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1 Introduction

The top quark, the most massive elementary particle discovered so far, is playing an im-

portant role in testing the standard model (SM) and searching for new physics beyond the

SM. At a hadron collider, such as the large hadron collider (LHC), the top quarks can

be produced in pairs via strong interaction or in association with a jet or a W boson via

weak interactions. The associated production with a W boson offers a particular window

to the weak interactions of the top quark and potentially can lead to a direct measurement

of the CKM matrix element Vtb. Besides, tW production is the second largest single top

production channel and thus serves as an essential background in search for new physics.

So far, the LHC has accumulated a large number of data, based on which the total and

differential cross sections of this channel have been measured directly [1–7].

On the other hand, the precise theoretical predictions provide a valid framework in

which important information can be extracted from the experimental data. Since the

leading-order (LO) cross section of the W boson associated production is proportional

to the strong coupling αs and |Vtb|2, it is crucial to understand the value of αs in order

to extract Vtb. The inclusion of higher order QCD corrections can help to estimate the

factorization and renormalization scale dependence of the cross sections. The next-to-

leading order (NLO) QCD corrections have been calculated in refs. [8–11], and the results

including decays of the top quark and the W boson are also available [12]. The parton

shower effects in this channel have been studied in refs. [13–15].

When considering the higher order corrections for tW− production, there is one sub-

tlety to deal with. Due to the same tW−b final state in both the real correction to tW−

and the tt̄ production with the decay t̄ → W−b, one needs to find a way to differentiate

the two processes or to define the tW− process properly beyond tree level. There are sev-

eral proposals on the market [16–19]. Here we point out that so far we discuss the tW−

production in the five flavor scheme, i.e., the LO is gb→ tW−. It is also possible to work

in the four flavour scheme in which the LO is gg → tW−b̄ [20, 21].
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The next-to-next-to-leading order (NNLO) QCD corrections to tW production are not

available for now. Though the NNLO N -jettiness soft function, one of the ingredients

for an NNLO calculation using N -jettiness subtraction method, has been computed in

refs. [22, 23], the two-loop virtual correction is still the bottleneck because of its dependence

on multiple scales. The soft gluon corrections near the threshold have been calculated up to

NNNLO based on next-to-next-to-leading logarithms (NNLL) resummation [24–26], which

are considered as an approximation to the full higher order corrections. The three-loop

soft anomalous dimension for tW production was calculated by ref. [27] which can be used

to study the full NNNLO threshold effects.

In this paper, we will present the soft gluon corrections to tW production using the

soft-collinear effective theory [28–32] (see [33] for a review) which separates the hard con-

tributions with the large momentum transfer and the soft gluon corrections characterized

as low energy contributions. Two different definitions of the soft limit are investigated.

One is measured by the threshold variable 1 − z = 1 −M2
tW /ŝ → 0, while the other is

given by s4 = (p1 + p2 − pt)2 −M2
W → 0. In principle, these two definitions encode the

same soft gluon physics in the threshold limits and they only differ by power suppressed

corrections. The threshold contributions up to NNLO are obtained and the resummation

is achieved through solving the RG equations of the hard and soft functions. Our results

could be taken as an important theoretical input in future experimental analyses.

The paper is organized as follows. In section 2 we show the basic information about

the kinematics in this process and the factorization formula of the cross section in the soft

limit. The numerical results and relevant discussions are then presented in section 3. We

conclude in section 4. The evolution equation of parton distribution functions (PDFs) in

the threshold limits and the analytic result of the soft function are given in the appendices.

2 Factorization and resummation formalism

We consider inclusive stable top quark and W boson associated production at the LHC

p(P1) + p(P2)→ t(p3) +W−(p4) +X(PX), (2.1)

where X denotes all the other possible extra radiations in the final states. In the threshold

limit at the leading power we only need to consider the partonic channel

b(p1) + g(p2)→ t(p3) +W−(p4) +X(pX). (2.2)

The corresponding LO Feynman diagrams are shown in figure 1. The partonic kinematic

variables are defined to be

ŝ = (p1 + p2)
2, t̂1 = (p1 − p3)2 −m2

t , û1 = (p2 − p3)2 −m2
t ,

t̂W1 = (p2 − p4)2 −M2
W , ûW1 = (p1 − p4)2 −M2

W . (2.3)

The corresponding variables at hadronic level are

s = ŝ/x1/x2, t1 = t̂1/x1, u1 = û1/x2, tW1 = t̂W1 /x2, uW1 = ûW1 /x1, (2.4)

where x1,2 are the Bjorken scaling variables.
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Figure 1. LO Feynman diagrams for tW− production.

