# FCNC searches at ATLAS and CMS

Loïc Valéry for the ATLAS and CMS Collaborations <u>lvalery@cern.ch</u>

**Rencontres de Moriond 2019** 

March 17th 2019







#### **FCNC** Introduction

- Flavour Changing Neutral Currents
  - Forbidden at tree-level in SM: need more complex diagrams to achieve
    - Very low branching ratio in SM
      - BR( $t \rightarrow qH$ ) ~ 10<sup>-15</sup>
      - BR( $t \rightarrow qZ$ ) ~ 10<sup>-14</sup>



#### **FCNC** Introduction

- Flavour Changing Neutral Currents
  - Forbidden at tree-level in SM: need more complex diagrams to achieve
    - Very low branching ratio in SM
      - BR( $t \rightarrow qH$ ) ~ 10<sup>-15</sup>
      - BR $(t \rightarrow qZ) \sim 10^{-14}$
- Enhanced in many BSM theories
  - 2HDM models (~10-6)
    - Including RPV SUSY scenarios
  - MSSM (~10-7)

٠

. . .

Extra-dimensions (~10<sup>-5</sup>)



Constraints on FCNC  $\Leftrightarrow$  Constraints on new phenomena

#### In this talk



#### Standard Model

**DESY.** Loïc Valéry | FCNC searches in ATLAS and CMS

#### In this talk







#### tZq: common aspects

- Clear experimental signature
  - 3 leptons (2 with m<sub>II</sub> close to Z-mass)
- Top single- and pair-production (SP & PP)
  - CMS considers both (SP & PP)
  - ATLAS focuses on PP



#### **DESY.** Loïc Valéry | FCNC searches in ATLAS and CMS

#### tZq: common aspects

- Clear experimental signature
  - 3 leptons (2 with m<sub>II</sub> close to Z-mass)
- Top single- and pair-production (SP & PP)
  - CMS considers both (SP & PP)
  - ATLAS focuses on PP
- Typical analysis strategy
  - Selection of (b)-jets from top quark decays or FCNC vertex
  - Event **reconstruction** in signal region (SR)
  - Background calibration in control regions (CR)
  - Simultaneous fit across all regions



#### **ATLAS search**



- = 1 b-jet required in SR
- **Reconstruction** using a **minimised**  $\chi^2$  variable

$$\chi^2 = \frac{\left(m_{j_a\ell_a\ell_b}^{\text{reco}} - m_{t_{\text{FCNC}}}\right)^2}{\sigma_{t_{\text{FCNC}}}^2} + \frac{\left(m_{j_b\ell_c\nu}^{\text{reco}} - m_{t_{\text{SM}}}\right)^2}{\sigma_{t_{\text{SM}}}^2} + \frac{\left(m_{\ell_c\nu}^{\text{reco}} - m_W\right)^2}{\sigma_W^2},$$

Used to discriminate signal/background



#### **ATLAS search**



- = 1 b-jet required in SR
- **Reconstruction** using a **minimised**  $\chi^2$  variable

$$\chi^2 = \frac{\left(m_{j_a\ell_a\ell_b}^{\text{reco}} - m_{t_{\text{FCNC}}}\right)^2}{\sigma_{t_{\text{FCNC}}}^2} + \frac{\left(m_{j_b\ell_c\nu}^{\text{reco}} - m_{t_{\text{SM}}}\right)^2}{\sigma_{t_{\text{SM}}}^2} + \frac{\left(m_{\ell_c\nu}^{\text{reco}} - m_W\right)^2}{\sigma_W^2},$$

