
Nuclear Inst. and Methods in Physics Research, A 977 (2020) 164304

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

End-to-end jet classification of quarks and gluons with the CMS Open Data
M. Andrews a,∗, J. Alison a, S. An a,b, B. Burkle c, S. Gleyzer d, M. Narain c, M. Paulini a, B. Poczos e,
E. Usai c

a Department of Physics, Carnegie Mellon University, Pittsburgh, USA
b CERN, Geneva, Switzerland
c Department of Physics, Brown University, Providence, USA
d Department of Physics and Astronomy, University of Alabama, Tuscaloosa, USA
e Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA

A R T I C L E I N F O

Keywords:
Machine learning
Jet images
End-to-end
CMS Open Data
Convolutional neural network
LHC

A B S T R A C T

We describe the construction of novel end-to-end jet image classifiers to discriminate quark- versus gluon-
initiated jets using the simulated CMS Open Data. These multi-detector images correspond to true maps of the
low-level energy deposits in the detector, giving the classifiers direct access to the maximum recorded event
information about the jet, differing fundamentally from conventional jet images constructed from reconstructed
particle-level information. Using this approach, we achieve classification performance competitive with current
state-of-the-art jet classifiers that are dominated by particle-based algorithms. We find the performance to
be driven by the availability of precise spatial information, highlighting the importance of high-fidelity
detector images. We then illustrate how end-to-end jet classification techniques can be incorporated into event
classification workflows using Quantum Chromodynamics di-quark versus di-gluon events. We conclude with
the end-to-end event classification of full detector images, which we find to be robust against the effects of
underlying event and pileup outside the jet regions-of-interest.

1. Introduction

The study of jet substructure at the CERN Large Hadron Collider
(LHC) has played an instrumental role in the understanding of the
standard model (SM) of particle physics through the analysis of jets pro-
duced from Quantum Chromodynamics (QCD) [1,2] and from the decay
of boosted heavy resonances or particles such as the top quark [3–
6] or the Higgs boson [7,8]. Furthermore, jet substructure analysis
remains a central tool in searches for physics beyond the standard
model (BSM) involving boosted heavy new resonances (see [9,10] for
comprehensive reviews). A major component of understanding jets
arising from boosted heavy resonances, exotic or other BSM physics
processes, is a detailed understanding of the vastly more dominant QCD
jet background. For this reason, the characterization and discrimination
of light quark- versus gluon-initiated jets that comprise QCD jets has
also been extensively examined [11,12]. Indeed, a number of BSM
resonances involve preferential decays to either quarks or gluons [13],
making their study valuable in their own right. The development of
effective tools to identify gluons from their light-quark counterparts—
and to analyze jet substructure in general—has become a popular topic
of study as a result.

Differences in quark versus gluon jet radiation patterns arise from
their distinct QCD color charges: gluon initiated jets carry a larger QCD
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color factor leading to a shower evolution with a higher branching
probability [14,15]. The gluon jet thus exhibits a slightly softer and
broader radiation pattern of higher particle multiplicity relative to a
quark jet. To better appreciate the recent experimental advances in jet
substructure discrimination that exploit this signature, it is instructive
to sketch the jet finding and reconstruction process at the typical LHC
experiment. Fundamentally, data recorded with the LHC experiments
exists as detector-level information, either as energy depositions in
calorimeter cells or ‘‘hits’’ in tracking systems such as pixel or strip
detectors. Through a largely rule-based ‘‘particle-flow’’ algorithm [16,
17], the detector data from the various subdetectors are combined and
processed to reconstruct the particle-level information corresponding to
the 4-momenta of all the resolved particles originating from a proton–
proton collision at the LHC. A jet clustering algorithm [18] is then
applied to group nearby particles into a jet object. A number of jet-level
features can be derived to characterize the jet as a whole, such as its
shape and particle multiplicity. At each stage of the jet reconstruction
chain, a level of abstraction occurs to idealize the representation of the
data. While this simplifies their interpretation, it potentially involves
information loss that may be of disadvantage for more exhaustive BSM
searches, where exotic decay signatures might be expected.
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While earlier techniques in jet substructure analysis involving LHC-
like data began with jet-level variables [1,2,19], recent advances in
machine learning (ML)—particularly in deep neural networks (NN)—
have permitted classification algorithms to directly probe the particle-
level data constituting the jet. For a review of current state-of-the-art
ML-based jet classification see [20,21]. A number of non-trivial chal-
lenges have arisen from such approaches, for example, the order in
which the particle-level data should be presented to the classifier, and
how variable numbers of particles are handled. Especially for heavy
resonance decays, classifier performance may be particularly sensitive
to the choice of the ordering scheme. To address these issues, solu-
tions have been proposed involving artificial but physically-motivated
ordering schemes [6,22–28], as well as those utilizing order-invariant
algorithms [29,30]. Another highly popular approach has been to ex-
ploit the spatial distribution of the particles in the detector as a natural
solution to the ordering problem. Inspired by the immense success of
convolutional neural networks (CNN) in computer vision [31], such ‘‘jet
images’’ have been created by pixelating the particle-level data into
a grid that amounts to a coarse-grained histogram-like image of the
underlying detector geometry, which can then be fed to a CNN [11,32–
34]. However, as the pixelation process itself involves an additional,
lossy operation, such attempts have been noted to underperform rel-
ative to algorithms that directly use particle-level data, even when
artificial ordering is involved [12,26].

