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Abstract

A new method for computing the density of states in nuclei using an extrap-
olated form for the tri-diagonal matrix obtained from the Lanczos method is
presented. This can be applied to configuration-interaction calculations with
fully realistic nuclear Hamiltonians that are known to provide an excellent de-
scription of the low-lying structure of nuclei. This extrapolated Lanczos ma-
trix (ELM) approach provides an accurate computation of the density of states
up to the neutron separation energy for states that lie within the configura-
tion space. Comparisons between theory and experiment for the average level
density for p-wave resonances for iron isotopes using the 1p−0f -shell model
space and realistic nuclear Hamiltonians are shown. Also we show results for
J-dependence of the level density and the total level density for negative-parity
states.

The density of states is a fundamental property of nuclear structure that plays an important role
in nuclear reactions. Of particular importance is the radiative capture of neutrons on short-lived nuclei,
which through the r-process [1] in supernovae and neutron-star mergers [2], are thought to be responsible
for the synthesis of the elements heavier than iron. Ideally, these reactions can be measured or constrained
by experiment. Unfortunately, in most cases, the target nuclei are so short lived that direct measurement
is infeasible, and the only alternatives are to rely on theoretical calculations or on indirect measurements,
such as surrogates [3], which themselves reliant on theoretical input. Theoretical modeling requires an
in-depth, and accurate description of the reaction processes, and in particular the density of states at or
near the neutron decay threshold.

We report on a new microscopic framework to provide an accurate estimate of the level density
for a variety of nuclei using an extension of the configuration-interaction approach with fully realistic
nuclear Hamiltonians that are known to provide an excellent description of the low-lying structure of
nuclei. We will exploit a universal property of the Lanczos algorithm, which will allow us to extrapolate
the tri-diagonal Lanczos matrix elements beyond what is computationally viable, to accurately estimate
the density of states within the shell-model configuration space. We demonstrate that the information
needed to perform the extrapolation can be extracted from just the lowest 100 Lanczos iterations, thus,
leading to a computationally efficient way to compute the density of states.

The principal goal behind nuclear-structure models is to find energy eigenvalues and wave func-
tions for the nuclear Hamiltonian within a well-defined Hilbert space. The nuclear shell model starts
with a set ofN many-body Slater determinants, | ψi〉, spanning the space to expand the full solution, i.e.,
| Ψ〉 =

∑
i ci | ψi〉. The coefficients ci are found by computing the matrix element Hji = 〈ψj | H | ψi〉

and diagonalizing the resulting symmetric matrix. One of the most effective methods to find the eigen-
values is the Lanczos algorithm [4], which starts with an arbitrary vector | v1〉 in the Hilbert space, and
through successive operations of Ĥ , Hji is reduced to tri-diagonal form with diagonal matrix elements,
α, and symmetric off-diagonal matrix elements, β. The energies and observables do not depend on the
signs of the β and they can be taken as positive.
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Fig. 1: TDME for 48Cr, J = 0+, is the pf model space. The black lines are the results of the exact calculation.
The red lines correspond to the simplest approximation given by αi = H1 and β2

i = −(σ2/2)zi.
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Fig. 2: (top) Tri-diagonal matrix elements (TDME) for 48Cr, J = 0+, in the pf model space. The black lines are
the results of the exact calculations (same as in Fig. 1). The red lines are based on the ELM(100). (bottom) Level
density with the exact calculation (black) compared to ELM(100) approximation (red).
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Fig. 3: Levels up to 3 MeV in excitation obtained with the GPFX1A Hamiltonian in the full pf model space
are shown in the right-hand side. The length of each line indicates the J value. These are compared with the
experimental energies from NNDC on the left-hand side. The blue lines are states with negative parity, and the red
line are states with positive parity. If the spin-parity is uncertain it is shown as a black circle on the y axis.

Of particular interest is the behavior of the tri-diagonal matrix elements (TDME) with increasing
iterations. The results for 48Cr are shown in Fig. 1. After several iterations, the diagonal elements, αi,
are roughly constant and nearly equal to the first momentH1 = Tr[Ĥ] = (1/Ndim)

∑
iHii, whereNdim

is the matrix dimension. At the same time, the off-diagonal elements, βi, generally decrease to zero as
i → Ndim, and exhibit a Gaussian-like behavior βi =

√
−(σ2/2) ln(i/Ndim) [6]. We rewrite this as

β2i = b1zi, where
zi = ln(i/Ndim) (1)

and b1 = −(σ2/2) and i is the iteration number. Thus, as in Fig. 1, when i is plotted on a log scale vs
β2i the results are close to a straight line for large i values.

