

Upgrade of the ATLAS Muon Spectrometer Thin Gap Chambers and their electronics for the HL-LHC phase

Chav Chhiv Chau, on behalf of of the ATLAS Muon Collaboration

VCI 2019

21 February 2019

Outline

- ATLAS upgrade projects
- sTGC-NSW upgrade project
- Replacement of the EIL4 TGC chambers
- Upgrade of the TGC electronics
- Summary

A NSW in the ATLAS simulation **PS** prototype board for the TGC

C. Chau (Carleton) Upgrades of ATLAS Thin Gap Chambers **2**

ATLAS detector

Two *R*-*Z* views of the present muon spectrometer

LHC Plan

 \bullet Instantaneous luminosity to reach 7.5 x 10³⁴ cm⁻²s⁻¹ at HL-LHC

- Total integrated luminosity: 3000 fb⁻¹ after 10 years (in 2036)
- Average pile-up of 200 interactions

Upgrade of ATLAS Thin Gap chambers

- Phase-I, NSW TDR: [ATLAS-TDR-020](http://cdsweb.cern.ch/record/1552862)
	- Replacing the innermost muon end-cap station with the New Small Wheels (NSWs), which have small-strip TGC and MM
- Phase-II, muon TDR: ATLAS-TDR-026
	- Replacing the EIL4 TGC, innermost endcap station
	- Replacing the electronics of the TGCs at the 2nd muon station Layout of the Phase-II ATLAS muon spectrometer

Current TGC at high event pileup

Currently, endcap trigger decision is based on the big wheel TGCs

Trigger efficiency **without** the EIL4 replacement (1.0-1.3) and NSW (1.3-2.5)

• Trigger efficiency drops significantly in the endcap region due to cavern background

[ATLAS-TDR-020](http://cdsweb.cern.ch/record/1552862) ATLAS-TDR-026

Combining the NSW and Big Wheel EM track segments can identify muons coming the interaction point, reducing large fraction of fake (eliminating B and C candidates)

Phase-I ATLAS small-strip Thin Gap Chambers

ATLAS New Small Wheel

sTGC

- NSW has 2 gaseous chamber technologies
	- **s**mall-strip **T**hin **G**ap **C**hamber (sTGC)
	- **M**icro**m**egas (MM)

sTGC

- NSW is designed to provide
	- High-precision trigger and tracking capability

MM

■ To operate efficiently at Run-3 and beyond

MM

sTGC detector

- Used for both muon triggering (primary trigger device for NSW) and precision tracking in regions 1.3 < |*η*| < 2.5
- Designed to provide angular resolution better than 1 mrad
- Two wedges of 4 layers each, for a total of 8 gas chambers

sTGC internal structure

Z

X

- Pads: mainly for triggering
- Wires: azimuth coordinate
	- 50 um gold-plated tungsten
	- \blacksquare 1.8-mm pitch
- Strips: eta coordinate
	- pitch of 3.2 mm,
	- **Peroviding spatial resolution better than 150 um**
- Gas mixture: 55% CO2 and 45% n-pentane

Y

1.4 mm

1.4 mm

Gas gap structure

Wires

coating

Pads

Carbon

Strips

STGC alignment

sTGC Trigger

- Pad layers are staggered by half a pad to make "logical' pad towers
- Trigger algorithm consists of two steps:
	- Independent single wedge trigger: require hit in 3 out of 4 layers
	- Pad trigger: decision based on geometrical matching between the two wedge triggers

sTGC construction

X-ray scans

- Measure gain uniformity of gas gaps at 3200 V
- Probe internal structure of gaps
- Gaps with poor gain uniformity are rejected

X-ray scan of QL1 gap

Cosmic tests

- Hit maps
- 2D efficiency maps
- Noise measurement
- Spatial resolution and misalignment correction

ATLAS NSW Preliminary

 $\overline{882}$

 \overline{z} Number of cosmic muons counted in a QS1 gap during a period of approximately 13 hours

• Low hit count on the edges due to the finite size of the scintillators

 $\overline{2600}$

 \circ

 \sim

 m

 \rightarrow

L

 \circ

 ∞ თ,

 $\overline{10}$

 $12 \,$

C. Chau (Carleton) Upgrades of ATLAS Thin Gap Chambers **15**

900E **Local** $\overline{10.9}$ **ATLAS NSW** Preliminary 800E $\overline{10.8}$ 0.7 0.6 10.5 -0.4 10.3 10.2 10.1 'n $-400 -200$ $\overline{200}$ -600 $\mathbf 0$ x position [mm]

Preliminary 2D efficiency of strip channels of a QS3 gap at a operation voltage of 3100 V.