However, the ultimate information bottleneck in all of the above
particle-data based approaches is the rule-based particle reconstruction
algorithm itself. Most of the breakthrough success in applying CNNs
to computer vision have come from bypassing rule-based ‘‘feature
engineering’’ altogether and instead allowing CNNs to learn relevant
features directly from the raw camera data. Therefore, this fact moti-
vates the idea of applying ‘‘end-to-end physics classification’’ whereby
CNNs are used to directly train on maps of the true detector-level
data (or their simulated equivalents), in all their richness, before any
particle processing is performed. In theory, this gives the classifier
full access to the maximum recorded event information at a level not
achievable with processed particle- or jet-level data, while avoiding
the particle ordering problem altogether. Thus, while the end-to-end
approach bears a resemblance to existing jet image techniques, the un-
derlying information content is fundamentally different. Among simpler
neutrino experiments, this end-to-end strategy has quickly found suc-
cess [35,36], but among the more mature LHC experiments, adoption
is still in its infancy. Its success is by no means guaranteed, due to the
much more complex detector systems and workflows of hadron collider
experiments.

In previous work [37,38], we laid the basic foundation for perform-
ing end-to-end physics classification on complex LHC detectors like the
Compact Muon Solenoid (CMS) using electromagnetic objects. In this
paper, we apply the same techniques to the problem of jet substructure
classification, again using simulated CMS Open Data taking advantage
of this excellent public resource, as others have [19,39]. We study the
classification of jets initiated by quarks versus gluons from QCD dijet
production and use image windows around the jet region-of-interest
(ROI), or jet-view images, as done by the cited work above. While the
image representation of the tracking information in Ref. [38] is sim-
plistic, for our purposes, these images are not expected to significantly
impact the classification of quark versus gluon jets that generally do
not contain displaced secondary track vertices. We thus benchmark our
results against one of the current state-of-the-art jet classifiers based on
particle-level data [26].

In addition, we consider the event classification of the full dijet
process as either di-quark or di-gluon initiated. A number of potential
implementations for this approach are explored: from more standard
workflows, where the jet classification is factorized from the event
classification, to a unified event classification workflow, where a sin-
gle training is performed on the full detector-view images, analogous
to [38] (and to some degree, also [39–41]). While dijet decays are

Table 1
Number of training events per class passing event selection, by PU run era. Only the
leading-𝑝𝑇 jet in the event is used for the jet classification studies.

Category Run2012AB Run2012C Run2012D

Train+Validation 107778 148990 140182
Test 18136 23770 27747

simple enough that jet ordering becomes trivial, they are useful as a
pedagogical example to highlight the ability of end-to-end event classi-
fiers on full detector-view images to completely capture discriminating
features at both the jet- and event-level scales in the limit that the
event topology can be fully and intuitively modeled by hand. A more
general application demonstrating the performance of this technique
for the case of complex multi-body decays in which both ordering and
modeling are non-trivial is left for future work.

