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Abstract
The nuclei 11Be and 11Li provide paradigmatic examples of one–and two–
neutron halo systems. Because the reaction 1H(11Li,9Li)3H is dominated by
successive transfer, one can use the quantitative picture emerging from a nu-
clear field theory description of the structure and reaction mechanism of the
above Cooper pair transfer process and of the 2H(10Be,11Be)1H and 1H(11Be,
10Be)2H reactions, to shed light on the structure of 10Li. This analysis pro-
vides important support for a parity inverted scenario with a 1/2+ virtual state
at about 0.2 MeV.

1 Introduction
Potential energy thrives on relative fixed positions of particles, fluctuations on delocalization. A quan-
titative measure of these two contrasting effects is provided in many–body systems, by the quantality
parameter q = ~2

ma2
1
|v0| , where a and v0 are the interaction range and strength, respectively. In the nu-

clear case q ≈ 0.5 (a = 0.9 fm, v0 = −100 MeV), testifying to a quantal–fluctuation–dominated regime
and thus delocalization1 which can be described at profit in terms of a mean field, shells, and magic
numbers.

2 Neutron drip lines
If neutrons are progressively added to a light normal nucleus, Pauli principle forces the system, when the
core becomes neutron saturated, to expel most of the wavefunction of the last neutrons outside to form
a halo which, because of its large size, can have lower momentum. It is an open question how nature
stabilizes such fragile objects and provides the glue to bind the halo neutrons to the core. Within this
context, the fact that 9

3Li6, 10
3 Li7, 11

3 Li8 are bound (closed shell (cs) in neutrons), unbound (one–neutron
outside cs), barely bound (Cooper pair outside cs) nuclei respectively, provides evidence of a pairing
mechanism resulting in a Cooper pair halo.

2.1 One-neutron halo
To elaborate on this issue, use is made of the bound (T1/2 = 13.76 s) one–neutron halo nucleus outside
the N = 6 closed shell, 11Be. To create a halo system one has to have an s1/2–level (no centrifugal
barrier) at threshold. But then, why not retain N = 8 as a magic number and eventually 13Be as

1It is of notice that in the above reasoning no reference to the Pauli principle was made. The fact that q � 1 implies fixed
positions while q ≈ 1 delocalization, is essentially independent of the statistics obeyed by the particles.
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one–neutron halo? Because one has to bring the s1/2 down in energy to become weakly bound. And
to do so one has essentially one possibility. To dress the bare 2s1/2 state (εs1/2 ≈ 0.07 MeV) with
the quadrupole vibration of the core, a process which binds the dressed level by about 0.5 MeV. But
equally inescapable is the weakening of the binding energy of the p1/2 orbital (εp1/2 ≈ −3.04 MeV) to
an essentially threshold situation (ε̃p1/2 ≈ −0.18 MeV). This is a result of the fact that the amplitude
of the main neutron component of the quadrupole vibration namely the (p1/2, p

−1
3/2)2+ is close to one.

Pauli principle between the odd p1/2 neutron and the same particle involved in the collective mode leads
to almost 3 MeV repulsion (+2.86 MeV). In other words, to make the 2s–state barely bound so as to
produce a one–neutron halo, one is forced at the same time to weaken conspicuously the binding of the
p1/2 state [1]. While parity inversion is not a condition, what is inescapable is the melting away of the
N = 8 magic number and the appearance of the N = 6 closed shell. Also of an E1–transition between
the parity inverted levels carrying essentially one BW (Weisskopf unit) (see App. B). A consequence
of the very poor overlap existing between halo neutron and core nucleons which impedes the GDR to
depopulate the low–energy 1/2+ → 1/2− transition, being forced to leave about 10% of the TRK sum
rule anchored to this low–lying E1–transition.

2.2 Two–neutron halo
While it will be natural, within the above scenario, to deal with the unbound system 10Li, it is likely more
useful to start with the bound (T1/2 = 8.5 ms) two–neutron halo nucleus 11Li [2]. Simple estimates of
such neutron halo Cooper pair can be made by assuming that the calculation scheme used in 11Be [1], and
based on the values of β2, ~ω2 (core), |Ecorr| ≈ S1n and 10% TRK, is transferable to 11Li and eventually
through it, to the virtual system 10Li (see Section A.3, App. A below). The physics at the basis of this
ansatz is quite general and operative: a) poor overlap between halo neutrons and core nucleons (thus
low–energy presence of a substantial fraction of the TRK sum rule); b) Lamb shift–like phenomena
involving 2s1/2 and 1p1/2 orbitals, in particular Pauli principle between this last state and the same state
found in the collective quadrupole vibration of the core; c) soft E1–mode and related induced pairing.

