The ATLAS Eventindex and its
evolution towards Run 3

Evgeny Alexandrov’, Igor Alexandrov', Zbigniew Baranowski?, Dario Barberis?,

Luca Canali?, Gancho Dimitrov*, Alvaro Fernandez Casani®, Elizabeth Gallas®,
Carlos Garcia Montoro®, Santiago Gonzélez de la Hoz®, Julius Hrivnac’, Andrei Kazymov',
Mikhail Mineev', Fedor Prokoshin®, Grigori Rybkin’, Javier Sanchez®, José Salt Cairols®,
Petya Vasileva* and Miguel Villaplana®

1JINR Dubna, 2CERN-IT, 3Univ./INFN Genova, “CERN-ATLAS, 3IFIC Valencia, ®Univ. Oxford, "LAL Orsay,
8CCTVal/UTFSM Valparaiso, °Univ./INFN Milano

On behalf of the ATLAS Collaboration

ACAT 2019, Saas Fee, Switzerland

March 12, 2019

@ ATLAS Eventindex

e The ATLAS experiment produces several billion events per year

e A database with the references to the files including each event in every stage of processing is necessary in order to retrieve
the selected events from data storage systems

e The ATLAS Eventindex project provides a way to store the necessary information using modern data storage technologies
m allows saving in memory key-value pairs
m select the best tools to support this application
e performance, robustness and ease of use

e An infrastructure was created which
o allows fast and efficient selection of events of interest, based on various criteria, from the billions of events recorded
o allows an indexing system that points to those events in millions of files scattered in a world-wide distributed
computing system
o contains records of all events processed by ATLAS, in all processing stages

M.Villaplana INFN Milano ACAT2019 March 12, 2019 2

@ ATLAS Eventindex

e A system designed to be a complete catalogue of ATLAS events, real and simulated data

e Each event record contains 3 blocks of information:

o Event identifiers

Run and event number
Trigger stream
Luminosity block

Bunch Crossing ID (BCID)

o Trigger decisions
m Trigger masks for each trigger level
m Decoded trigger chains (trigger condition passed)

o References to every event at each processing stage:

m These are unique pointers to that event on the grid, enabling user 'event picking' jobs to retrieve specific
events of interest

M.Villaplana INFN Milano ACAT2019 March 12, 2019

& Use cases

e Event Picking
o Users able to select single events depending on constraints.
o Order of hundreds of concurrent users
o Requests ranging from 1 event (common case) to 30k events

(occasional) i

e Production consistency checks gneg
o Duplicate event checking i

m Events with same ID appearing in same or different §
files/datasets i

o Overlap detection / el

m Construct the overlap matrix identifying common events na

across the different files i
B |

e Trigger checks and event skimming
o Count or give an event list based on trigger selection

o Trigger overlap detection
m Number of events in a real data Run/Stream satisfying trigger X which also satisfy trigger Y

M.Villaplana INFN Milano ACAT2019 March 12, 2019

Q.D Architecture

e Partitioned architecture, following the data flow:

o Data Production: extract event metadata from files produced at Tier-0 or on the Grid

o Data Collection: transfer Eventindex information from jobs to the central servers at CERN

o Data Storage: provide permanent storage for Eventindex data and fast access for the most common queries +

finite-time response for complex queries
m Fullinfo in Hadoop; reduced info (only real data, no trigger) in Oracle for faster queries

e Monitoring: keep track of the health of servers and the data flow
e System in continuous operation since Spring 2015

Producer
transformation

Oracle
importer

Web Service

. GUI+CL

. GuI+cCL
Objec ,l_---; — \ - -_Zﬂ_] _,,_,---I-‘ —\ — --Z\]
Store - Mapfile + HBase : . -

Tier-0 or Grid job

Monitoring Sy*stem
A

| | |
Data Production Data Collection Data Storage and Query Interfaces

M.Villaplana INFN Milano ACAT2019 March 12, 2019

@ Hadoop storage

. Consumer Data
e Hadoop is the baseline storage technology structures
o it can store large numbers (10s of billions) of e in Hadoop
simply-structured records
o and search/retrieve them in reasonable times e

e Hadoop "MapFiles" (indexed sequential files) are used as
data format
o One MapFile per dataset
o Internal catalogue keeps track of what is where and
dataset-level metadata (status flags)
o Event Lookup index

e CLI, RESTful APl and GUI interfaces available for data inspection, search and retrieval

e Data volumes:
o Real 2009-2018: 21TB
o Simul 2015-2018: 5TB
o Other (incl. backup): 150 TB