This paper is arranged as follows. In Section 2, we introduce our
data sample and event selection, while in Section 3, we briefly de-
scribe the CMS geometry and our jet image construction procedure. In
Section 4, we outline our network architecture and training strategy.
Finally, in Sections 5 and 6, we present the results of our jet and event
classification studies, respectively, and summarize our conclusions in
Section 7.

2. Open data simulated samples

We use simulated 2012 CMS Open Data [42] for all the studies
presented in this paper. The CMS Open Data are ideally suited to the
end-to-end approach due to their use of the Geant4 [43] package,
which delivers the state-of-the-art in first-principles detector simula-
tion, together with the most detailed geometry models of the CMS
detector available [44].

Both quark and gluon samples are derived from the QCD dijet
production dataset with a generated invariant transverse momentum
in the range 𝑝̂𝑇 = 90 − 170GeV [45]. The events are generated and
hadronized with the Pythia 6 [46] package with the Z2* tune, which
accounts for the differences in the quark versus gluon shower evolution.
The samples also account for the multi-parton interactions from the
underlying event and have run-dependent pileup (PU) ranging from a
peak average PU of ⟨PU⟩ = 18 − 21.

We impose a basic event selection on the dijet events for them to be
used and categorized under the quark or gluon class label, for both jet
and event classification. First, we require that the two outgoing partons
from the Pythia hard-scatter event be either both light quarks 𝑞𝑙,
where 𝑙 = 𝑢, 𝑑, 𝑠 (or their antiparticles), or both gluons, otherwise the
event is discarded. In addition, each of the partons must be matched to
a reconstructed jet to within a cone of 𝛥𝑅 < 0.4, where 𝑅 is the angular
separation in the pseudorapidity-azimuthal (𝜂 − 𝜙) plane. Jets with
wide-angle radiation are thus excluded from this study, for simplicity.
In turn, each of the parton-matched reconstructed jets must have a
minimum transverse momentum of 𝑝𝑇 > 70GeV and pseudorapidity
of |𝜂| < 1.8. For the jet identification studies, only the leading-𝑝𝑇 jet in
each passing event is used.

For computational convenience, we only use a subset of the total
dijet dataset of the CMS Open Data—we found no statistically signifi-
cant advantage to training on the full dataset. In addition, to minimize
training bias due to unbalanced class or PU representation, we truncate
the dataset to contain a balanced proportion of samples per class per
PU run era (Run2012AB, Run2012C, Run2012D), as summarized in
Table 1. We therefore obtain a grand total of 793900 samples for
training and validation, and 139306 samples for the final test set. This
thus gives our results in Sections 5 and 6 a statistical uncertainty of
about 0.4%, assuming Poisson statistics.
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3. CMS detector and images

The CMS detector is arranged as a series of concentric cylindrical
sections split into a barrel section and two circular endcap sections. The
innermost sections comprise the inner tracking system for identifying
charged particle tracks. This is then enclosed by the electromagnetic
calorimeter (ECAL) which measures energy deposits from electromag-
netic particles, followed by the hadronic calorimeter (HCAL) which
measures energy deposits from hadrons. Finally, the calorimeters are
enclosed by the outer tracking system used to identify muons.

The CMS Open Data contains the calibrated, reconstructed hits [47]
of the ECAL and HCAL at the crystal- and tower-level, respectively.
Following the image construction techniques in [38], we are able to
form calorimeter images whose pixels correspond exactly to physical
crystals or towers. Due to the complexity of the CMS tracking detectors
and the absence of a reconstructed hit collection for tracks in the CMS
Open Data, the track information can only be approximated with the
results of the reconstructed track fits that are the only track collection
present in the CMS Open Data. An ECAL-like granularity image grid is
thus filled with the (𝜂, 𝜙)-positions of each reconstructed track with
pixel intensity equal to the track’s 𝑝𝑇 . A study into more accurate
representations of the tracking information is reserved for future work.
In practice, as long as the track image resolution is comparable to
the effective resolution of the reconstructed track position, any loss in
information from using a discrete image grid for the track positions
is expected to be negligible. The full detector-view images therefore
consist of three subdetector channels: one each for ECAL, HCAL, and
the reconstructed tracks.