- Used to discriminate signal/background
- Main backgrounds from ttZ and WZ events
- Main systematic uncertainties: background modelling

$$\mathscr{B}(t \to Zu) < 1.7 \ (2.4) \times 10^{-4}$$
  
 $\mathscr{B}(t \to Zc) < 2.4 \ (3.2) \times 10^{-4}$ 



#### **CMS** search



- Dedicated selection for SP- and PP-enriched regions
  - = 1 b-jet for SP
  - 2 or 3 jet including ≥ 1 b-jet for PP
- Reconstruction with BDT
  - Especially using jet quantities (kinematics, angular, ...)
  - Used to discriminate signal/background in each SR (trained specifically for PP/SP)
- Main backgrounds from ttZ and non-prompt leptons (NPL)
- Main systematic uncertainties: NPL uncertainties

$$\mathscr{B}(t \to Zu) < 2.4 \ (1.5) \times 10^{-4}$$
  
 $\mathscr{B}(t \to Zc) < 4.5 \ (3.7) \times 10^{-4}$ 



0.2

0.4

D

Events / 0.1 units

Data/MC 1 0.5

0

-0.8

-0.6



#### **Signatures**

Many accessible signatures depending on Higgs boson decay



- Dedicated analyses for each signature
- **Combined interpretation** performed by ATLAS



 $H \rightarrow \gamma \gamma$ 

#### **Signatures**

Many accessible signatures depending on Higgs boson decay



- Dedicated analyses for each signature
- Combined interpretation performed by ATLAS



 $H \rightarrow \gamma \gamma$ 

 $t \rightarrow H(WW^*/ZZ^*)q$ 

- Multilepton: 2 same-sign leptons / 3 leptons
  - Very pure final state !
- Main backgrounds from ttW and non-prompt leptons: estimated from MC and data, resp.
- Event reconstruction: BDTs
  - 2 combined BDTs
    - Signal vs non-prompt leptons or ttW



 $t \rightarrow H(WW^*/ZZ^*)q$ 

- Multilepton: 2 same-sign leptons / 3 leptons
  - Very pure final state !
- Main backgrounds from ttW and non-prompt leptons: estimated from MC and data, resp.
- Event reconstruction: BDTs
  - 2 combined BDTs
    - Signal vs non-prompt leptons or ttW
- Main systematic uncertainties: background modelling (statistics for DD backgrounds)

 $\mathcal{B}(t \rightarrow Hu) < 1.9(1.5) \times 10^{-3}$  $\mathcal{B}(t \rightarrow Hc) < 1.6(1.5) \times 10^{-3}$ 



## $t \to H(\tau \tau)q$



- Select events with lepton and/or hadronic taus
  - Classify events depending on  $N_{had-\tau}$
- Main background from fake taus: data-based estimate in CR
- Event reconstruction using kinematic fit
  - Using all input objects to reconstruct system
  - Kinematics used for signal vs back. BDT



## $t \to H(\tau \tau)q$



- Select events with lepton and/or hadronic taus
  - Classify events depending on  $N_{had-\tau}$
- Main background from fake taus: data-based estimate in CR
- Event reconstruction using kinematic fit
  - Using all input objects to reconstruct system
  - Kinematics used for signal vs back. BDT
- Main **systematic** uncertainties: fake tau modelling uncertainties

$$\mathscr{B}(t \to Hu) < 1.7 \ (2.0) \times 10^{-3}$$
  
 $\mathscr{B}(t \to Hc) < 1.9 \ (2.1) \times 10^{-3}$ 



## $t \to H(b\bar{b})q$



**BDT** discriminant

Events / 0.

Data / MC

Data

tī+lf tī+cō

tī+bb other

 $ST(\kappa_{Hut}=1)x13$ 

 $TT(\kappa_{Hut}=1)x2.2$ 

10000

8000

6000

4000

2000

1.5

- Final state with **1-lepton** and several jets / b-jets
  - Different selections for SP and PP
- Leading **background**:  $t\bar{t}$  + jets (sometimes from HF)
  - Estimated from simultaneous fit across all regions
- Event reconstruction
  - BDT to reconstruct system (assign objects)
  - New BDT to separate signal vs background
- Systematics: dominated by b-tagging uncertainties

$$\mathscr{B}(t \to Hu) < 4.7 \ (3.4) \times 10^{-3}$$
  
 $\mathscr{B}(t \to Hc) < 4.7 \ (4.4) \times 10^{-3}$ 

## $t \rightarrow H(bb)q$



Events / 0.