It could be argued that, in a similar way in which the quadrupole mode renormalize in a very
conspicuous way the single–particle orbitals 2s1/2 and 1p1/2, it can induce pairing correlations in the
|s21/2(0)〉 |p21/2(0)〉 configurations. However, the surface of 11Li being a misty cloud formed by the
halo neutrons, can hardly sustain multipole vibrations any better than the surface of hot nuclei does.
Consequently, the only collective mode such a surface can participate in is a dipole mode, in which the
negatively charged (−Z/Ae ≈ −0.27 e) neutrons slosh back and forth with respect to the positively
charged (N/Ae ≈ 0.73 e) protons of the core. Namely, a soft dipole resonance [3] which we also refer
to as dipole pygmy resonance (DPR).

In the QRPA calculation of the DPR in 11Li, the single particle basis associated with 10Li is worked
out making use of a standard parametrized Saxon–Wood potential. The continuum states of this potential
are calculated by solving the problem in a spherical box of radius equal to 40 fm, chosen to make the
results associated to 10Li and 11Li stable. The states at threshold, in particular the parity inverted s1/2
and p1/2 levels are the renormalized states, and the amplitudes of the 11Li ground state wavefunction
are used as the U , V occupation factors. A separable dipole–dipole interaction (HD = −κ01D · D) is
used with strength κ01 ≈ −5V1/A(R(11Li))2, close to the self–consistent value. Within this scenario one
calculates self consistently the full Jπ = 1− spectrum, including the GDR and DPR, fine tuning κ01 so
as to ensure a root at zero energy, which takes care of the elimination of the center of mass motion. The
QRPA solutions fulfill the EWSR, the DPR carrying about 10% of it [2].

If the virtual 1̃/2+ state of 10Li were not at ≈ 0.15 MeV, but considerably higher in energy [4],
11Li would not display the observed properties. But even more, neither the first excited 0+∗ state of
12Be (Ex ≈ 2.25 MeV), neither the 2.71 MeV, 1− state on top of it will. In fact, these states can be
viewed as generated by the new neutron halo pair addition elementary mode of excitation, made out
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of the symbiotic (|0̃〉ν , DPR) states of 11Li, acting on |10Be(gs)〉. As it emerges from the Figure A5
of [5], such a level scheme is associated with the experimental quantities: S2n(11Li) = 396.6 keV,
S2n(12Be) = 3.672 MeV, S2n(12Be)− Ex0+∗ = 1.422 MeV, the 2.71 MeV state being likely only part
of the dipole state based on |12Be(0+∗)〉.

While one has dwelled only on the structure aspects of the one–and two–halo nuclei 11Be, 10Li,
11Li and 12Be, the associated one– and two–neutron transfer absolute differential cross sections can also
be accurately described within the scenario discussed above, renormalization of single–particle wave-
functions and associated formfactors, playing an important role in the quantitative description of the
transfer processes [1, 5–7].

3 Conclusions
The picture of an s1/2 state at threshold to create halo nuclei, involves parity inversion, a sizable fraction
of the TRK sum rule in low energy E1 transitions and absolute value of one– and two– particle transfer
cross sections of the same order of magnitude, in overall agreement with the experimental findings. At
the basis of it one finds the renormalization of single particle motion due to the coupling of the quadrupole
vibration of the core, and the pairing induced interaction due to the exchange of the soft E1–mode. The
soundness of the theory does not stems from a single result, but from the comprehensive picture emerging
from the variety of them, in comparison with the data. A single one of these features found incorrect,
will set a question mark on the entire approach.

After the above physical arguments and associated estimates collected in the Appendices below
had been written down and worked out, one got hold of the technical detail which likely explains the
reason why the data of Cavallaro et al. [4] essentially do not contain any s1/2 strength: the angular range
in which measurements were carried out [8].

F. B. acknowledges funding from the Spanish Ministerio de Economía under Grant Agreement No.
FIS2017-88410-P. This project has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No 654002.