In the soft limit or threshold limit, the real emissions are highly constrained, only soft

gluons allowed in the final state X. This limit would be reached if the invariant mass of the

final state M =
√

(p3 + p4)2 approaches the initial partonic center-of-mass energy
√
ŝ. As

a result, the variable 1 − z ≡ 1−M2/ŝ → 0 in the threshold limit,1 and the perturbative

expansion of cross section contains a series of large logarithms αns [ln2n−i(1−z)/(1−z)]+ (i =

1, 2, . . . , 2n), which might spoil the convergence of perturbative series. It is our purpose in

this work to study the threshold behavior and resum such large logarithms to all orders.

Since the soft limit is characterized by the final-state two particles’ invariant mass, it is

called the pair invariant mass (PIM) scheme. Besides, there is another scheme, called one

particle inclusive (1PI) scheme, in which the soft limit is defined by partonic level s4 → 0

with s4 ≡ ŝ+ t̂1 + û1 +m2
t −M2

W = (p4 + pX)2 −M2
W . The two schemes measure the soft

limit in different ways and the combination of the studies in two schemes provides more

complete information on the structure.

In the rest part of this section we briefly show the factorization formula for tW produc-

tion, which can be derived in a similar way used in the other processes, such as the single

top or top quark pair productions [34–38]. In the PIM scheme the cross section in the

threshold limit can be factorized to a product of the hard and the soft function2 [40, 41],

which describes the physics at two different scales, i.e., the large hard scale and the small

soft scale, respectively. They contain no large logarithms at their intrinsic scales (µh and µs
respectively) as expected, since they depend only on a single scale there. The resummation

of all the large logarithms caused by soft gluon effects is achieved by evolving the two func-

tions from the intrinsic scales to a common factorization scale using their renormalization

group (RG) equations. The RG improved differential cross section can be written as

d2σPIM

dM2d cos θ
=

λ1/2

32πsM2

∑
ij

∫ 1

τ

dz

z

∫ 1

z

dx

x
fi/p(x, µf )fj/p(z/x, µf )H(µh)UPIM(µh, µs, µf )

× z−η

(1−z)1−2η
s̃PIM

(
ln
M2(1−z)2

zµ2s
+ ∂η, µs

)
e−2γEη

Γ(2η)

∣∣∣∣∣
η=(CA+CF )aγcusp (µs,µf )

,

(2.5)

where polar angle of top quark θ is defined in the center-of-mass frame, λ = (1 −m2
t /ŝ −

M2
W /ŝ)

2 − 4m2
tM

2
W /ŝ

2, τ = M2/s and the other kinematic variables have already been

1In the central-of-mass frame the energy of the soft radiation is Eg ≈M(1− z)/2
√
z.

2This factorization is carried out at the leading power of the threshold variable. At next-to-leading

power, the threshold factorization becomes more complicated; see the recent paper [39].
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defined in eq. (2.3). For convenience we suppress the dependence of hard function H, soft

function s̃PIM and evolution factor UPIM on the kinematic variables. s̃PIM denotes the soft

function defined in the Laplace space. The evolution factor embodies RG running from

hard and soft scale to factorization scale, which is expressed as

UPIM(µh, µs, µf ) =

(
M2

µ2h

)(CA+CF ) aγcusp (µs,µh)

exp
[
2(CA + CF )S(µh, µs)

+ aγh(µs, µh) + 2 aγφq (µs, µf ) + 2 aγφg (µs, µf )
]
. (2.6)

where the definitions of function S and aγ and all relevant anomalous dimensions, e.g., γφq ,

can be found in appendix A of ref. [34]. The hard anomalous dimension specific to the tW

process is given by [42, 43]

γh = 2
(
γQ + γq + γg

)
− CA

2
γcusp ln

m2
t (−ŝ)
û21

−
(
CF −

CA
2

)
γcusp ln

m2
t (−ŝ)
t̂ 21

. (2.7)

In the 1PI scheme, the soft radiations are characterized via the threshold variable

s4 ≈ 2p4 · k with k the sum of all the momenta of the soft final state [35, 38, 44, 45]. The

analysis is simplified by going to the rest frame of the inclusive final state W + X where

|~pW | = O(s4/MW ). In this frame the energy of the soft radiation is Eg ≈ s4/2MW . In the

1PI scheme, the RG improved cross section is

d2σ1PI

dp2Tdy
=

1

16πs

∑
ij

∫ 1

xmin
1

dx1
x1

∫ smax
4

0

ds4
s4 +M2

W −m2
t − x1t1

fi/p(x1, µf )fj/p(x2, µf )