Data / Bkg

Final state with **1-lepton** and several jets / b-jets ٠

- Main **background**: ttbar + HF jets
- Event reconstruction: using likelihood ratio . discriminant based on object kinematics



## $t \rightarrow H(bb)q$



Events / 0.

3500

3000

2500

2000

1500

1000

500

Data / Bkg 1.25

0.75 0.5 0 0.1 0.2 0.3 0.4

- Final state with **1-lepton** and several jets / b-jets •
- Main **background**: ttbar + HF jets
- Event reconstruction: using likelihood ratio discriminant based on object kinematics



Main systematic uncertainties: ttbar + HF modelling and c-jet mistagging

$$\mathscr{B}(t \to Hu) < 5.2 \ (4.9) \times 10^{-3}$$
  
 $\mathscr{B}(t \to Hc) < 4.2 \ (4.0) \times 10^{-3}$ 



## Loïc Valéry | FCNC searches in ATLAS and CMS DESY.

### **ATLAS Combination**





#### **Summary plot**



#### Conclusion

- Strong programme searching for FCNC processes in top sector
  - Investigated for several FCNC couplings and final states
- Sensitivity far from SM expectations ... but ...
- ... reaching sensitivity to some BSM extensions !
- Next round of analyses, with **full 13 TeV dataset** will benefit from:
  - More data (~4 times more)
  - Improved analysis techniques and precision

#### stay tuned for the next results !

## Thank you

#### Contact

**DESY.** Deutsches Elektronen-Synchrotron

www.desy.de

#### Loïc Valéry

ATLAS <u>lvalery@desy.de</u> +49-40-8998 5381

#### **More references**

| ATLAS                                       |               |                                      |  |
|---------------------------------------------|---------------|--------------------------------------|--|
| t -> qZ (ttbar @ 13 TeV)                    | March 2018    | <u>JHEP 07 (2018) 176</u>            |  |
| t —> Hc/u multilepton (ttbar @ 13 TeV)      | May 2018      | Phys. Rev. D 98 (2018) 032002        |  |
| t —> H(yy)q (ttbar @ 13 TeV)                | May 2017      | <u>JHEP 10 (2017) 129</u>            |  |
| t -> Hq (bb + combo) (ttbar @ 13 TeV)       | December 2018 | arXiv:1812.11568 (Submitted to JHEP) |  |
| t —> gq (single-top @ 8 TeV)                | August 2015   | EPJC 76 (2016) 55                    |  |
| HL-LHC — t —> qZ                            | January 2019  | ATL-PHYS-PUB-2019-001                |  |
|                                             | CMS           |                                      |  |
| t —> Hc (ttbar @ 8 TeV)                     | October 2016  | <u>JHEP 02 (2017) 079</u>            |  |
| t —> H(bb)u (single top and ttbar @ 13 TeV) | December 2017 | JHEP 06 (2018) 102                   |  |
| t -> Zc (single-top and ttbar @ 13 TeV)     | November 2017 | CMS-PAS-TOP-17-017                   |  |
| t —> Zu (single-top @ 8 TeV)                | February 2017 | <u>JHEP 07 (2017) 003</u>            |  |
| t -> qg (single top @ 8 TeV)                | October 2016  | JHEP 02 (2017) 028                   |  |
| t —> yq (single top @ 8 TeV)                | November 2015 | <u>JHEP 04 (2016) 035</u>            |  |

## $t \rightarrow \gamma q/gq$

- Probe anomalous couplings in **single-top quark production** (LHC Run 1)
- $t \to \gamma q$ 
  - Using muon+photon events at 8 TeV
  - BDT used to separate FCNC from SM