Appendices
A

In this Appendix, analytic estimates of structure and reaction properties of the halo nuclei mentioned in
the text are provided.

A.1 11
4 Be7, bound one–neutron halo system

In the calculation of the structure of 11Be, four parameters defining the bare single–particle potential
U –depth V , radius R, diffusivity a, and spin–orbit strength Vls– were allowed to vary freely so that
the single–particle states dressed through the coupling to the quadrupole vibration of the core 10Be,
best fitted the data2 (ref. [1]). The bare single–particle energies εi(i = s1/2, p1/2, d5/2) are collected
in Table A.1. Making use of the experimental values of ~ω2 and β2 (energy and dynamical quadrupole
deformation) of |10Be(2+1 )〉, and the formfactor R∂U/∂r, the particle–vibration coupling vertices were
calculated, and the single–particle states renormalized. The values of the self energies at convergence
are shown in Fig. A.1, leading to dressed state energies,

ε̃s1/2 = (70− 570) keV = −0.5 MeV, (A.1)

ε̃p1/2 = (−3.04 + 2.86) MeV = −0.180 MeV, (A.2)

ε̃d1/2 = (7.30− 1.77− 4.08) MeV = 1.45 MeV. (A.3)

2It is of notice that the resulting potential to be used with a k mass (mk = 0.7m (0.9) for r = 0 (r =∞)), is quite similar
to that obtained from SLy4 in the Hartree–Fock approximation.
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As seen from Table A.1, theory provides an accurate account of the experimental findings. Furthermore,
making use of the associated configuration space states

|1̃/2
+
〉 =
√

0.80 |s1/2〉+
√

0.20 |(d1/2 ⊗ 2+)2+〉, (A.4)

and

|1̃/2
−
〉 =
√

0.84 |p1/2〉+
√

0.16 |((p1/2, p−13/2)2+ ⊗ 2+)0+ , p1/2〉, (A.5)

one obtains, without free parameters

B(E1; 1/2− → 1/2+) = 0.11 e2 fm, (A.6)

to be compared with the experimental value

B(E1) = 0.102± 0.002 e2 fm, (A.7)

the strongest known electric dipole transition between bound states in nuclei. Comparing this value to the
ratio3 TRK/~ωGDR ≈ 1e2 fm2 one can conclude that the 1/2− → 1/2+ transition carries about 10%
of the TRK (also known as the dipole energy weighted sum rule (EWSR)) and thus about one Weisskopf
unit (1×BW (E1); see App. B).

A.2 11Li bound two–neutron halo system
In this case we are in presence of a paradigmatic nuclear embodiment of the Cooper pair model. Extend-
ing BCS to the single–pair limit, one can estimate the correlation length through the standard relation

ξ =
~vF

π|Ecorr|
≈ 20 fm, (A.8)

where use of4 (vF /c) ≈ 0.16 and Ecorr ≈ −0.5 MeV was made. Dividing the density distribution of
nucleons in 11Li into a compact, normal closed shell N = 6 core 9Li of radius R0 = 1.2(9)1/3 fm≈ 2.5
fm, and a Cooper pair of correlation length (A.8), one can work out a simple estimate of the effective
radius of 11Li as,

Reff =

(
9

11
× (2.5)2 +

2

11

(
ξ

2

)2
)1/2

≈ 4.8 fm, (A.9)

leading to 〈r2〉1/2 =
√

3
5Reff ≈ 3.7 fm, to be compared with 〈r2〉1/2exp = 3.55± 0.1 fm.

Let us now work out a simple estimate of Ecorr used in (A.8). There is experimental evidence
[9–12] of the presence in 10Li, of a 1/2+ virtual state and of a low–lying 1/2− resonant state5. In

keeping with the analytic results of Sect. A.3 (see below), we assume these states to be |1̃/2
+
〉 =

| ˜s1/2; 0.15 MeV〉, and |1̃/2
−
〉 = | ˜p1/2; 0.60 MeV〉. Again the scenario of a low–lying collective, soft

E1–mode.
3Making use of the Thomas–Reiche–Kuhn (TRK) sum rule TRK = 9

4π
~2e2
2m

NZ
A
≈ 14.8NZ

A
e2 fm2 MeV and of the

energy parametrization of the giant dipole resonance (GDR), ~ωGDR ≈ 80 MeV/(11)1/3 ≈ 36 MeV, one obtains for 11Be
TRK/~ωGDR ≈ 1e2 fm2.