MC15.1

46%

M.Villaplana INFN Milano ACAT2019 March 12, 2019

@ Oracle storage

e Simple schema with dataset and event tables
o exploiting the relational features of Oracle

e Filled with all real data, only event identification and pointers to event

locations
o optimised for event picking PARENT CHILD
o very good performance also for event counting by attributes TABLE TAB LE

(lumiblock and bunch ID) DATASET ID

PROJECT EVENTNUMBER
RUNNUMBER LUMIBLOCKN

STREAMNAME BUNCHID

e Easy calculation of dataset overlaps FRORSTER @_
DATATYPE GUID1

e GUI derived from COMA database browser to search and retrieve info m

e Connection to the RunQuery and AMI databases to check dataset
processing completeness and detect duplicates

D
A
T
A
S
§
S

e Currently: 72K Datasets (170 Billion event records) efficiently stored within
3.2TB table segments plus 2.8TB auxiliary index

M.Villaplana INFN Milano ACAT2019 March 12, 2019 7

¢ Guidelines for Next Generation Eventindex

e An evolution of the Eventindex concepts
o Currently: the same event across each processing step (RAW, ESD, AOD, DAOD, NTUP) is physically stored at
different HADOOP HDFS files.
o Future: One and only one logical record per event (Event Identification, Inmutable information (trigger, lumiblock, ...),
and for each processing step:
m Link to algorithm (processing task configuration)
m Pointer(s) to output(s)
m Flags for offline selections (derivations)
e Support Virtual Datasets:
o Alogical collection of events
m Created either explicitly (giving a collection of Event Ids) of implicitly (selection based on some other collection
or event attributes)
m Labelling individual events by a process or a user with attributes (key:value)
e Evolve Eventindex technologies to future demanding rates:
o Currently: ALL ATLAS processes: ~30billion events/day (up to 350Hz on average) — update rate throughout the
whole system (all years, real and simulated data). Read 8M files/day and produce 3M files
o Future: due to expected trigger rates, need to scale for next ATLAS runs: at least half an order of magnitude for
Run3 (2021-2023): 35 B new real events/year and 100 B new MC event/year.
m For Run 4: 100 B new real events and 300 B new MC events per year. Then sum up replicas and reprocessing

M.Villaplana INFN Milano ACAT2019 March 12, 2019 8

@ El evolution. HBase HEBASE /A2

e Apache HBase is the Hadoop database, a distributed, scalable, big data store.
o Open-source, distributed, versioned, non-relational database modeled after the Google BigTable paper
o Itis built on top of HDFS AND provides fast record lookups (and updates) for large tables

e HBase organizes data into tables
o Tables have rows and columns, which store values. (Like a spreadsheet)
m Rows are identified uniquely by their row key
m Each row can have a different schema
m Data within a row is grouped by column family. Must be defined up front and are not easily modified
m Values can be accessed given row key and column name

° RowKey design desirable properties:
o Have a small size
Should identify an event uniquely inside a ‘container’ (event peeking)
Allow searches reading the smallest quantity of consecutive data using ‘range scans’
Avoid sparse insertions into existing row key space
Try to use all regions evenly both, reading and writing
When growing, use the RowKey space homogeneously

o O O O O

M.Villaplana INFN Milano ACAT2019 March 12, 2019 9

¢ SQL on HBase

Various possibilities for SQL on HBase

Apache Spark — mainly for batch jobs

Apache Phoenix

APACHE

PHYENIX

o OLTP and operational analytics for HBase through SQL

m Takes SQL query

m Compiles it into a series of HBase scans

m Direct use of the HBase API, along with
coprocessors and custom filters

m Produces regular JDBC result sets

Apache Impala - handling of a row key mapping has to be on the application side
Apache Hive - has the same issues as Impala

