequent plots, the contributions are summed
only up to a given order j ≤ imax. Thus a procedure not unlike to a Taylor series expansion is
defined and the inclusion of each subsequent order enables us to see how the series converges
to the measurements on a more and more extended domain. As described in Ref. [1], good
quality fits of elastic pp scatterings were achieved for almost all of the published data sets,
using imax = 4. To fit the pp̄ datasets, that were measured in a more limited t-range and with
reduced statistics, third order Lévy expansions with imax = 3 were sufficient.
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Figure 3. The shadow profile (left) and the elastic slope (right) with partial sums from leading order
to fourth order Lévy expansion, fitted to the TOTEM data at

√
s = 13 TeV pp elastic scattering.

As we demonstrate below, these fits converge rather fast to the data when increasing the
order of the Lévy expansion from zeroth to the fourth order.

As an example of the convergence property, in Fig. 2, we illustrate partial sums contribu-
tions to the Lévy series (1) for the differential elastic cross-section against the TOTEM 7 TeV
(left) and D0 1.96 TeV (right) data sets. As Figure 2 indicates, the zeroth order term fixes the
total cross-section, i. e. the contribution at t = 0 only, it apparently insufficient even at small
t to approximate the shape of the distribution. The first order Lévy expansions is required to
describe B(t = 0) and the beginining of the diffractive cone. Although the first order contri-
bution exhibits a structure with a diffractive dip, the position and the size of the dip is not yet
picked up correctly. The second order partial sum is needed for getting the position of the
diffractive minimum correctly, while the third order term fixes the position and the magnitude
of the diffractive maximum. The fourth order terms are necessary to describe the data also
well beyond the diffractive minimum and maximum.

While at zeroth order the real part of the elastic amplitude is found to be vanishing in
our current approach, it may get (re)generated starting from the first order partial sums, and
appears to be necessarily small. Remarkably, the considered quality fits shown for example
in Fig. 1 for the 13 TeV elastic pp scattering data of TOTEM enable us to reproduce the
measured real-to-imaginary parts ratio ρ(t) at t = 0 with an excellent precision.
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√
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In Figs. 3, 4 and 5 we show the convergence properties of the shadow profile (left panels)
and the elastic slope (right panels) for Lévy fits of the TOTEM data at 13 TeV, 7 TeV (pp col-
lisions) and D0 data at 1.96 TeV (pp̄ collisions) at different consecutive orders as previously
illustrated in Fig. 2, respectively.
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Figure 5. The shadow profile (left) and the elastic slope (right) with partial sums from leading order
to third order Lévy expansion fitted to the D0 data at

√
s = 1.96 TeV pp̄ elastic scattering.

The convergence of partial sums contributions to the shadow profile turns out to be faster
than that for the elastic slope. Namely, already starting from the second Lévy order the result
for P(b) remains fairly stable at large b for all the considered data sets, but higher order terms
are needed for a precise result at small values of b. For pp collisions TOTEM data at 13
and 7 TeV, the behavior of the elastic slope stabilizes in a vicinity of the diffractive dip/bump
structure only at third Lévy order, in consistency with the observations made from Fig. 2. So,
for all TOTEM data sets the minimal preferred order enabling to extend the data description
significantly beyond the dip/bump structure is the fourth. Due to a lack of data in the large-t
region for pp̄ collisions at 1.96 TeV, we limit ourselves to the third order that provides the
results for B(t) sufficiently stable in the “shoulder” region.

Finally, in Fig. 6 we demonstrate the corresponding convergence property of φ2(t), the
principal value of the nuclear phase for

√
s = 13 TeV pp elastic scattering. We observe

that there is no significant difference between the third- and the fourth-order Lévy expansion
results indicating a good stability property of this function in the range of the diffractive
minimum, where φ2(tdip) = π.



Figure 6. The principal value of the nuclear phase φ2(t) (in units of π) with the contributions of the
partial sums from the leading order to fourth order Lévy expansion, as fitted to the TOTEM pp elastic
scattering data at

√
s = 7 TeV (left panel) and at

√
s = 13 TeV (right panel), respectively. Note the

stability of the point φ2(t) = π for increasing order of the expansion, and for changing the energy of the
collision.

5 Odderon

The concept of Odderon exchange corresponds to a crossing-odd term in the pp elastic scat-
tering amplitude. This concept was introduced by Lukaszuk and Nicolescu in 1973 [14].