More specifically, for the barrel sections, the images are resolved in
the finer ECAL barrel (EB), with the HCAL barrel (HB) hits up-sampled
to match. The reconstructed track hits span the width of a single EB
crystal. The difference in segmentation between the ECAL endcaps
(EE) (𝑖𝑋, 𝑖𝑌 ) and the HCAL endcaps (HE) (𝑖𝜂, 𝑖𝜙) imposes a constraint
on the construction of high-fidelity, multi-channel detector images. As
explained in [38], we devise two image geometry strategies: one where
the EE segmentation is preserved and the HE hits are projected onto an
(𝑖𝑋, 𝑖𝑌 ) grid (ECAL-centric), and another where the HE segmentation
is preserved and the ECAL hits are projected onto an (𝑖𝜂, 𝑖𝜙) grid
but at a finer EB-like granularity (HCAL-centric). In either case, the
track hits appear as isolated pixels in the corresponding segmentation.
As illustrated in Fig. 1(a), this gives us a contiguous detector image
of resolution 𝛥𝑖𝜂 × 𝛥𝑖𝜙 = 280 × 360 of ECAL barrel-like granularity,
spanning the pseudorapidity range |𝜂| < 3. For the entirety of this
paper, we use only the HCAL-centric geometry strategy to simplify the
construction of jet image windows. We found no significant benefit to
appending additional wrap-around pixels along the 𝜙 edges of these full
detector-view images. For the jet-view images, this is described below.

The process of creating a jet-view image window given a recon-
structed jet passing the event selection is as follows: from the full
multi-subdetector image described above, we localize the jet by first
taking the centroid of the reconstructed jet, then scan for the HCAL
tower with the highest energy deposit within a window of 9 × 9 HCAL
towers (45 × 45 image pixels or 𝛥𝑅 ≲ 0.4). The most energetic HCAL
tower defines the center of the jet-view image around which we crop
a window of 125 × 125 image pixels (𝛥𝑅 ≲ 1), as illustrated in
Fig. 1(b). For jets which fall near the 𝜙 edge of the detector image,
we do a wrap-around padding so that the jet shower appear seamless
and the jet-view image dimensions are preserved. We do not pad in
the 𝜂 direction although this is, of course, a possibility. This imposes an
effective pseudorapidity cut on the reconstructed jet of about |𝜂| < 1.57.
While the jet-view window sizes here were chosen to be fairly generous,
future applications may choose to optimize the window sizes further to
extend the jet pseudorapidity range.

To gain a better intuition for the jet images, we present a number
of visualizations: Fig. 2 shows the various subdetector image over-
lays averaged over the full test set of about 70k jets for each class

Table 2
Number of events in training, validation, and final test set for each class. The total
training+validation and test sets contain a balanced proportion of class samples.

Training samples Validation samples Test samples
per class per class per class

384000 12950 69653

Table 3
List of end-to-end event classification algorithms.

Algorithm Inputs Architecture

A 2 × 𝑞∕𝑔 score FCN128 × 2
B 2 × 𝑞∕𝑔 score, jet 4-momenta FCN128 × 2
C Full detector image ResNet-15

(described in Table 1), while Fig. 3 shows subdetector images for a
single jet. Visually, one notes two main differences from previous,
particle-based jet images (e.g. [11,34]). First, the end-to-end images
appear noticeably more ‘‘raw’’ in that they contain more noise and
stray hits. This is, of course, expected given that we are looking at the
(simulated) physical detector deposits in all their richness. Importantly,
this provides a prime setting for the classifier to learn an internal noise-
mitigation strategy, potentially allowing it to maintain performance
even under higher PU conditions. This PU robustness would be greatly
diminished if one were to instead train on highly pruned jet images,
which could themselves be stripped of meaningful hits. Second, the
end-to-end jet images are rendered in the finer ECAL-like granularity
as opposed to the coarser HCAL-like granularity more commonly used
in previous work. As the results in Section 5 show, quark versus gluon
discrimination is essentially dominated by precise spatial resolution.
Moreover, while each subdetector channel has the same 125 × 125
resolution, the effective size of the particle features differs dramatically
across the subdetector images due to differences in the underlying
detector resolution. That is, in the tracks image, particles appear as
individual, isolated pixels, while in the ECAL image, as roughly 3 × 3
pixel showers, and in the HCAL image, as clusters of 5 × 5 pixel blocks.
Such a classification task, therefore, poses a unique, multi-scale feature
extraction task for the CNN. As we will find, CNNs do not disappoint.