1adaayooz

~ Application |

|
'Phoenix client

— HBase client |

N

RegionServer

RegionServer

Table,b,123

Table,c,123

RegionServer

Table,a,123
Table,b,123

Table,, 123
Table,a,123

HDFS

o RowKey design can be adapted to Phoenix’s types and sizes (losing some performance)
o Phoenix allows the use of RowKey fields in queries but they are stored as one entity in HBase

M.Villaplana INFN Milano

ACAT2019 March 12, 2019

10

¢ Tests @ CERN

e Base on experience from previous years we had a mixed feeling about the performance of HBase

o Mainly, because HBase installations were not tuned — running on default settings
e In the past months CERN IT Hadoop Service put big effort to understand and optimize HBase configuration
e HBase 2.x seems to be even faster — reduced garbage collecting by JVM

o Test setup
o Table schemas
m Datasets
e PRIMARY KEY (runnumber, project, streamname, prodstep, datatype, version, dspid)
m Events (salting enabled)
e PRIMARY KEY (dspid,eventnumber)
e DATA_BLOCK_ENCODING='FAST_DIFF', COMPRESSION='SNAPPY"', SALT_BUCKETS = 10;

o Apache Spark used for reading from sequence files and writing to HBase (via Phoenix API)
o Test cluster
m 12 machines

m 32 vcors, 64 GB of RAM
m CDH 5.15 installed

M.Villaplana INFN Milano ACAT2019 March 12, 2019

11

Q') Tests @ CERN

e Loading Atlas Eventindex data to HBase via Phoenix

103 B real events loaded, 50k datasets Vo s e
Avg loading speed 80kHz
Size in HBase: 36.8 TB

Avg record size: 392B
Number of regions: 10667
Avg data extraction time: 0.3 s

o O O O O O

e Phoenix queries
o First Phoenix query on events table takes some time (13s). Then any query returns within 1s
o Joint queries must be done carefully
m A query may take too long and fail
m Itis safer and typically faster to make queries on datasets and events separately instead of joining them

together

M.Villaplana INFN Milano ACAT2019 March 12, 2019

12

@ Tests @ IFIC. HBase RowKey design

M.Villaplana INFN Milano

We can have a binary composite key with the smallest number of components:

< (salt).dspid.dstypeid.dssubtypeid.eventno.seq > : < (1).4.1.1.8.2>B
(Byte).Integer.TinyInt.Tinylnt.Bigint.Smallint

salt: the slicing function is made internally by Phoenix.

dstypeid and dssubtypeid are identifiers of the data type
seq: allows insertion of duplicate events

o O O O

dspid is an identifier based on: < project, runNumber, streamName, prodStep, version >

This key allows direct event peeking, range scan over all the events for a given dataset and range scan over all the events

for all the derivations streams for the same dspid

As a useful side effect, defines a ‘canonical container’ which are all the events that share the same dspid.dstypeid

To improve write speed during insertion of events for a dataset, we divide the rowkey space (salt), so all the writes don’t go

to the same region

000

Use reverse bit order function to distribute keys evenly over the whole key space 001

010

011

Phoenix allows the use of RowKey fields in queries but they are stored as one entity

in HBase 198

101

All Int fields in RowKey are unsigned I

ACAT2019 March 12, 2019 111

[slw[v]=]o]

Bit reverse

000

100

010

110

>

001

101

011

111

13

Qi Tests @ IFIC

e Families represent related data that is stored
together on the file system

e Therefore, all column family members should hav
the same general access pattern.

e In this tests:
o A: Event location
B: Event provenance
C: Event description
D: Level 1 trigger (L1)
E: High Level Trigger (HLT)

o
o
o
o

M.Villaplana INFN Milano

family name

M EDE O EDE ® AN O Il O NN O KN O GE O (GBS O i QO

guid

oidl

0id2

prov

smk

hitpsk
11psk
lumiblocknr
bunchid
eventtime
Ivilid
lumiblocknr
bunchid
tbp

tap

tav
lumiblocknr
bunchid

ph

pt

rs

HBASE (Phoenix) Events table schema

type

binary(16)
unsigned_int
unsigned_int
varchar(10000)
unsigned_int
unsigned_int
unsigned_int
unsigned_int
unsigned_int
unsigned_timestamp
unsigned_long
unsigned_int
unsigned_int
unsigned_smallint[]
unsigned_smallint[]
unsigned_smallint[]
unsigned_int
unsigned_int
unsigned_smallint[]
unsigned_smallint[]
unsigned_smallint[]