At its core, the Lanczos algorithm is a moment method; efficiently computing 2n moments of Ĥ
with respect to | v1〉 after n iterations. With | v1〉 = (1/

√
Ndim)

∑
i φi | ψi〉, where φi is a random

phase, we have

α1 =
1

Ndim

∑

i

Hii +
∑

i 6=j

φiφj
Ndim

Hji. (2)

Thus, moments of Ĥ can be computed stochastically by selecting several random initial pivots and
averaging. We find that for most cases with large Ndim, the remainder in Eq. 1 is generally small and
of the order 1 keV. Under this condition, good estimates for the first two moments of Ĥ can be extracted
from just the first Lanczos iteration, namely

H1 ≈ α1 and M2 = σ2 ≈ β21 (3)

As an example, we consider the exact results for 48Cr, Jπ = 0+, obtained in the proton-neutron pf basis.
The states contain all possible values of isospin T . The dimension is Ndim = 41, 355. The calculations
were carried with the NuShellX [7] code, and with GPFX1A Hamiltonian [8]. The results for the exact
results for the TDME for are shown in Fig. 1. They are compared with extrapolations based on αi = H1

and β2i = −2M2zi. They give an approximation to the exact results above about 1000 iterations.
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Fig. 4: (top) TDME for 57Fe, Jπ = 3/2− in the pf model space. The black lines are the results of the exact
calculations. The red lines are based on the ELM(100). (bottom) Level density with the exact calculation (black)
compared to ELM(100) approximation (red).
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Fig. 5: The cumulative number of levels in 57Fe. The theoretical results for negative-parity states are shown by the
black line. The experimental data from NNDC for all levels (both parity) is shown by the red line.
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Fig. 6: Level density for negative parity states calculated for 57Fe. The lines show the cumulative level density up to
the value of 2Jmax as indicated on the right-hand side. The red dot is the `=1 experimental value for Jmax = 3/2−

at the neutron separation energy of Ex = Sn = 7.65 MeV [5]. The inset shows the percentage contribution to the
total level density at Sn for each J . The red cross is the `=0 experimental value for Jmax = 1/2+ [5].
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Fig. 7: Level density for negative parity states calculated for 55Fe up to Jmax = 3/2−. The lines show the
cumulative level density up to the value of 2Jmax as indicated on the right-hand side. The red dot is the `=1
experimental value [5] for Jmax = 3/2− at the neutron separation energy. The red cross is the `=0 experimental
value [5] for Jmax = 1/2+.
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Fig. 8: Level density for positive parity states calculated for 58Fe up to Jmax = 2. The lines show the cumulative
level density up to the value of Jmax as indicated on the right-hand side. The red dot is the `=1 experimental
value [5] for Jmax = 2+ at the neutron separation energy. The red cross is the `=0 experimental value [5] for
Jmax = 1−.
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Fig. 9: Level density for negative parity states calculated for 57Fe up to 2Jmax = 3. The lines show the cumulative
level density up to the value of 2Jmax as indicated on the right-hand side. The red dot is the `=1 experimental
value [5] for Jmax = 3/2− at the neutron separation energy. The red cross is the `=0 experimental value [5] for
Jmax = 1/2+.
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The next step is to improve the extrapolation by adding adding higher polynomials in zi. There
are several options for this, but based on the comparison to the exact calculations we propose

αi = a0 + a2 z
2
i and β2i = b1 zi + b2 z

2
i . (4)

The first and second moments from these equations are

H1 = a0 + 2a2 and M2 = −2b1 + 4b2 (5)

(the contribution of a2 to M2 can be neglected). From the exact results in Fig. 1 one observes that
the coefficients of the two extra terms can be obtained from the exact calculation in the region around
if = 75. We calculate the average < α > and < β2 > over the interval of iterations from 50 to 100.
Then from the equations

α1 = a0 + 2a2 and < α >= a0 + a2 z
2
f , (6)

we obtain a0 and a2. And from the equations

β21 = −2b1 + 4b2 and < β2 >= b1 zf + b2 z
2
f , (7)

we obtain b1 and b2. The results for 48Cr are shown in Fig. 2. Our extrapolated Lanzcos matrix method,
ELM(ic), is to use the exact TDME up to some value ic, and then to use the extrapolations based on the
ELM above ic. This large tri-diagonal matrix is then diagaonalized to obtain an approximation for the
energies. For example, if we want 1000 energies in the approximation we need to diagonalize the ELM
with a dimension of about dimension of about 15,000. The results for ELM(100) for the level density of
48Cr are shown in the bottom of Fig. 2 and compared to the exact results. The agreement between the
two is excellent.