 -7500

 -6000

 -4500

 -3000

 -1500

STGC testbeam at CERN

- Three quadruplets tested with beam at CERN in October 2018
	- Quadruplets instrumented with 4 pad and 4 strip front-end boards
	- Data taken at 2.8 kV, 2.9 kV, 3.0 kV and 3.1 kV
	- Studies of gap efficiency and strip resolution
		- Analysis of data is ongoing

Faraday cages shielding the front-end boards

C. Chau (Carleton) Upgrades of ATLAS Thin Gap Chambers **16**

Integration at CERN

- Assemble sTGC quadruplets into wedges
- Install the electronics and services
- Integrate sTGC and MM into sectors
- Wheel assembly

Assembly of a small sTGC wedge Both new JDs with spokes for small sectors

Phase-II TGC Upgrade Projects

ATLAS EIL4 TGC

- EIL4, made of two gas gaps, are not designed to be part of the trigger system in the endcap region
	- Region of interest of \sim 1 m²
- EIL4 hit data can reduce significantly the fake trigger rate
	- **Providing an extra OR logic to the** trigger system
- High hit rate at the HL-LHC degrades the rejection power of the current EIL4 TGC

Design of Phase-II EIL4 chambers

- Replace current EIL4 TGC (doublets) with triplet thin gap chambers
	- **Finer granularity**
	- More robust 2 out of 3 coincidence
- Expect the project to ramp up after the sTGC production is over

TGC trigger for the HL-LHC

- Maintain trigger rates of single muons with low momentum at manageable level at the HL-LHC
- Upgrade to modern electronics
	- Increase trigger rate capacity up to 4 MHz (first-level trigger)
	- Allow robust trigger algorithm

Diagram of proposed first-level trigger logic

Upgrade of the TGC electronics

- All TGC electronics will be replced, except the ADS boards
- Development is underway
- Prototypes of PS boards are produced with all requirements for HL-LHC
- Testbeam and irradiation tests done

ASD: Amplifier–shaper–discriminator PS: Patch Panel ASIC and Slave ASIC

Testing of a PS prototype board

- Test of a prototype board at the H8 beam line at CERN done in Fall 2016
	- Demonstrate stable data transfer of 2 x 8 Gbps, and control and monitor of ASD boards through PP-ASIC
- Gamma irradiation test of PS board components (PP-ASIC, DAC and ADC chips) at Nagoya University
	- Demonstrate all components satisfy the requirements for the HL-LHC

Phase-II TGC trigger performance

- Upgrade sector logic to exploit all hits available
	- Replace current TGC logic ($2/3$ & $3/4$ coincidence) with track segment with requirement on number of hits (hits in at least 5 of the 7 layers)
- Combine NSW track segment with TGC track segment
	- Reduce trigger rate by 30%, mainly by eliminating fake triggers, in the region $1.3 < |\eta| < 2.4$ for nominal threshold $p_T = 20$ GeV

Summary

- Upgrades of the ATLAS TGC chambers are foreseen following the LHC upgrade program
- sTGC chambers will replace part of the inner ATLAS muon station in the endcap region
	- **Production is underway at all construction sites**
	- Integration at CERN is progressing well
	- **Performance of chambers are evaluated with cosmic muons and tests** with beam at CERN
- Replacement of current EIL4 TGC doublets with triplets for the HL-LHC allows more robust triggering
- Phase-II upgrade of the TGC electronics improves TGC trigger with more refined algorithms, reducing significantly the fake trigger rate

Backup

sTGC Electronics

- NSW electronics overview scheme
	- Satisfy the Phase-II requirement on first-level trigger rate of 1 MHz

Phase-II TGC PS board

• Patch Panel ASIC and Slave ASIC (PS) board has all functionalities required for the HL-LHC

PP-ASIC

- \cdot 8 x 32 channels = 256 channels
- Eliminate timing differences, determine bunch crossing and synchronize to LHC clock

FPGA

- Data transmitter between PP-ASIC and sector logic
- Bandwidth of 16 Gbps

DAC and ADC.

• Apply and monitor threshold voltage to ASD chips

