002668671 001__ 2668671 002668671 005__ 20240115040230.0 002668671 0248_ $$aoai:cds.cern.ch:2668671$$pcerncds:CERN$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT 002668671 0247_ $$2DOI$$9arXiv$$a10.1103/PhysRevLett.123.021802$$qpublication 002668671 037__ $$9arXiv$$aarXiv:1903.08491$$chep-ex 002668671 037__ $$9arXiv:reportnumber$$aCERN-EP-2019-039 002668671 037__ $$9arXiv:reportnumber$$aIFIC/19-09 002668671 037__ $$9arXiv:reportnumber$$aKCL-PH-TH/2019-17 002668671 035__ $$9arXiv$$aoai:arXiv.org:1903.08491 002668671 035__ $$9Inspire$$aoai:inspirehep.net:1725935$$d2024-01-14T08:45:45Z$$h2024-01-15T03:00:06Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d 002668671 035__ $$9Inspire$$a1725935 002668671 041__ $$aeng 002668671 100__ $$aAcharya, B.$$uKing's Coll. London$$uICTP, Trieste$$vTheoretical Particle Physics & Cosmology Group, Physics Dept, King's College London, UK 002668671 245__ $$9arXiv$$aMagnetic monopole search with the full MoEDAL trapping detector in 13 TeV $pp$ collisions interpreted in photon-fusion and Drell-Yan production 002668671 269__ $$c2019-03-20 002668671 260__ $$c2019-07-10 002668671 300__ $$a7 p 002668671 500__ $$9Inspire$$aSubmitted to Phys.Rev.Lett. 002668671 500__ $$9arXiv$$a7 pages REVTeX 4, 11 figures, 1 table, matches published version in Physical Review Letters 002668671 520__ $$9APS$$aMoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb-1 of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, ½, and 1 are considered and both velocity-independent and-dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge. 002668671 520__ $$9arXiv$$aMoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, 1/2 and 1 are considered and both velocity-independent and -dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge. 002668671 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/ 002668671 540__ $$3publication$$aCC-BY-4.0$$aCC-BY-4.0$$bAPS$$uhttps://creativecommons.org/licenses/by/4.0/ 002668671 542__ $$3publication$$dauthors$$g2019 002668671 65017 $$2arXiv$$ahep-ph 002668671 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology 002668671 65017 $$2arXiv$$ahep-ex 002668671 65017 $$2SzGeCERN$$aParticle Physics - Experiment 002668671 690C_ $$aCERN 002668671 690C_ $$aARTICLE 002668671 693__ $$aCERN LHC$$eMoEDAL 002668671 700__ $$aAlexandre, J.$$uKing's Coll. London$$vTheoretical Particle Physics & Cosmology Group, Physics Dept, King's College London, UK 002668671 700__ $$aBaines, S.$$uKing's Coll. London$$vTheoretical Particle Physics & Cosmology Group, Physics Dept, King's College London, UK 002668671 700__ $$aBenes, P.$$uIEAP CTU, Prague$$vIEAP, Czech Technical University, Prague, Czech Republic 002668671 700__ $$aBergmann, B.$$uIEAP CTU, Prague$$vIEAP, Czech Technical University, Prague, Czech Republic 002668671 700__ $$aBernabéu, J.$$uValencia U., IFIC$$vIFIC, Universitat deVaì encia – CSIC, Valencia, Spain 002668671 700__ $$aBevan, A.$$uQueen Mary, U. of London$$vSchool of Physics and Astronomy, Queen Mary University of London, UK 002668671 700__ $$aBranzas, H.$$uBucharest, Inst. Space Science$$vInstitute of Space Science, Bucharest -M˘ agurele, Romania 002668671 700__ $$aCampbell, M.$$uCERN$$vExperimental Physics Department, CERN, Geneva, Switzerland 002668671 700__ $$aCecchini, S.$$uINFN, Bologna$$vSection of Bologna, INFN, Bologna, Italy 002668671 700__ $$aCho, Y.M.$$uKonkuk U.$$uCQUeST, Seoul$$vPhysics Department, Konkuk University, Seoul, Korea 002668671 700__ $$aDe Montigny, M.$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Canada 002668671 700__ $$aDe Roeck, A.