As a reference to establish the maximum performance that can
be obtained with the ECAL-like granularity detector images in the
limit that particle position resolution saturates image resolution, we
construct detector images filled with only isolated pixels (i.e. with
no lateral shower width) corresponding to the generator-level particle
positions. Specifically, we take all the stable particles from the Pythia
generator’s particle table and construct a two-channel image with pixels
corresponding to the (𝜂, 𝜙)-positions of the stable particles weighted
by their 𝑝𝑇 . These include particles from both the hard-scatter and the
underlying event but not from PU. We place all electrons and photons
in one image channel and all the hadrons in the other. We then train
on jet-view and full detector-view images as before.

4. Network and training

We use the same training strategy both for the classification of quark
versus gluon jets, and for the classification of di-quark versus di-gluon
QCD events. We employ the ResNet-15 [48] CNN architecture found
in [38], where the same hyper-parameters were found to be optimal.
The ADAM adaptive learning rate optimizer [49] is used to minimize
the binary cross-entropy loss in batches of 32 samples. We use an initial
learning rate of 5×10−4, and explicitly reduce it by half every 10 epochs
for a total of 30 training epochs. We reserve about 26k out of the 768k
training samples for our validation set (see Table 2). All training was
done using PyTorch [50] running on a single NVIDIA Titan X GPU
with PyArrow for data I/O [51].

For the jet classification studies, we use the multi-subdetector chan-
nel jet-view images as constructed in Section 3 and feed these directly
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Fig. 1. Representative dijet event in HCAL-centric geometry at EB-like granularity: full detector-view image 1(a) spanning the range |𝜂| < 3, and individual jet-view images 1(b)
spanning 𝛥𝑅 ∼ 1. Images are multi-channel composites of information from tracks (orange), ECAL (blue), and HCAL (gray), all in log-scale. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

to the CNN. To aid in the interpretation of the results, we also experi-
ment with different combinations of subdetector channels in the input
image, as discussed in greater detail in Section 5.

For the event classification studies, we explore a number of ap-
proaches for integrating jet classification into a dijet event classification
workflow, as summarized in Table 3. Naively, the simplest way to
construct a dijet classifier would be to simply concatenate the outputs
of the individual jet classifiers, ordered by 𝑝𝑇 , and feed these into a
fully-connected neural network (FCN) which acts as the actual event
classifier. The jet classifier output used as input to the event classifier
could either be the final feature vector of the CNN, or just the final
quark versus gluon prediction (𝑞∕𝑔 score). While the latter tends to
be more standard among LHC analyses, the former could potentially
be beneficial if the event discrimination were driven by some other
internal property of the jet unrelated to its 𝑞∕𝑔 score. In this case, it is
possible to either train the jet classifier in-place concurrently with the
event classifier, or use a pre-trained, pre-calibrated jet classifier. Since
such a scenario is not expected for dijet classification, we simply use the
𝑞∕𝑔 score from the best end-to-end jet classification algorithm as input
to a FCN-based dijet event classifier (algorithm A). This, however, does
not account for the event-level kinematics of the jet. Therefore, we can
additionally augment the dijet classifier inputs with the 4-momenta of
the reconstructed jets (or the coordinates of the jet image centers), also
ordered by 𝑝𝑇 (algorithm B).