The recent TOTEM results [4, 5] generated a burst of high level and intense theoretical
debate about the correct interpretation of these data, see Refs. [15–27]. All possible extreme
views were present among these first interpretative papers, including claims for a maximal
Odderon effect [23] and claims of lack of any significant Odderon effects, Refs. [20, 27]. A
review of recent theoretical developments on possible Odderon effects is given in Refs. [28,
29].

At sufficiently high energies, the relative contribution from secondary Regge trajectories
is suppressed, as they decay as negative powers of the colliding energy

√
s. The vanishing

nature of these Reggeon contributions offers a direct way of extracting the Odderon as well
as the Pomeron contributions, T O

el (s, t) and T P
el(s, t), respectively, from elastic scattering data

at sufficiently high colliding energies. Thus, the Odderon effects are expected to be detected
clearly with measurements in the TeV energy range [30, 31].

In Ref. [32], the authors also argued that the LHC energy scale is already sufficiently
large to suppress the Reggeon contributions, and they presented the (s, t) dependent contribu-
tions of Odderon exchange to the differential and total cross-sections at LHC energies. That
analysis relied on a model-dependent, phenomenological extension of the Phillips-Barger
model [33], that focused on fitting the dip region of elastic proton-proton scattering, but did
not analyze in detail the tails and the cone region. The fitted model parameters of proton-
proton and proton-antiproton reactions were extrapolated to exactly the same energies, and
the results were recently confirmed and extended in Ref. [34]. Similarly, Ref. [22] also ar-
gued that the currently highest LHC energy of

√
s = 13 TeV is sufficiently high to see various

Odderon contributions. In particular, the Pomeron and the Odderon contributions can be ex-
tracted from the forward scattering amplitudes at sufficiently high energies as discussed, for
example, in Refs. [1, 32]. Elastic proton-proton and proton-antiproton scattering data were
not measured at the same energy in the TeV region so far. However, we have identified two
robust-looking features of the already performed measurements, that provided not only an
Odderon signal, but they also clearly indicated the existence of two different sizes for some
sub-structures inside the protons, as imaged by elastic proton-proton scattering.



In particular, we found that clear, but indirect signals of Odderon effects are present in
the difference between the t-dependent nuclear slopes of elastic proton-proton and proton-
antiproton scattering [1, 3]. Our results for the existence of a well-defined and negative
minimum of the B(t) functions for pp reactions and a lack of significantly negative values
of B(t) in pp reactions at the TeV region has recently been confirmed using the maximal
Odderon model of Martynov and Nicolescu in Ref. [35]. From the experimental point of view,
B(t) is straightforward to measure and can be used for an experimental search for Odderon
effects independently of Lévy expansion and imaging results [36].

In addition, we have also identified a clear difference between the principal values of
the nuclear phase, φ2(t) of proton-proton and proton-antiproton collisions in the TeV energy
range [1, 3]. However, the t-dependence of the nuclear phase is rather difficult, close to im-
possible to access experimentally, in particular independently of the Lévy imaging methods.

Both of these Odderon effects are obtained with a convergent series expansion, and are
stable for higher order Lévy expansion coefficients, as indicated on the right panels of Figs. 3,
4 and 5 in case of the nuclear slope B(t) and on Fig. 6 in case of the principal value of the
nuclear phase φ2(t).

6 Summary and conclusions

Our analysis in Refs. [1–3] has been primarily motivated by the search for Odderon effects.
We have identified two independent Odderon effects in TOTEM differential cross-section
measurements. The comparision of B(t) for pp and pp reactions at exactly the same

√
s

in the TeV region is one of the most promising channel for the experimental observation of
Odderon effects.

One of the most obvious but nevertheless striking feature of the elastic pp scattering at
TeV energies is that the differential cross-section has a unique, single minimum. In multiple
diffractive scattering theory, single diffractive minimum may appear in symmetric collisions
of composite objects if and only if the colliding systems have two internal substructures [37].
This suggests that the quark-diquark picture of elastic proton-proton collisions, where a di-
quark that acts as a single unit in elastic scattering even at the LHC energies, formulated in
terms of the real extended Bialas-Bzdak model of elastic proton-proton scattering [38, 39],
may indeed capture correctly some of the most fundamental properties of elastic proton-
proton collisions at the LHC energies.

One of our most surprising result was a clear-cut evidence for two different sub-structures
inside the protons, as detailed in Ref. [1]. We determined the significance of these substruc-
ture effects and estimated the sizes of these sub-structures and their contributions to the total
and elastic proton-proton cross-section in Ref. [2].
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[2] T. Csörgő, R. Pasechnik and A. Ster, arXiv:1811.08913 [hep-ph]
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