Next we consider the case of 57Fe. The NuShellX code is usually used with a Hamiltonian such
as GPFX1A to study the low lying states. In full pf shell basis all states have negative parity and the M -
scheme dimension is 455,078,656. In the proton-neutron basis of NuShellX this M -scheme dimension
is divided among J-scheme dimensions for all possible J values. For the study of low-lying states
one typically needs to have converged eigenvectors for the lowest 10 states and this requires about 150
Lanczos iterations for each J . The low-lying level scheme obtained from this calculation is compared
to experiment in Fig. 3. There is a good agreement with theory with known negative parity states. The
positive parity states start with the 9/2+ at 2.46 MeV.

Our goal with the ELM method is to use the information obtained during the calculation for 10
converged low-lying states for each J value to make an extrapolation for the level density for up to several
thousand states. We consider the case for Jπ = 3/2− with a dimension ofNdim = 25, 743, 302. In order
to compare the ELM method with a more complete calculation, we carried out about 1000 iterations. The
results are shown in Fig. 4, where the TDME for the 1000 iterations (black) is compared to the ELM(100)
approximation (red). The black line in the bottom panel shows the result of diagonalizing the TDME
with a dimension of 1000. It shows the expected result that about 70 levels are converged in energy.
Above that, the states no longer increase in density, but become equally spaced (the “picket-fence" type
spacing). The ELM(100) level density follows the exact result up to about 70, but after that it continues
to increase nearly exponentially.

We can compare the level density to experiment in two ways. First for the cumulative number
of levels. The theoretical results are compared to experiment in Fig. 5. As expected, the theory and
experiment agree well up to about 2 MeV. From 2-4 MeV there are more levels in experiment. That can
be interpreted as the extra contribution of positive parity states. Above 6 MeV the experimental level
information is incomplete and the data fall off compared to the theory.

The other type of information is from the level densities for resonances with `=0 and `=1 obtained
from neutron scattering experiments for energies near the one-neutron separation energy. The experi-
mental values for the level spacing D0 (`=0) and D1 (`=1) are given in [5]. These are used to obtain the
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average level density, ρ` = 1/D`. For 55,57,59Fe the neutron targets of 54,56,58Fe have Ji = 0+, and the
`=1 final states are 1/2− (p1/2) and 3/2− (p3/2). For 58Fe the neutron target of 57Fe has Ji = 1/2−, and
the `=1 final states are (0,1,2)+.

The level density in 57Fe for all J− states up to 19/2− is shown in Fig. 6. The contribution to
the level density up to 15 MeV for higher J values is negligible. The calculation is in perfect agreement
with the experimental value [5] for Jmax = 3/2− at Ex = Sn = 7.65 MeV (red circle). The results for
states reached by `=1 are shown for 55Fe (Fig. 7), 58Fe (Fig. 8), and 59Fe (Fig. 9). The comparison with
experiment [5] for `=1 resonances is excellent for 55,57,58Fe. For 59Fe the experimental level density for
`=1 at Sn = 6.58 MeV is about a factor of three larger than that calculated. If the experiment is correct,
it indicates that model space must be expanded to include the the neutron 0g9/2 orbital. For all nuclei
at higher excitation energy, the experimental level density for negative-parity states must become larger
than that calculated due to the truncation to the pf model space.

For 57Fe, experimental `=0 level density for 1/2+ states (red cross) [5] is close to the calculated
level density value for the 1/2− states. This indicates that the parity ratio for the level density at this
excitation energy is near unity at Ex = 7.65 MeV. This information together with that in Fig. 5 indicates
that the positive to negative parity level density ratio increases from zero at low excitation energy to
about one at Ex = 7.65 MeV.

The calculation for the 1/2+ level density must take into account particle and hole excitations be-
yond the pf model space. For example, for 57Fe we should consider the coupling of the ν(0g9/2) particle
orbital to the calculated level density of (4,5)+ states of 56Fe, and the coupling of π(0d3/2, 1s1/2) hole
orbitals to the calculated level density of (0,1,2,3)+ states of 58Co. This is a possible future extension.

Another extension of this work will be to consider the constraints on the polynomial expansion
coefficients of Eq. 4 based upon higher moments from α2, α3, β2 . . .. There will be many applications of
this new method with regard to comparison with experimental data and other level density models. We
can compare our result to those of the moments method [9] to constrain the eta parameter in that model.
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