The above event classifiers collectively follow a factorized work-
flow, where the jet identification is done first, followed by a separate
event classifier that is engineered to exploit the topology of the un-
derlying physics process. However, one could also construct a unified
end-to-end event classifier that takes in the full detector-view image
(see Fig. 1(a)) all at once (algorithm C) to perform dijet classification
directly from detector date. This avoids the particle ordering and
numbering issues introduced in Section 1 since the natural spatial
distribution of the jets in the full detector is exploited. We found
no significant benefit to augmenting the full detector-view dataset
with images randomly ‘‘rotated’’ in 𝜙 to enforce azimuthal symmetry,
suggesting this had been learned by the classifier implicitly.

Algorithm C may be particularly suited to complex, multi-body
decays where engineering an effective event classifier is non-trivial.
Indeed, because algorithm C does not depend on one’s ability to model
the event topology, it can potentially serve as a guide for engineering
a specialized one that does. One challenge in implementing algorithm
C in an analysis is calibrating and deriving uncertainties for it, since
jet- and event-level sources of uncertainty become coupled into a
single classifier response. A possible solution is to first derive the jet-
level sources by selectively masking out the detector image outside
the object-of-interest. These studies can then be used to correct the
response of the classifier before deriving the event-level sources on the
fully unmasked detector image. More detailed, analysis-specific work is
needed to demonstrate this approach.

To evaluate classifier performance, we use the Receiver Operating
Characteristic (ROC) curve, which can be interpreted in terms of the
signal efficiency (true positive rate) versus background rejection (true
negative rate), as is commonly used in high-energy physics. The area
under the ROC curve (AUC) is used to select the best algorithm based
on the validation set. In addition, we also present the inverse of the
false positive rate (FPR) at a fixed true positive rate (TPR) of 70%.
For an unbiased estimate of performance, all final performance metrics
presented in our Results (Section 5,6) are calculated from the test set
which is statistically independent from the validation set.

5. Jet ID results

The end-to-end jet classification results lend themselves well to a
detector performance interpretation. To this end, we first perform the
quark versus gluon tagging using single subdetector-channel images,
to understand the relative importance of each subdetector. The re-
sults are presented in the last three rows of Table 4. The best single
subdetector performance comes from the reconstructed tracks image
followed by ECAL, then HCAL, correlating strongly with the resolution
of the underlying physical detector. Given that quark versus gluon
jets differ primarily in how broadly their jet constituents are spaced,
increased detector resolution would mean we are better able to resolve
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Fig. 2. Jet-view image overlays split by subdetector: tracks 2(a), ECAL 2(b), and
HCAL 2(c) over 70k jets each, all in log-scale. Gluon jets appear on the left, quark
jets on the right. Gluon jet showers are visibly more dispersed in all channels. Note
the presence of horizontal bands in the ECAL 2(b) overlays, highlighting the image
fidelity to capture the energy leakage across the ECAL barrel-endcap boundary. Image
resolution: 125 × 125.

the positions of the constituents. In fact, a close visual inspection of the
core of the single-jet subdetector images in Fig. 3 suggests this pattern
of broader constituent distribution is indeed more apparent with the
finer tracks image, followed by the ECAL image where the constituents
are just barely resolved for the gluon jet but not for the quark jet. By the
HCAL image, it is no longer so obvious. This reinforces the importance
of building high-fidelity, full-granularity detector images that are able
to capture all the nuances in the energy deposition patterns. Lastly,
we note the remarkable ability of the CNNs to extract meaningful
information even from the highly-sparse tracks images which is purely
composed of isolated pixels if not empty space.

We next consider the effect of combining two subdetector images
in a single multi-channel image, as presented in rows 3–4 of Ta-
ble 4. We can combine the tracks and ECAL images to incorporate
information about the photons that are absent from the tracks image
(Tracks+ECAL). Alternatively, we could swap out the tracks image for
the HCAL (ECAL+HCAL), which amounts to taking the charged hadron
information from the coarser HCAL image, to form a purely calorimet-
ric image. The former approach achieves the best discrimination so far,
while the latter is less performant due to having sacrificed the precise
spatial information of the tracks. Indeed, despite the ECAL+HCAL
image having the advantage in terms of neutral hadron information, we

Fig. 3. Representative jet-view image for a single jet split by sub-detector: tracks 3(a),
ECAL 3(b), and HCAL 3(c) and combined into a composite image 3(d), all in log-scale.
Gluon jets appear on the left, quark jets on the right. Gluon jet showers are visibly
more dispersed in all channels. Image resolution: 125 × 125.