4Making use of the Thomas–Fermi model kF = (3π2 × 8/( 4π
3
(4.58)3))1/2 fm−1 ≈ 0.8 fm−1. Thus (vF /c) =

(~kF /mc) = 0.2× fm × kF ≈ 0.16.
5See also [4] and [8].
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Making the ansatz of transferability from 11Be, one can ascribe to this soft mode, a 10% of the
TRK sum rule to solve the RPA dispersion relation

W (E) =
∑

ki

2(εk − εi)|〈i|F |k〉|2
(εk − εi)2 − E2

=
1

κ01
. (A.10)

In the schematic calculations carried out here, the full quasiparticle subspace discussed in Sect. 2.2 in
connection with the QRPA calculation of the DPR is reduced to the s̃1/2 → p̃1/2 transition, and only the
neutron halo degrees of freedom are considered. Degrees of freedom which constitute (2/11) of the total
nucleonic space and feels an effective confining radius ξ/2. In other words, the factor (1/R2

eff ) entering
in κ01 is to be replaced in the present estimates by 1

( ξ2)
2 ×

(
2
11

)
. It leads to a dipole screened coupling

constant of value κ1 =
R2
eff

( ξ2)
2κ

0
1 ≈ 0.04κ01 ≈ −0.021 MeV fm2, where

κ01 = − 5V1
AR2

eff

, V1 = 25 MeV. (A.11)

Replacing k and i by the renormalized states |1̃/2
−
〉 and |1̃/2

+
〉, and E by the energy of the dipole

pygmy resonance (DPR) to be determined, one can write

(ε̃k − ε̃i)2 − (~ωDPR)2 = κ1 × 2× (0.1× TRK), (A.12)

where6

TRK =
3~2

2m

NZ

A
= 131 MeV fm2 (113 Li8). (A.13)

Thus

~ωDPR = ((0.6− 0.15)2 MeV2 − (−0.021 MeV fm−2)

× 2× 0.1× 131 MeV fm2)1/2 ≈ (0.452 + 0.742)1/2 ≈ MeV, (A.14)

as compared to the centroid value of the resonance observed in d(11Li, d′) experiment leading to 1.03±
0.03 MeV [3].

Let us now calculate the particle vibration coupling (PVC) strength Λ of this mode to the nu-
cleons. Note the use in the following estimates of a dimensionless dipole single particle field F ′ =
F/Reff (11Li). This is in keeping with the fact that one aims at obtaining a quantity with energy di-
mensions ([Λ] = MeV), and κ01 has been introduced in Eq. (A.10) as the self consistent value of the
dipole–dipole separable interaction, normalized in terms of R2

eff (11Li). An alternative way to obtain a
similar result, is to work out the value of Λ without the (1/R2

eff ), and multiply the result by |〈i|F |k〉|2.
It is expected that both results agree within 10-20% effects. One then obtains,

Λ2 =

((
∂W ′(E)

∂E

)

~ωDPR

)−1
=





2~ωDPR
2× 0.1× TRK/R2

eff[
(ε̃p1/2 − ε̃s1/2)2 − (~ωDPR)2)

]2





−1

=

(
2.3

0.64 MeV2

)−1
≈ 0.28 MeV2 (Λ = 0.53 MeV). (A.15)

6Associated with the operator F (rk) = e
[
N−Z
2A
− tz(k)

]
rk (tz(k) = ±1/2), and thus no spherical harmonic.
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The induced pairing interaction associated with the exchange of the DPR between the two halo neutrons
leads to the matrix element

Mind ≈ −
2Λ2

~ωDPR
≈ −0.6 MeV, (A.16)

the factor of 2 being associated with the two possible time orderings (Fig. A.2). Let us now calculate the
bare pairing interaction, taking into account the screening7 due to the large radius of 11Li. That is

(G)scr =
2

8

(
2.7

4.8

)3

G ≈ 0.045× 28

A
MeV ≈ 1.3 MeV

A
≈ 0.1 MeV. (A.17)

Consequently, the neutron halo Cooper pair binds the core 9Li, with the correlation energy

Ecorr = 2ε̃s1/2 − (G)scr +Mind = (0.3− 0.1− 0.6 MeV) ≈ −0.4 MeV, (A.18)

to be compared with the experimental value (Ecorr)exp = −380 keV.