$$uCERN$$vExperimental Physics Department, CERN, Geneva, Switzerland 002668671 700__ $$aEllis, J.R.$$uKing's Coll. London$$uCERN$$uNICPB, Tallinn$$vTheoretical Particle Physics & Cosmology Group, Physics Dept, King's College London, UK$$vTheoretical Physics Department, CERN, Geneva, Switzerland 002668671 700__ $$aEl Sawy, M.$$uCERN$$uBeni-Suef U.$$uBritish U. in Egypt$$vExperimental Physics Department, CERN, Geneva, Switzerland 002668671 700__ $$aFairbairn, M.$$uKing's Coll. London$$vTheoretical Particle Physics & Cosmology Group, Physics Dept, King's College London, UK 002668671 700__ $$aFelea, D.$$uBucharest, Inst. Space Science$$vInstitute of Space Science, Bucharest -M˘ agurele, Romania 002668671 700__ $$aFrank, M.$$uConcordia U., Montreal$$vDepartment of Physics, Concordia University, Montréal, Canada 002668671 700__ $$aHays, J.$$uQueen Mary, U. of London$$vSchool of Physics and Astronomy, Queen Mary University of London, UK 002668671 700__ $$aHirt, A.M.$$uZurich, ETH$$vDepartment of Earth Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland 002668671 700__ $$aJanecek, J.$$uIEAP CTU, Prague$$vIEAP, Czech Technical University, Prague, Czech Republic 002668671 700__ $$aKim, D.-W.$$uGangneung-Wonju Natl. U.$$vPhysics Department, Gangneung-Wonju National University , Gangneung, Republic of Korea 002668671 700__ $$aKorzenev, A.$$uGeneva U.$$vde Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland 002668671 700__ $$aLacarrère, D.H.$$uCERN$$vExperimental Physics Department, CERN, Geneva, Switzerland 002668671 700__ $$aLee, S.C.$$uGangneung-Wonju Natl. U.$$vPhysics Department, Gangneung-Wonju National University , Gangneung, Republic of Korea 002668671 700__ $$aLeroy, C.$$uMontreal U.$$vDépartement de Physique, Université de Montréal, Canada 002668671 700__ $$aLevi, G.$$uINFN, Bologna$$uU. Bologna, DIFA$$vSection of Bologna, Department of Physics & Astronomy, INFN, University of Bologna, Italy 002668671 700__ $$aLionti, A.$$uGeneva U.$$vde Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland 002668671 700__ $$aMamuzic, J.$$uValencia U., IFIC$$vIFIC, Universitat deVaì encia – CSIC, Valencia, Spain 002668671 700__ $$aMargiotta, A.$$uINFN, Bologna$$uU. Bologna, DIFA$$vSection of Bologna, Department of Physics & Astronomy, INFN, University of Bologna, Italy 002668671 700__ $$aMauri, N.$$uINFN, Bologna$$vSection of Bologna, INFN, Bologna, Italy 002668671 700__ $$aMavromatos, N.E.$$uKing's Coll. London$$vTheoretical Particle Physics & Cosmology Group, Physics Dept, King's College London, UK 002668671 700__ $$aMermod, P.$$uGeneva U.$$vde Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland 002668671 700__ $$aMieskolainen, M.$$uHelsinki U.$$vPhysics Department, University of Helsinki, Helsinki, Finland 002668671 700__ $$aMillward, L.$$uQueen Mary, U. of London$$vSchool of Physics and Astronomy, Queen Mary University of London, UK 002668671 700__ $$aMitsou, [email protected]$$uValencia U., IFIC$$vIFIC, Universitat deVaì encia – CSIC, Valencia, Spain 002668671 700__ $$aOrava, R.$$uHelsinki U.$$vPhysics Department, University of Helsinki, Helsinki, Finland 002668671 700__ $$aOstrovskiy, I.$$uAlabama U.$$vDepartment of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama, USA 002668671 700__ $$aPapavassiliou, J.$$uValencia U., IFIC$$vIFIC, Universitat deVaì encia – CSIC, Valencia, Spain 002668671 700__ $$aParker, B.$$uInst. Res. in Schools, UK$$vInstitute for Research in Schools , Canterbury, United Kingdom 002668671 700__ $$aPatrizii, L.