Table 4
End-to-end jet classification results. Statistical uncertainties are in the third significant
figure.

Jet image ROC AUC 1/FPR
@TPR=0.7

Generated EM+Had 0.854 6.46

Tracks+ECAL+HCAL 0.807 4.45

Tracks+ECAL 0.804 4.35
ECAL+HCAL 0.781 3.76

Tracks 0.782 3.73
ECAL 0.760 3.28
HCAL 0.682 2.27

see that the tracks-only image performs as well as the calorimeter-only
image, highlighting again the importance of precise spatial resolution.

Of course, the best overall performance is obtained when all three
subdetector images are combined together into a single input image
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Table 5
End-to-end versus RecNN jet classification results. Top scores for each algorithm
represent mean and standard deviation over 5 trials. Statistical uncertainties are in
the third significant figure.

Jet id algorithm ROC AUC 1/FPR
@TPR=0.7

Jet image, Tracks+ECAL+HCAL 0.8076 ± 0.0002 4.473 ± 0.013

RecNN, ascending-𝑝𝑇 0.8017 ± 0.0002 4.281 ± 0.013
RecNN, descending-𝑝𝑇 0.802 4.30
RecNN, anti-𝑘𝑇 0.800 4.25
RecNN, Cambridge/Aachen 0.801 4.26
RecNN, no rotation/re-clustering 0.800 4.23
RecNN, 𝑘𝑇 0.800 4.24
RecNN, 𝑘𝑇 -colinear10-max 0.799 4.23
RecNN, random 0.797 4.15

Fig. 4. Jet classification ROC curves.

(Tracks+ECAL+HCAL), as shown in the second row of Table 4. Al-
though the three subdetector images have identical image resolution,
the effective feature scales among them differ dramatically (see Fig. 3).
Therefore, that the CNN can extract meaningful features at these dif-
ferent feature scales and deliver robust performance notwithstanding
serves as a testament to their power and versatility.

We can then compare these results to the generator-level images to
understand how much better a jet classifier could perform in the limit
of maximal detector resolution and no PU. From the top row of Table 4
(Generated EM+Had), we find that detector resolution effects and PU
together account for about 5% of the performance loss at the jet level.

To put the end-to-end jet classification results into context, we can
benchmark against one of the current state-of-the-art jet classifiers,
the QCD-aware recursive neural network (RecNN) algorithm [26,27].
We use the default architecture, hyper-parameters, and training strat-
egy implemented in [52] but with the training split and evaluation
frequency modified for consistency with the strategy used here (see
Section 4). Using the exact same jet samples as used for the end-
to-end studies, we find the following results between the different
pre-processing schemes in Table 5. For the top-scoring pre-processing
scheme, we calculate the mean and standard deviation over 5 random
seeds of the training set shuffling (as in [26]), and compare this with
the Tracks+ECAL+HCAL jet image results. These appear in the top two
rows of Table 5 with the corresponding ROC curves plotted in Fig. 4.

We find the end-to-end jet image algorithm to be highly compet-
itive with the top performing RecNN, even after taking into account
statistical uncertainties and variations due to the random number seed.
While the ascending-𝑝𝑇 pre-processing gives the best RecNN results,
most of the other schemes fare comparably. As previous studies [12,26]
have shown image-based approaches to underperform relative to direct
particle-data based algorithms, our results suggest this discrepancy can
be attributed to limitations in the jet image construction rather than

Table 6
End-to-end event classification results. Statistical uncertainties are in the third
significant figure.

Event id algorithm ROC AUC 1/FPR
@TPR=0.7

A: 2 × 𝑞∕𝑔 score 0.882 8.44
B: 2 × 𝑞∕𝑔 score + jet 4-momenta 0.888 9.04
C: Full detector image 0.889 9.05
C-Gen: Full detector image,
generated particle inputs

0.911 12.92

Fig. 5. Event classification ROC curves.

to the use of CNNs themselves. Since previous jet image work involved
pixelating the particle-level jet constituents into HCAL-like granularity
images, this is not unexpected. High-fidelity, high-granularity detector
images that are as minimally processed and as information rich as
possible, therefore, are essential to effective jet image tagging. For
heavy jet flavor tagging, in particular, further progress is likely to be
found in more sophisticated treatments of the tracking detectors.