Furthermore, the absolute cross sections associated with the 1H(11Li, 9Li(f )3H reaction, requires
two groups of components sharing about evenly the normalized value of the sum of the squared ampli-
tudes. A many–body particle–hole–like one α|(p1/2, s1/2)1− ⊗ 1−; 0+〉+ β|(s1/2, d5/2)2+ ⊗ 2+; 0+〉
(f = 1/2−, 2.69 MeV;α2 + β2 ≈ 0.5, α� β), and another pairing–like
γ|s21/2(0)〉+ δ|p21/2(0)〉 (f = gs, γ2 + δ2 ≈ 0.5, γ ≈ δ). Thus, concerning this second one, one can write

|0〉 =
√

0.25|s21/2〉+
√

0.25|p21/2〉. If the first component was to be set equal to zero and thus, because of

normalization
√

0.5|p21/2〉, the absolute two–particle ground state cross section will be predicted a fac-
tor ≈ 7 smaller than that associated with |0〉, which reproduces the observed absolute differential cross
section, within experimental errors [6, 7]. This in keeping with the fact that σ(s21/2(0)) ≈ 15 mb, while

σ(p21/2(0)) ≈ 2 mb. Thus σ(
√

0.25
√

14 +
√

0.25
√

2)2 mb ≈ 6.7 mb, while (
√

0.5×
√

2)2 mb ≈ 1 mb.

A.3 10Li, unbound one–neutron halo system: structure and reactions in the continuum
In this case we use as input the value of ~ω2+ ≈ 3.3 MeV and β2 = 0.8 characterizing the low–lying
quadrupole vibration of the core 9Li, as well as Reff (11Li)=4.8 fm worked out in the previous section.

As bare potential we use the standard WS potential U(r) = Uf(r), f(r) =
(
1 + exp

(
r−R0
a

))−1
,

where U = U0 + 0.4E, U0 = V0 + 30(N − Z)/A MeV and V0 = −51 MeV. The energy dependent
term (E = ~k2/2m − εF ) is taken care of by the k–mass mk = (1 + 0.4 × O)−1m ≈ 0.93m, where
the overlap between halo and core single–particle wavefunctions is O = (2.7/4.8)3 ≈ 0.2, as defined in
Sect. A.2. Expressed differently, because of the large radius of the halo, the Pauli principle plays little
role in the mean field, and mk ≈ m, m being the bare nucleon mass. Making use of the above potential
and of the associated symmetry and spin–orbit terms, the bare single–particle energies εp3/2 , εp1/2 , εs1/2
and εd5/2 were calculated. They are displayed in Table A.2.

With the help of (-51+306−3
9 ) MeV=-41 MeV, and of 〈R0∂U/∂r〉 ≈ 1.44 × U0 ≈ −60 MeV

( [13], App. D), one can calculate the PVC vertex associated with the quadrupole vibration of the core,

v = 〈Hc〉 =
β2√

5
〈R0

∂U

∂r
〉O〈j||Y2||1/2〉,

7The estimate G ≈ 28 MeV/A of the pairing strength is made with the help of a δ–force [13]. The corresponding matrix
element in the configuration j2(0) can be expressed as 〈j2(0)|Vδ|j2(0)〉 = − 2j+1

2
G, with G = V0/R

3
0 ≈ 28/A MeV(R0 =

1.2A1/3 fm). Consequently in the case of 11Li the strength G will be screened by the factor (2/(2j + 1))O where O =(
R0(

11Li)
Reff

)3

is the overlap between the core and the halo wavefunctions, and j = kFR0 = 1.36 fm−1 × 2.7 fm ≈ 3.7 and
2j + 1 ≈ 8, while 2j + 1 = 2 for both s1/2 and p1/2.
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〈j||Y2||1/2〉 =

√
2j + 1

4π
=

{
0.7 j = 5/2(d5/2)

0.6 j = 3/2(p3/2),
(A.19)

v ≈ 0.8√
5

(−60 MeV)× 0.2× 0.7 ≈ −3 MeV. (A.20)