$$uINFN, Bologna$$vSection of Bologna, INFN, Bologna, Italy 002668671 700__ $$aPăvălaş, G.E.$$uBucharest, Inst. Space Science$$vInstitute of Space Science, Bucharest -M˘ agurele, Romania 002668671 700__ $$aPinfold, J.L.$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Canada 002668671 700__ $$aPopa, V.$$uBucharest, Inst. Space Science$$vInstitute of Space Science, Bucharest -M˘ agurele, Romania 002668671 700__ $$aPozzato, M.$$uINFN, Bologna$$vSection of Bologna, INFN, Bologna, Italy 002668671 700__ $$aPospisil, S.$$uIEAP CTU, Prague$$vIEAP, Czech Technical University, Prague, Czech Republic 002668671 700__ $$aRajantie, A.$$uImperial Coll., London$$vDepartment of Physics, Imperial College London, UK 002668671 700__ $$aRuiz De Austri, R.$$uValencia U., IFIC$$vIFIC, Universitat deVaì encia – CSIC, Valencia, Spain 002668671 700__ $$aSahnoun, Z.$$uINFN, Bologna$$uCNAAG, Algiers$$vSection of Bologna, INFN, Bologna, Italy 002668671 700__ $$aSakellariadou, M.$$uKing's Coll. London$$vTheoretical Particle Physics & Cosmology Group, Physics Dept, King's College London, UK 002668671 700__ $$aSantra, A.$$uValencia U., IFIC$$vIFIC, Universitat deVaì encia – CSIC, Valencia, Spain 002668671 700__ $$aSarkar, S.$$uKing's Coll. London$$vTheoretical Particle Physics & Cosmology Group, Physics Dept, King's College London, UK 002668671 700__ $$aSemenoff, G.$$uBritish Columbia U.$$vDepartment of Physics, University of British Columbia, Vancouver, Canada 002668671 700__ $$aShaa, A.$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Canada 002668671 700__ $$aSirri, G.$$uINFN, Bologna$$vSection of Bologna, INFN, Bologna, Italy 002668671 700__ $$aSliwa, K.$$uTufts U.$$vDepartment of Physics and Astronomy, Tufts University, Medford, USA 002668671 700__ $$aSoluk, R.$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Canada 002668671 700__ $$aSpurio, M.$$uINFN, Bologna$$uU. Bologna, DIFA$$vSection of Bologna, Department of Physics & Astronomy, INFN, University of Bologna, Italy 002668671 700__ $$aStaelens, M.$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Canada 002668671 700__ $$aSuk, M.$$uIEAP CTU, Prague$$vIEAP, Czech Technical University, Prague, Czech Republic 002668671 700__ $$aTenti, M.$$uINFN, CNAF$$vINFN, CNAF, Bologna, Italy 002668671 700__ $$aTogo, V.$$uINFN, Bologna$$vSection of Bologna, INFN, Bologna, Italy 002668671 700__ $$aTuszyński, J.A.$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Canada 002668671 700__ $$aVento, V.$$uValencia U., IFIC$$vIFIC, Universitat deVaì encia – CSIC, Valencia, Spain 002668671 700__ $$aVives, O.$$uValencia U., IFIC$$vIFIC, Universitat deVaì encia – CSIC, Valencia, Spain 002668671 700__ $$aVykydal, Z.$$uIEAP CTU, Prague$$vIEAP, Czech Technical University, Prague, Czech Republic 002668671 700__ $$aWall, A.$$uAlabama U.$$vDepartment of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama, USA 002668671 700__ $$aZgura, I.S.$$uBucharest, Inst. Space Science$$vInstitute of Space Science, Bucharest -M˘ agurele, Romania 002668671 710__ $$gMoEDAL Collaboration 002668671 773__ $$c021802$$mpublication$$n2$$pPhys. Rev. Lett.$$v123$$xPhys.Rev.Lett. 123 (2019) no.2, 021802$$y2019 002668671 8564_ $$81501183$$s1454367$$uhttp://cds.cern.ch/record/2668671/files/10.1103_PhysRevLett.123.021802.pdf$$yFulltext from Publisher 002668671 8564_ $$82218299$$s48068$$uhttp://cds.cern.ch/record/2668671/files/massPlot_spinhalf_Combined_AllMMT_betaIndependent.png$$y00007 Cross-section upper limits at 95\% CL for the combined DY and \pf monopole pair direct production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle) and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218300$$s1454367$$uhttp://cds.cern.ch/record/2668671/files/scoap3-fulltext.pdf$$yArticle from SCOAP3 002668671 8564_ $$82218301$$s40452$$uhttp://cds.cern.ch/record/2668671/files/pass.png$$y00008 Magnetic pole strength (in units of Dirac charge) measured in the 2400 aluminum samples of the MoEDAL trapping detector exposed to 13~\tev collisions in 2015$-$2017, with every sample scanned twice. 