ACAT2019 March 12, 2019

GUID of file

Provenance (JSON)
Trigger SuperMasterKey
HLT prescaler key

L1 prescaler key

Trigger before prescaler
Trigger aftet prescaler
Trigger after veto

HLT Physics
HLT Passtrought
HLT Resurrected

14

¢ Tests @ IFIC. HBase compression

o Storage size comparison for datasets totalling 224,389,536 events

compression A (GB) B (GB) C (GB) TOT (GB)
snappy 51 9.2 11.4 287
none 17.2 49.1 33.7 100.0
Snappy 1-letter 5.0 9.3 9.3 23.7
compression A B C TOT
snappy 5.1GB 9.2GB 11.4 GB 25.7 GB
19.8 Ble 35.3Ble 44.3 Ble 99.4 B/e

o Snappy compression factor 4:1

o Reducing the columns name to 1 letter improves used space, but not enough to justify the loss of human
readability.
m Try to reduce names to a meaningful minimum

M.Villaplana INFN Milano ACAT2019 March 12, 2019 15

& Alternatives to store information

e Several alternatives have been tried to store trigger information:
o Binary packing. Two codings:
m Use 10 (12) bits for L1 (HLT). (TC)
m Use 10 (12) bits for L1 (HLT), and pack the components together
o Native Phoenix arrays (smallint [])
m using one array per trigger: TBP, TAP, TAV, PH, PT, RS
m using just one array per trigger level (L1 and HLT)
e storing all components together with their sizes at the end
o Use also TPB*, TAP*, TAV* that eliminates triggers present in next stages
e Posible block encodings:
o Prefix, Diff, Fast_diff, Prefix_tree

e Comparison of size in HDFS have been made using 10 M events

o HDFS files sizes have been read after compaction. File redundancy is not taken into account

M.Villaplana INFN Milano ACAT2019 March 12, 2019

16

L
Q’ TeSt res u Its bytes/event PREFIX DIFF FAST_DIFF PREFIX_TREE

A 28.8 20.3 19.5 28.8
B 23.0 19.0 17.4 23.0
€ 48.8 43.6 47.0 48.8
PREFIX DIFF FAST_ PREFIX Trigger L1
DIFF _TREE
D 82.6 817 82.8 82.6 TC
e FAST_DIFF better for Location (A) and Provenance (B) DO 137.0 1345 1421 137.0 3arrays TBP, TAP, TAV
D1 89.3 90.2 98.4 89.3 3 arrays TBP*, TAP*, TAV*
e DIFF better for Event description (C), L1 and HLT D2 855 82.1 84.3 85.5 Cod10. TBP*, TAP*, TAV*
D3 85.0 828 84.3 85.0 Cod10. TAV*, TAP*, TBP*
e DIFF seems to be better but FAST_DIFF is good enough D4 855 82.6 84.5 85.5 Cod10. TAP*, TAV*, TBP*
D5 87.3 821 84.0 84.9 Cod10. TAP*, TBP*, TAV*
e L1 trigger has to be stored without repeating triggers D6 883 84.1 87.0 88.3 Array. TBP*, TAP*, TAV*
D7 87.3 874 86.5 87.3 Array. TAV*, TAP*, TBP*
e Pack trigger into binary data is the best method D8 87.9 84.4 86.8 87.9 Array. TAP* TAV*, TBP*
D9 87.8 844 86.8 87.8 Array. TAP*, TBP*, TAV*
e Use one array to store all triggers for a level is not much PREFIX DIFF FAST PREFIX Trigger HLT
worse and uses standard Phoenix coding DIFF _TREE
E 86.5 858 87.2 86.5 TC
E1 80.0 739 80.9 80.0 3arrays PH, PT, RS
E2 728 714 73.4 72.8 Codl12. PH, PT, RS
E3 1 671 70.6 71.1 Cod12. RS, PT, PH
E6 75.6 742 76.7 75.6 Array. PH, PT,RS
E7 757|715 75.8 75.7 Array. RS, PT, PH