 $\mathcal{B}(t \to \gamma u(c)) < 0.17(2.2) \times 10^{-4}$ 



## $t \rightarrow \gamma q/gq$

- Probe anomalous couplings in single-top quark production (LHC Run 1)
- $t \to \gamma q$ 
  - Using muon+photon events at 8 TeV
  - BDT used to separate FCNC from SM

 $\mathcal{B}(t \to \gamma u(c)) < 0.17(2.2) \times 10^{-4}$ 



• 
$$t \to gq$$

• NN used to disentangle SM and FCNC processes CMS  $\Re(t \rightarrow gu) < 0.20 \ (0.28) \times 10^{-4}$   $\Re(t \rightarrow gc) < 4.1 \ (2.8) \times 10^{-4}$ ATLAS  $\Re(t \rightarrow gu) < 0.40 \ (0.35) \times 10^{-4}$   $\Re(t \rightarrow gc) < 2.1 \ (1.8) \times 10^{-4}$   $\Re(t \rightarrow gu) < 0.40 \ (0.35) \times 10^{-4}$   $\Re(t \rightarrow gc) < 2.1 \ (1.8) \times 10^{-4}$   $\Re(t \rightarrow gu) < 0.40 \ (0.35) \times 10^{-4}$   $\Re(t \rightarrow gc) < 2.1 \ (1.8) \times 10^{-4}$  $\Re(t \rightarrow gu) < 0.40 \ (0.35) \times 10^{-4}$   $\Re(t \rightarrow gc) < 2.1 \ (1.8) \times 10^{-4}$ 

#### t —> Zu/c (I)



- Process probed:  $t\bar{t} \rightarrow WbZ(\ell\ell)q$
- Analysis basic selection: 2 SFOS leptons, MET > 20 GeV, ≥2 jets, =1 b-jet
- Analysis strategy: Event reconstruction with chi2 + cuts on masses of chosen combination

$$\chi^2 = \frac{\left(m_{j_a\ell_a\ell_b}^{\text{reco}} - m_{t_{\text{FCNC}}}\right)^2}{\sigma_{t_{\text{FCNC}}}^2} + \frac{\left(m_{j_b\ell_c\nu}^{\text{reco}} - m_{t_{\text{SM}}}\right)^2}{\sigma_{t_{\text{SM}}}^2} + \frac{\left(m_{\ell_c\nu}^{\text{reco}} - m_W\right)^2}{\sigma_W^2}$$

• Main backgrounds + estimation strategy: diboson + ttZ/tZ constrained in CRs

| Selection                                       | tīZ CR   | WZ CR    | ZZ CR    | Non-prompt lepton CR0 (CR1) | SR        |
|-------------------------------------------------|----------|----------|----------|-----------------------------|-----------|
| No. leptons                                     | 3        | 3        | 4        | 3                           | 3         |
| OSSF                                            | Yes      | Yes      | Yes      | Yes                         | Yes       |
| $ m_{\ell\ell}^{\rm reco} - 91.2  {\rm GeV} $   | < 15 GeV | < 15 GeV | < 15 GeV | > 15 GeV                    | < 15 GeV  |
| No. jets                                        | ≥ 4      | ≥ 2      | $\geq 1$ | ≥ 2                         | ≥ 2       |
| No. b-tagged jets                               | 2        | 0        | 0        | 0(1)                        | 1         |
| $E_{\mathrm{T}}^{\mathrm{miss}}$                | > 20 GeV | > 40 GeV | > 20 GeV | > 20 GeV                    | > 20 GeV  |
| $m_{T}^{\ell_{V}}$                              | -        | > 50 GeV | -        | -                           | -         |
| $ m_{\ell v}^{\rm reco} - 80.4  {\rm GeV} $     | -        | -        | -        | -                           | < 30 GeV  |
| $ m_{i\ell\nu}^{\rm reco} - 172.5  {\rm GeV} $  | -        | -        | -        | -                           | < 40 GeV  |
| $ m_{j\ell\ell}^{\rm reco} - 172.5  {\rm GeV} $ | -        | -        | -        | -                           | < 40  GeV |



t —> Zu/c (II)