002668671 8564_ $$82218302$$s47725$$uhttp://cds.cern.ch/record/2668671/files/massPlotspinoneCombinedAllMMTbetaIndependent.png$$y00007 Production cross-section upper limits at 95\% C.L.\ for the combined DY and \pf monopole pair production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle), and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218303$$s48531$$uhttp://cds.cern.ch/record/2668671/files/massPlotspinoneCombinedAllMMTbetaDependent.png$$y00011 Production cross-section upper limits at 95\% C.L.\ for the combined DY and \pf monopole pair production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle), and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218304$$s82326$$uhttp://cds.cern.ch/record/2668671/files/calib.png$$y00003 Results of the calibration measurements with the superposition method using a magnetic dipole sample, and the solenoid method with $P=32.4\gd/\mu$A and various currents. The dashed lines represent the expected plateau values in units of Dirac charge. The calibration constant is tuned using the measurement from the superposition method. 002668671 8564_ $$82218305$$s47219$$uhttp://cds.cern.ch/record/2668671/files/massPlot_spinzero_Combined_AllMMT_betaIndependent.png$$y00010 Cross-section upper limits at 95\% CL for the combined DY and \pf monopole pair direct production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle) and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218306$$s734601$$uhttp://cds.cern.ch/record/2668671/files/1903.08491.pdf$$yFulltext 002668671 8564_ $$82218307$$s48068$$uhttp://cds.cern.ch/record/2668671/files/massPlotspinhalfCombinedAllMMTbetaIndependent.png$$y00006 Production cross-section upper limits at 95\% C.L.\ for the combined DY and \pf monopole pair production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle), and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218308$$s47219$$uhttp://cds.cern.ch/record/2668671/files/massPlotspinzeroCombinedAllMMTbetaIndependent.png$$y00010 Production cross-section upper limits at 95\% C.L.\ for the combined DY and \pf monopole pair production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle), and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218309$$s48422$$uhttp://cds.cern.ch/record/2668671/files/massPlotspinhalfCombinedAllMMTbetaDependent.png$$y00002 Production cross-section upper limits at 95\% C.L.\ for the combined DY and \pf monopole pair production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle), and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218310$$s14614$$uhttp://cds.cern.ch/record/2668671/files/pf-diagram.png$$y00006 Feynman-like diagrams for monopole pair direct production at leading order via the Drell-Yan (left) and photon-fusion (right) processes at the LHC. For scalar and vector monopoles a four-vertex diagram is also added~\cite{Baines:2018ltl}. 