In keeping with the fact that the p1/2 is a bound state while s1/2 is not, the corresponding wavefunction
is more concentrated and, consequently, the corresponding matrix elements of Hc larger. We take the
empirical ratio 26/20≈ 1.3 between Gp and Gn as indicative ( [13], p. 63). In what follows we shall thus
use vs1/2 ≈ −3.0 MeV and vp1/2 ≈ −3.9 MeV. Let us now calculate the renormalization of the s1/2 and
p1/2 states. The self–energy diagram (a) of Fig. A.1 gives, to second order of perturbation in v,

Σs1/2 =
v2

εs1/2 − (εd5/2 + ~ω2)
=

9 MeV2

(1.5− 6.8) MeV
= −1.7 MeV. (A.21)

i εi (MeV) ε̃i (MeV) (εi)exp (MeV)b)

s1/2 0.07 -0.5 -0.5
p1/2 -3.04 -0.18 -0.18
d5/2 7.30 1.45 1.28a)

a) Centroid of resonance
b) [16] (see also [1] and references therein).

Table A.1: 11Be: bare (εi), dressed (ε̃i), and experimental εexp single–particle energies of the lowest bound and
resonant states.

i εi (MeV) ε̃i (MeV) (εi)exp (MeV)a),b)

d5/2 3.5
s1/2 1.2 0.15c) 0.1-0.25a)

p1/2 -1.2 0.60d) 0.4-0.6a),b)

p3/2 -4.7

a) [10]
b) [4]
c) virtual
d) resonant

Table A.2: Same as Table A.1, but for 10Li.

The renormalized energy ε̃s1/2 at convergence is obtained by solving the secular equation
∣∣∣∣

(Ea − Ei) v
v (Eα − Ei)

∣∣∣∣ =

∣∣∣∣
(1.5− Ei) −3.0
−3.0 (6.8− Ei)

∣∣∣∣ = 0. (A.22)

That is

E2
i − 8.3Ei + 1.2 = 0, (A.23)

where all the numbers in (A.22) and (A.23) are in MeV. The lowest root of (A.23) is E1 = ε̃s1/2 = 0.15
MeV. It is of notice that in the present case, as well as in connection with the calculation of ε̃p1/2 below,
perturbation theory i.e. εs1/2 + Σs1/2 = (1.5 − 1.7) MeV =-0.2 MeV cannot be used, and the process
displayed in Fig. A.1 (a) has to be summed to all orders of perturbation.
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Fig. A.1: Self–energy associated with the lowest s1/2 (a) p1/2 (b) states and d5/2 (c) and (d) resonance of 11Be
(line (I)) and of the s1/2 virtual and p1/2 resonant states of 11Li (line (II).) The diagram (b’) describes the ZPF
associated with the component (p1/2, p

−1
3/2)2+ of the quadrupole mode of the core 9Li.. The label |a〉 stands for the

state to be renormalized due to the coupling to the intermediate (virtual) state |α〉. It is to be noted that the results
displayed in (I) are at convergence, i.e. obtained by summing to all orders the corresponding process [1], while
those shown in (II) are second order in the PVC vertex results (see A.21 and A.26).

Fig. A.2: Induced pairing interaction between the halo neutrons resulting from the exchange of the DPR between
the configurations s2(0) and p2(0). It is of notice that |ν̄〉 stands for the state time reversed to |ν〉 (ν = s, p).

The above provides a textbook example of the specificity with which one can single out, within
the framework of NFT, the physical processes at the basis of a phenomenon under study, e.g. parity
inversion in 10Li, and the economy with which one can “exactly” treat them. But also only them, not
being forced to waste resources, but most importantly, physical insight in keeping track at the same time
of myriads of little relevant but somewhat connected processes.

Let us now work out the amplitudes of the |ε̃1/2〉 state. That is

c2s1/2(1) =

(
1 +

v2

(Eα − E1)2

)−1
=

(
1 +

9 MeV2

(6.8− 0.15)2 MeV2

)−1

= (1 + 0.2)−1 = 0.83. (A.24)

Making use of normalization (c2a(1) + c2α = 1) one can write

| ˜1/2+; 0.15〉 = 0.91|s1/2〉+ 0.41|(d5/2 ⊗ 2+); 1/2+〉 (A.25)

From (A.24) one obtains that the mass enhancement factor is λ = 0.2 and thus the effective ω–mass
mω = 1.2m, while the discontinuity at the Fermi energy (single–particle content) is Zω = (mω/m)−1 =
0.83.
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Let us now discuss the renormalization of the p1/2 state. Following the same steps as before we
find