#### **Results**:



Sample Yields

Post-fit

Pre-fit

 $\chi^2$ 



#### t —> Zu/c (I)



- **Process probed:**  $t\bar{t} \rightarrow WbZ(\ell\ell)q$  and  $qg \rightarrow Z(\ell\ell)t$
- Analysis basic selection: =3 leptons (2 from Z),  $1 \le Njets \le 3$ ,  $m_T(W) < 300 \text{ GeV}$
- Analysis strategy: simultaneous fit across lepton channels (4) X region types (5)
  - In CRs —> kinematic variable
  - In SRs —> **BDT discriminant** (uses especially jet-related variables)
- Main backgrounds + estimation strategy: Fake leptons from DY/ttbar. MC background + contraints in CRs

|                           | WZ                 | single top    | top quark          | single top     | top quark          |
|---------------------------|--------------------|---------------|--------------------|----------------|--------------------|
|                           |                    | quark         | pair               | quark          | pair               |
|                           | control region     | signal region | signal region      | control region | control region     |
|                           | (WZCR)             | (STSR)        | (TTSR)             | (STCR)         | (TTCR)             |
| Number of jets            | $\geq$ 1, $\leq$ 3 | 1             | $\geq$ 2, $\leq$ 3 | 1              | $\geq$ 2, $\leq$ 3 |
| Number of b jets          | 0                  | 1             | $\geq 1$           | 1              | $\geq 1$           |
| $ M(Z_{\rm reco}) - M_Z $ | Yes                | Yes           | Yes                | No             | No                 |
| < 7.5 GeV                 |                    |               |                    |                |                    |





- Main systematic uncertainties: background normalisation
- Results:

|         | Expected               | Observed               |
|---------|------------------------|------------------------|
| t —> uZ | 1.5 x 10-4             | 2.4 x 10 <sup>-4</sup> |
| t —> cZ | 3.7 x 10 <sup>-4</sup> | 4.5 x 10 <sup>-4</sup> |

• Key plots:



#### t —> H(bb)q



- **Process probed:** t —> Hq with single and pair-production
- Analysis basic selection: =1-lepton, =3j or ≥4j (2,3,4 b-jets in each)
- Analysis strategy: event reconstruction based on BDT + signal/back. discrimination
- Main backgrounds + estimation strategy: main background from ttbar. High b-jet multiplicity regions: dominated by ttbar+HF
- Main systematic uncertainties: b-tagging uncertainties
- Results:

|         | Expected               | Observed               |
|---------|------------------------|------------------------|
| t —> uH | 3.4 x 10 <sup>-3</sup> | 4.7 x 10 <sup>-3</sup> |
| t —> cH | 4.4 x 10 <sup>-3</sup> | 4.7 x 10 <sup>-3</sup> |



• Key plots:



#### tHq - Multilepton



- **Process probed:** ttbar with FCNC coupling in decay (dominated by H—> WW\*)
- Analysis basic selection: 2 same-sign (3I) with ≥4j (≥2j) with 1-2 (≥1) b-jet
- Analysis strategy: BDT background/signal separation
  - BDT signal vs ttbar (i.e. against non-prompt leptons)
  - BDT signal vs ttV (i.e. against prompt leptons)
  - Both BDTs combined linearly
- Main backgrounds + estimation strategy: NPL and ttV backgrounds.
  - Prompt lepton backgrounds from MC
  - NPL and charge Q-MisID backgrounds from data (matrix method and likelihood)

tHq - Multilepton

- Main systematic uncertainties: data driven statistical uncertainties and diboson+HF modelling uncertainties
- Results:

|       | Expected               | Observed               |
|-------|------------------------|------------------------|
| t> uH | 1.5 x 10 <sup>-3</sup> | 1.9 x 10 <sup>-3</sup> |
| t> cH | 1.5 x 10 <sup>-3</sup> | 1.6 x 10 <sup>-3</sup> |