M.Villaplana INFN Milano ACAT2019 March 12, 2019 17

@ Tests @ IFIC. Phoenix queries

e Some Phoenix functions have been written to help accessing the data:

e Event Picking e Select events using trigger
> select EI_REFO(A.SR) from tOtrig3.events where DSPID=-1073741824 > select eventno,EI_REFO(sr, 'full') from tOtrig3.events where
and DSTYPEID=4 and DSSUBTYPEID=@ and EVENTNO=1901350885; EI_TRIGO(d.11, 'tav','s and 45') limit 10;
o = o= = mwmes e = cim = imas e = mim = e i = mis = e = * o mim mymiim e i i Hhim i i i mem e e i = i = i = e e e =em = =feim mfe Sfeim i - +
| EI_REFO(A.SR, '''GUID''') | | EVENTNO | EI_REFO(A.SR, 'full') |
et e e + thimiim i i =y i = Him =i mieim mim m¥Sim i meim i =ee i =¥ i S mie =§eim mi =Yem mim =eim i =Eeim e e +
| 83EFC342-DD11-CB46-B3D6-FD98BOCA35AF | | 1510912226 | 98336FF4-AADO-7C42-9FD6-DO1A98DD6655:00000261-000024C3 |
Hooooo oo + | 2518915605 | 78DA7134-DDDE-1046-ADCO-711847F58B8B:0000025F-000027DF |
1 row selected (0.043 seconds) | 3220563715 | 7E2377FD-AF64-5F45-83EQ-49A493E9A091:0000025F-00004410 |
| 3310720059 | BFA832E5-4759-D442-99D8-C73AC318C274:0000025E-000011D8 |
| 1901350885 | 83EFC342-DD11-CB46-B3D6-FDI8BOCA354F :0000025F-00002FEF |
e : : : : | 3741069365 | F11E806B-50CC-A24F-A571-2B28895F4BF4:00000261-00002B31 |
e Dataset con_1p05|t|on. which RAW data files is this | 3327013818 | 4378FBF6-77FC-CO4E-BO81-CA3195CF9477:00000261-000013E7 |
dataset coming from? Fomomooooaes thre o o s e i st St i s S o e S5 e S S i St S S S S +
7 rows selected (10.811 seconds)
> select EI_PRVO(pv, 'guid',1),count(*) from tOtrig3.events where DSPID=- .
1073741824 and DSTYPEID=4 GROUP BY EI_PRVO(pv, 'guid',1) limit 10; e Event duplicates
s i S S B R S S B S S SR S SR S S e <ieie B S & +
| EI_PRVO(B.PV, 'guid', 1, -1) | COUNT(1) | > select count(*),SUM(a) from (select eventno,count(*) as a from
Fommmmmmem oo o Hommmmmmomes + deriv4.events group by eventno having (count(*)>1));
| 0OO39BAE-3C8C-E811-B50C-44A8420A88BC | 1792 | PR PSR +
| 000488BB-5A8C-E811-881D-44A8420A88BC | 2360 |
| 000A4651-A18C-E811-9FOD-1866DA6GD1O6D | 2970 | | COUNT(1) | SUM(A) |
| 0OOBC1D9-608C-E811-9F42-44A8420A88BC | 426 | et e +
| 0011F872-448C-E811-A006-44A8420A8576 | 1956 | | 97140 | 214550 |
| 00122CA2-808C-E811-AC7C-1866DA6D0964 | 2649 | s s e e b w wwme +
| G015AAC4-918C-E811-85AC-44A8420A5EB7 | 297 |
| 0016C844-3E8C-E811-ADDC-44A8420A7621 | 2057 | L row selecked (2.967 secanis)
| 002167F6-418C-E811-85AC-44A8420A5EB7 | 2103 |
| 0023A65D-588C-E811-BCDD-44A8420A8576 | 2324 | . - . .
Pt asaR Fommmmmmame H e Derivation overlaps computation have been tested using MR

10 rows selected (6.169 seconds) and PHOEN'X apl
M.Villaplana INFN Milano ACAT2019 March 12, 2019 18