6. Event ID results

We can extend quark versus gluon tagging to QCD di-quark versus
di-gluon event classification to compare the different ways one might
build a dijet event classifier using end-to-end jet classification, as
described in Section 4. The results are summarized in Table 6 with the
corresponding ROC curves in Fig. 5. The result of using generator-level
particle images (algorithm C-Gen) is also included for reference.

These indicate that event classification performance is dominated by
jet-level differences (algorithm A), with negligible gain from including
the jet 4-momenta (algorithm B). To first approximation, this is ex-
pected given that both di-quark and di-gluon production channels have
similar non-resonant kinematics. Although di-quark events are slightly
differentiated in their angular distribution due to spin correlation and
polarization effects, these effects are not expected to be of significance.
The results for algorithm B were not sensitive to the choice of using the
reconstructed jet centroids or the image coordinates of the jet image
centers. While the full detector-view approach (algorithm C) performs
just as well as the topology-specific approach of B, this confirms C’s
ability to learn the same information as B at both the jet- and event-
level, without prior knowledge of the event topology. The approach
of C, therefore, may prove illuminating when tackling more complex
decays which are difficult to model. Lastly, looking at the results of
the generator-level images with no PU, we find the difference relative
to the physical detector images to be approximately 3% at the event
level versus 5% at the jet level, likely owing to the complementary
information that two jets provide.

To gain a better understanding of the impact of the underlying
event and PU in the full detector-view approach (algorithm C), we train
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Table 7
Event classification supplementary results. Statistical uncertainties are in the third
significant figure.

Event id algorithm ROC AUC 1/FPR
@TPR=0.7

C: Full detector image 0.889 9.05
C-Zero: Full detector image,
jet windows only

0.887 8.95

C, evaluated on C-Zero 0.883 8.56
C-Zero, evaluated on C 0.884 8.58

a separate event classifier on full detector images but with the pixel
intensities outside of the jet windows masked or zeroed out (algorithm
C-Zero). We can then perform a transfer learning test by evaluating
the classifier trained on the original scenario (algorithm C) on the
zeroed-out detector images and vice-versa. The results are presented
in Table 7.

As these indicate, the loss in performance from either training
starting point is minimal, showing that the end-to-end algorithm is
largely insensitive to the underlying event and pileup outside of the
jet region-of-interest, suggesting the classifier is focusing solely on the
pertinent features of the event. This suggests the end-to-end technique
is effective at PU mitigation and detector images should be as minimally
processed as possible when presented to the CNN in order to maximize
the information that can be extracted.

7. Conclusions

In this paper, we demonstrated the application of end-to-end clas-
sification techniques to the tagging of light quark jets versus gluon
jets using simulated CMS Open Data. We constructed jet-view images,
which were high-fidelity maps of the physical detector deposits, to give
the jet classifiers direct access to the maximum recorded event infor-
mation. The resulting multi-subdetector images showed rich features
spanning various length scales. Using a ResNet-15 CNN, we achieved
effective feature extraction to obtain performance competitive with
current state-of-the-art quark versus gluon taggers based on traditional
particle-level inputs. We found that precise spatial resolution was of
paramount importance, highlighting the importance of high-fidelity
detector images and especially the critical role played by the track
information. We also explored classifying di-quark versus di-gluon QCD
events to illustrate ways in which end-to-end jet classifiers can be used
to build event classifiers. We found the discriminating performance to
be largely dominated by jet-level differences and thus noted similar
performance across the different dijet classifier architectures.

Finally, we showed that full detector-view event classifiers were
robust and versatile against underlying event and pileup outside the jet
region-of-interest, making them a compelling tool for complex, multi-
body event topologies, where event classifier engineering becomes
non-trivial. In future work, we plan to pursue more sophisticated
representations of the tracking information in the context of heavy
flavor jet tagging and boosted decays.
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