002668671 8564_ $$82218311$$s48422$$uhttp://cds.cern.ch/record/2668671/files/massPlot_spinhalf_Combined_AllMMT_betaDependent.png$$y00003 Cross-section upper limits at 95\% CL for the combined DY and \pf monopole pair direct production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle) and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218312$$s48531$$uhttp://cds.cern.ch/record/2668671/files/massPlot_spinone_Combined_AllMMT_betaDependent.png$$y00008 Cross-section upper limits at 95\% CL for the combined DY and \pf monopole pair direct production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle) and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218313$$s47725$$uhttp://cds.cern.ch/record/2668671/files/massPlot_spinone_Combined_AllMMT_betaIndependent.png$$y00010 Cross-section upper limits at 95\% CL for the combined DY and \pf monopole pair direct production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle) and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218314$$s46986$$uhttp://cds.cern.ch/record/2668671/files/massPlotspinzeroCombinedAllMMTbetaDependent.png$$y00009 Production cross-section upper limits at 95\% C.L.\ for the combined DY and \pf monopole pair production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle), and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218315$$s14020$$uhttp://cds.cern.ch/record/2668671/files/dy-diagram.png$$y00002 Feynman-like diagrams for monopole pair direct production at leading order via the Drell-Yan (left) and photon-fusion (right) processes at the LHC. For scalar and vector monopoles a four-vertex diagram is also added~\cite{Baines:2018ltl}. 002668671 8564_ $$82218316$$s14614$$uhttp://cds.cern.ch/record/2668671/files/pfdiagram.png$$y00005 Feynman-like diagrams for monopole pair direct production at leading order via the Drell-Yan (left) and photon-fusion (right) processes at the LHC. For scalar and vector monopoles a four-vertex diagram is also added~\cite{Baines:2018ltl}. 002668671 8564_ $$82218317$$s46986$$uhttp://cds.cern.ch/record/2668671/files/massPlot_spinzero_Combined_AllMMT_betaDependent.png$$y00004 Cross-section upper limits at 95\% CL for the combined DY and \pf monopole pair direct production model with $\beta$-independent (left) and $\beta$-dependent (right) couplings in 13~\tev $pp$ collisions as a function of mass for spin-0 (top), spin-\half (middle) and spin-1 monopoles (bottom). The colors correspond to different monopole charges. The solid lines are cross-section calculations at leading order. 002668671 8564_ $$82218318$$s34605$$uhttp://cds.cern.ch/record/2668671/files/check2.png$$y00000 Results of multiple pole strength measurements (in units of Dirac charge) for the 87~candidate samples for which at least one of the two first measurement values was above the threshold $|g|>0.4\gd$. More values are observed below threshold than above threshold for all of them, excluding the presence of a monopole with $|g|\geq \gd$. 002668671 8564_ $$82218319$$s14020$$uhttp://cds.cern.ch/record/2668671/files/dydiagram.png$$y00004 Feynman-like diagrams for monopole pair direct production at leading order via the Drell-Yan (left) and photon-fusion (right) processes at the LHC. For scalar and vector monopoles a four-vertex diagram is also added~\cite{Baines:2018ltl}. 002668671 8564_ $$82218320$$s32938$$uhttp://cds.cern.ch/record/2668671/files/check1.png$$y00001 Results of multiple pole strength measurements (in units of Dirac charge) for the 87~candidate samples for which at least one of the two first measurement values was above the threshold $|g|>0.4\gd$. More values are observed below threshold than above threshold for all of them, excluding the presence of a monopole with $|g|\geq \gd$. 002668671 960__ $$a13 002668671 980__ $$aARTICLE