@ Outlook

The Eventindex project started in 2012 at the end of LHC Run 1 driven by the need of having a functional event picking
system for ATLAS data

The data storage and search technology selected in the first phase of the project (Hadoop MapFiles and Hbase, in
2013-2014) was the most advanced available at that time in the fast-growing field of BigData and indeed after a couple of
initial hiccups it proved reliable and performed satisfactorily
o Part of the data are replicated also to Oracle for faster access but mainly to have a uniform environment between
event and dataset metadata

Nevertheless the current implementation of the Eventindex started showing scalability issues as the amount of stored data
increases
o Slower queries, lots of storage (compression helped)

Phoenix queries and HBase new event table prototypes have been tested, and show encouraging results
o We have a table schema candidate
o Basic functionality is ready. Working towards improved performance and better interfaces
o Need to keep testing with more data and get performance metrics

If all goes well, we plan to have the new system operational during 2019 in parallel with the old one, and phase out the old
system during 2020 (well in advance of the start of LHC Run 3)

M.Villaplana INFN Milano ACAT2019 March 12, 2019

home.infn.it

http://home.infn.it/en/

Q.D Data production

e Tier-0 jobs index merged physics data (AODs), collecting also references to RAW data

e Similarly, Grid jobs collect info from datasets as soon as they are produced and marked as “complete” in the ATLAS
Metadata Interface (AMI)
o Other data formats (HITS, DAOD etc.) can be (and are) indexed on demand
o Continuous operation since spring 2015

e System now in routine operation
o Very low number of failures:
m Site problems (fixed by retries)
m Corrupted files found occasionally

T T T T T T T T T

Number of Successful and Failed Jobs
169 Weeks from Week 22 of 2015 to Week 34 of 2018

b= 7.000,000
Completed jobs Cumulative

| 000000 from Week 22 of 2015 to Week 34 of 2018

I 5.000,000

7.4M jobs run since 2015

b= 4,000,000

I 3.000,000

I 2.000,000

= 1.000,000

0
Jul 2015 Nov 2015 Mar 2016 Ji 2016 Nov 2016 Mar 2017 Juil 2017 Nov 2017 Mar 2018 Jui 2018

pi 2015

M.Villaplana INFN Milano ACAT2019 March 12, 2019

Nov 2016

Q.D Data collection

e Producer: Athena Python transformation, running at Tier-0 and grid sites. Indexes AOD data and produces an Eventindex file

o Elinformation is sent by each job as a file to the ObjectStore at CERN (CEPH/S3 Interface) as intermediary storage
o Google protobuf data encoding (compressed)

(2 EiData Obiect Eipata (B)
eCl
Eventindex [Sté o el | chtindex

Producer

Consumer

@

STOMP
broker

Eventindex
pas Supervisor
sauTe)

e Supervisor: Controls all the process, receives processing information and validates data by dataset
o Signals valid unique data for ingestion to Consumers
o Operated with a web interface

El Prod. Status

El Cons. Status

e Consumers: Retrieves ObjectStore data, groups by dataset and ingest it into Hadoop storage

M.Villaplana INFN Milano ACAT2019 March 12, 2019 22

Q') Tests @ IFIC. RowKey space distribution

If dspid increases monotonically, key distribution will be a problem

So, we keep dspid increasing monotonically, but we don’t use it directly

e We use instead rev(dspid) where rev means reverse bit order

000| [o 000] [o
oo1| [1 00| |4
o10| |[2 010| |2
011 3 Bit reverse 110 .
00| |4 P> ool (1
101 101 .
110 o11] |3
111 | |

e This function have the nice property to distribute keys evenly over the whole key space from the beginning to the end

e Regions can be created in advance using the HBase pre-splitting feature

M.Villaplana INFN Milano ACAT2019 March 12, 2019

Q') Tests @ IFIC. R&W optimisation

e To improve write speed during insertion of events for a dataset, we can divide the rowkey space once more, so all the writes
don’t go to the same region

e Add a byte prefix to the rowkey <slice.dspid.dstypeid.eventnumber.seq>, where slice=mod(eventnumber % number_slices)

e To allow further division in the future, we use slice bits starting from the MSB to the LSB, so subdivisions include previous
ones