#### tHq - Hbb



- Process probed: ttbar pair with decay to H(bb)q
- Analysis basic selection: 1-lepton, ≥4j, ≥2b-jets
- Analysis strategy:
  - Event classification for each jet/b-jet combination
  - In each category: FCNC discriminant built from LLH



$$D(\mathbf{x}) = \frac{P^{\text{sig}}(\mathbf{x})}{P^{\text{sig}}(\mathbf{x}) + P^{\text{bkg}}(\mathbf{x})},$$
$$P^{\text{sig}}_{\text{kin}}(\mathbf{x}) = P^{\text{sig}}(M_{\ell\nu b_{\ell}})P^{\text{sig}}(X_{b_{1}b_{2}q_{h}})P^{\text{sig}}(M_{b_{1}b_{2}}).$$
$$P^{\text{sig}}(\mathbf{x}) = \frac{\sum_{k=1}^{N_{p}} P^{\text{sig}}_{\text{btag}}(\mathbf{x}^{k})P^{\text{sig}}_{\text{kin}}(\mathbf{x}^{k})}{\sum_{k=1}^{N_{p}} P^{\text{sig}}_{\text{btag}}(\mathbf{x}^{k})},$$

**DESY.** Loïc Valéry | FCNC searches in ATLAS and CMS

#### tHq - Hbb



- Main backgrounds + estimation strategy: ttbar background (often + HF jets)
  - Simultaneous PLL fit across all regions with detail NP set for ttbar
- Main systematic uncertainties: ttbar modeling + c-jet mis-tagging



#### tHq - Htautau



- **Process probed:** ttbar with FCNC H(tautau) dacay
- Analysis basic selection: ≥2 taus (lep/had decay of a tau)
  - *had-had:* tau trigger, 0 leps, q1xq2<0, ≥3 jets, ≥1 bjet
  - *lep-had:* lep trigger, 1 lep,  $\geq$ 1 had tau, q\_lep x qtau <0,  $\geq$ 3 jets,  $\geq$ 1 bjet
- Analysis strategy: events classified in =3j and ≥4j categories
  - Event reconstruction using a chi2 algorithm
  - Reconstructed observables used to build BDT back./sig. discriminant



#### tHq - Htautau



- **Main backgrounds + estimation strategy**: fake taus + ttbar + Z(tautau)
  - ttbar/Z —> MC with constraints through PLL
  - Fake taus: "data driven" template estimated from control region
- Main systematic uncertainties: fake taus modeling uncertainties



#### tHq - Hgam-gam



- **Process probed:** ttbar pair with FCNC tqH(gam-gam)
- Analysis basic selection: two tight photons
  - *Hadronic*: ≥4j, ≥1 b-jet. 3-body reconstruction and mass conditions on reconstructed tops.
  - Leptonic: 1-lepton, ≥2 jets, mT(lep,MET) > 30 GeV, 3 body reco and condition on masses
- Analysis strategy: inspect m(gam-gam) spectrum after selection (had) / event count (lep)
- Main backgrounds + estimation strategy:
  - Hadronic: gam-gam+jets —> estimation with fit to data
  - Leptonic: ttgam, Wgam-gam, gam-gam+jets —> background calibration to data
- Main systematic uncertainties: analysis stat-limited

|       | Expected               | Observed               |
|-------|------------------------|------------------------|
| t> uH | 2.4 x 10 <sup>-3</sup> | 1.7 x 10 <sup>-3</sup> |
| t> cH | 1.6 x 10 <sup>-3</sup> | 2.2 x 10 <sup>-3</sup> |

**Results:** 

٠

#### 

tHq - ATLAS Combination



H→bb

|       | Expected                | Observed               |
|-------|-------------------------|------------------------|
| t> uH | 0.83 x 10 <sup>-3</sup> | 1.2 x 10 <sup>-3</sup> |
| t> cH | 0.83 x 10 <sup>-3</sup> | 1.1 x 10 <sup>-3</sup> |

#### Combination of all channels