Σp1/2 =
(−1)1(−3.9 MeV)2

εp1/2 −
[
(2εp1/2 − εp3/2) + ~ω2

] =
15.21 MeV2

[
εp1/2 − (εp3/2 − ~ω2)

]

=
15.21 MeV

−1.2− (−4.7− 3.3)
=

15.21

−1.2− (−8)
=

15.21

6.8
= 2.2 MeV, (A.26)

where the phase (−1)n comes from the number of unavoidable crossing (n = 1) in diagram (b) of Fig.
A.1. Thus, in second order perturbation theory, εp1/2 + Σp1/2 = −1.2 MeV +2.2 MeV=1.0 MeV.

Let us now calculate the same process (a) Fig. A.1 to convergence. For this we needEa = εp1/2 =
−1.2 MeV, Eα = εp3/2 − ~ω2+ = (−4.7− 3.3) MeV= -8 MeV. The associated secular equation being

∣∣∣∣
(−1.2− Ei) −3.9
−3.9 (−8− Ei)

∣∣∣∣ = E2
i + 9.2Ei − 5.61 = 0, (A.27)

again all numbers in MeV. We then obtain E1 = ε̃p1/2 = 0.6 MeV, a result which again testifies to the
inapplicability of perturbation theory. The square amplitude of the corresponding renormalized state is

c2p1/2 =

(
1 +

(−3.9 MeV)2

(0.6− (−8))2

)−1
= (1 + 0.21)−1 = 0.83. (A.28)

One then can write

| ˜1/2−; 0.6 MeV〉 = 0.91|p1/2〉+ 0.41|((p1/2, p−13/2)2+ ⊗ 2+)0+p1/2; 1/2−〉, (A.29)

the associated mass enhancement factor, ω–mass and Zω–factor being λ = 0.21, mω = 1.21m and
Zω = 0.83 respectively. The energy of the parity inverted states are compared in Table A.1 with the
experimental findings.

In connection with the energy associated with the intermediate stateEα = εp3/2−~ω2+ = (−4.7−
3.3) MeV=-8 MeV in Eqs (A.27) and (A.28), we refer to the energy denominator of Eq. (A.26) for a
mathematical explanation. The physics can be found in the Lamb shift–like effect described by diagram
(b) of Fig. A.1, a phenomenon closely connected with Pauli principle and the ZPF process shown in
diagram (b’). To allow the dressed |p̃1/2〉 state to acquire asymptotic waves, i.e. to be on shell, one has
to annihilate simultaneously the quadrupole phonon and the p−13/2 hole implying an overall energy change
of -3.3 MeV-4.7 MeV=-8 MeV.

B E1–Weisskopf unit
The E1–unit, so called Weisskopf unit is defined8 as BW (E1) = ((1.2)2/4π)(3/4)2A2/3e2 fm2 =
0.81
4π A

2/3e2 fm2 ( [14] p. 389, Eq(3C-38)), which together with the comment at the end of p. 387 and
starting of p. 388,

e→ (e)E1 =

{
N
A e = 8

11e = 0.73e protons
−Z
Ae = − 3

11e = −0.27e neutrons
(B.1)

implies, for 11
3 Li8

BW (E1) = 0.32(e)2E1 fm2 =

{
0.17e2 fm2 (p)
0.023e2 fm2 (n),

(B.2)

8Both in the definition ofBW as well as of S(E1) below (Eq. (A.26)) and at variance to TRK (Eq. (A.13), see also footnote
6), the corresponding dipole operator contains the spherical harmonics of multipolarity λ = 1.
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and thus an average value

BW (E1) =
0.17 + 0.023

2
e2 fm2 ≈ 0.1e2 fm2 (B.3)

Making now use of [15] p. 403 Eq. (6-176) for the case of 11Li,

S(E1) = 14.8
NZ

A
e2 fm2 MeV = 32.3e2 MeV fm2 (B.4)

together with ~ωGDR = 80 MeV/A1/3 MeV≈ 36 MeV gives

S(E1)

~ωGDR
≈ 0.9e2 fm2. (B.5)

Assuming the DPR of 11Li to carry ≈10% of S(E1) one then obtains

10%

(
S(E1)

~ωGDR

)
≈ 0.09e2 fm2, (B.6)

and thus a Weisskopf unit.
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