2 slices 4 slices
A 00000000 00000000 A1
01000000 A2
B 10000000 10000000 B1
11000000 B2

e Eventsin slice A will be found in slice A1, even though this is not the ‘correct’ slice anymore

e Event peeking will involve looking on several rowkeys or just one if we keep the number_slices along with the dspid

M.Villaplana INFN Milano ACAT2019 March 12, 2019 24

@ Tests @ IFIC. HDFS L1 Trigger File Format

SEQ file with:

* Key: <LongWritable> Value: <BytesWritable>

EventNumber

* LB and BCID are uint32

* L1Trigger is a collection of packed 10 bits triggerNumbers into 32 bit words:

N#tep [#1AP [#7AV'|] trig3 [trig2 [tigL | ... | | trigN [trigN-1))

* Since TAV c TAP c TBP:

TAV' = TAV
TAP' = TAP - TAV L

TBP' = TBP - TAP @ ;
(6

M.Villaplana INFN Milano ACAT2019 March 12, 2019

& Tests @ IFIC. HBase trigger storage size

o Storage size for data with trigger processing totalling 50,006,610 events

0.9GB 12GB 24GB 6.9GB 3.9GB 15.3GB
180B/e 24.0Ble 48.0B/e | 1380B/e 78.0Ble 306.0 Ble

HLT 78 | Sl

M.Villaplana INFN Milano ACAT2019 March 12, 2019

26

Qi HBase block encoding types

e In HBase compressors and data block encoding can be used together on the same Column Family.
o Data block encoding attempts to limit duplication of information in keys
o Compressors reduce the size of large, opaque byte arrays in cells, and can significantly reduce the storage space
needed to store uncompressed data

e Data Block Encoding Types

o In Prefix encoding, an extra column is added which holds the length of the prefix shared between the current key
and the previous key

o In Diff encoding, instead of considering the key sequentially as a monolithic series of bytes, each key field is split
so that each part of the key can be compressed more efficiently. Two new fields are added: timestamp and type

o Fast Diff works similar to Diff, but uses a faster implementation. It also adds another field which stores a single bit
to track whether the data itself is the same as the previous row. If it is, the data is not stored again

o Prefix tree encoding provides similar memory savings to the Prefix, Diff, and Fast Diff encoder, but provides faster
random access at a cost of slower encoding speed

Key Len ValLen Key Value Key Len ValLen Prefix Len Key Value
24 RowKey:Family:Qualifier@ 24 0 RowKey:Family:Qualifier@
24 RowKey:Family:Qualifierl Preﬂx 1 23 1
25 RowKey: Family:QualifierN —> 1 23 N
25 RowKey2:Family:Qualifierl 19 6 2:Family:Qualifierl
25 RowKey2:Family:Qualifier2 1 24 2

M.Villaplana INFN Milano ACAT2019 March 12, 2019

¢ Versions @ CERN

* Currently used Cloudera 5.15 cannot be mapped directly to any
Apache version
* 2.6.x<—>2.9.x
* Same for Hbase: 0.98.x <-> 1.2.x

* Currently in other production clusters we use
* Hadoop 2.7.6 and HBase 1.4.9
* and it is stable, but not without bugs
* planning to move to Hadoop 2.8.x soon

* On the other hand Hadoop 3.x seems to be production ready, we are
currently testing it

M.Villaplana INFN Milano ACAT2019 March 12, 2019

28

@ HBase RowKey compatibility with Phoenix

M.Villaplana INFN Milano

RowKey is adapted to Phoenix types and sizes loosing some
optimizations

Dstypeid is subdivided into dstypeid and dssubtypeid
< (salt).dspid.dstypeid.dssubtypeid.eventno.seq >:<(1).4.1.1.8.2>B
(Byte).Integer.TinyInt. TinyInt.Bigint.Smallint
Seq allows event duplicates
seq = crcl6 (guid:oid1-0id2)
The slicing function is made internally by Phoenix using:
salt = hash(rowkey) % bucketNum
and it is transparent to users creating the necessary subscans if needed

Phoenix allows the use of RowKey fields in queries but they are stored as
one entity in HBASE

All Int fields in RowKey are unsigned

ACAT2019 March 12, 2019

29