×H(µh)U1PI(µh, µs, µf )s̃1PI(∂η, µs)
1

s4

(
s4

MWµs

)2η e−2γEη

Γ(2η)
, (2.8)

where the integration range is defined as xmin
1 = (M2

W −m2
t − u1)/(s + t1), s

max
4 = m2

t −
M2
W + u1 + x1(s + t1), and momentum fraction x2 is defined via x1 and s4 as x2 =

(s4+M2
W −m2

t −x1t1)/(u1+x1s). The Mandelstam variables are related to the top quark’s

transverse momentum pT and rapidity y via t1 = −√sm⊥e−y, and u1 = −√sm⊥ey, with

m⊥ =
√
p2T +m2

t . Here the 1PI evolution factor has the form as

U1PI(µh, µs, µf ) =

(
M2

µ2h

)(CA+CF )aγcusp (µs,µh)

exp

[
2(CA + CF )S(µh, µs) + aγh(µs, µh)

+ 2 aγφq (µs, µf ) + 2 aγφg (µs, µf )

+ aγcusp(µs, µf )

(
CA ln

M2
Wµ

2
s(

t̂W1
)2 + CF ln

M2
Wµ

2
s(

ûW1
)2)]. (2.9)

The difference between the RG factors in eq. (2.5) and eq. (2.8) arises from the RG equation

of the PDFs and soft function. We present the RG evolution of the PDFs in the PIM and

1PI schemes in appendix A. The two-loop anomalous dimensions that govern the evolution

of the hard and soft functions and thus determine the scale dependent part are derived

from the general structure of the anomalous dimension [42, 43]. The scale independent part
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of the hard function has been obtained at NLO using modified MadLoop [46] which makes

uses of Ninja [47], CutTools [48] and OneLOop [49] packages. We have computed one-loop

soft function analytically, which is shown in appendix B. Combining all the ingredients

together, we have checked the RG invariance

d

d lnµ

(
fi/p ⊗ fj/p ⊗H ⊗ SPIM,1PI

)
= 0 (2.10)

in both of the kinematic schemes.

The NLO and NNLO leading power contributions are obtained by setting the scales

µh, µs, µf in eqs. (2.5) and (2.8) equal. In this way, for PIM scheme we capture all the

threshold logarithms αs[ln
n(1−z)/(1−z)]+, n = 1, 0 at NLO and α2

s[ln
n(1−z)/(1−z)]+, n =

3, 2, 1, 0 at NNLO, as well as the scale dependent logarithms predicted by eq. (2.5). The

similar procedure can be applied to obtain the threshold enhanced logarithms for 1PI

scheme. In the following calculations the approximate NNLO (aNNLO) cross section is

defined as

dσ(aNNLO) = dσ(NNLO leading) + dσ(NLO)− dσ(NLO leading), (2.11)

where the NLO power suppressed terms in 1 − z or s4 have been included to give more

precise results. We can also match the resummed prediction to the fixed order result by

dσ(NLO + NNLL) = dσ(NNLL) + dσ(NLO)− dσ(NLO leading) (2.12)

with the NNLL result given by eq. (2.5) and eq. (2.8).

3 Numerical results

To perform the numerical calculation, the input parameters are set as mt = 173.3 GeV,

Γt = 1.5 GeV, MW = 80.419 GeV, α = 1/132.5 and the Fermi-constant GF = 1.166390 ×
10−5 GeV−2. For the LO and NLO calculations we use the CT14 LO and NLO PDF

sets [50] as provided by the LHAPDF library [51], respectively. The aNNLO and resummed

predictions are obtained using CT14 NNLO PDF sets. For fixed-order calculations the

renormalization scale is set to be the same as the factorization scale. It is natural to

set the default hard scale to be the invariant mass of the top quark and W boson, i.e.,

µh = M , where the hard function contains no large logarithms. The soft scale is chosen

numerically according to the criterion that the perturbative series of the soft function are

well behaved [41]. Explicitly, we find that the ratio of the soft and hard scale is 0.3 ∼ 0.4

in the PIM scheme and 0.3 ∼ 0.5 in the 1PI scheme at the 8 TeV LHC. The default

factorization scale has been chosen to be µf = M and µf = mt + MW in the PIM and

the 1PI schemes, respectively. The final scale uncertainties are evaluated by varying these

scales by a factor of two independently.

As discussed in the introduction there are several methods to deal with the problem

of the interference between the real corrections to tW production and tt̄ calculation [12,

13, 16–19] at NLO, such as Diagram Removal (DR), Diagram Subtraction (DS) and b-jet

– 5 –
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[pb] PIM 1PI

b-veto DS DR b-veto DS DR

LO 6.96+5%
−6% 7.21+5%

−4%

NLO bg 12.0−6%
+2% 11.7−8%

+4%

NLO leading 11.2−5%
+2% 11.5−3%

+0%

NLO 9.31+0%
−1% 9.92+2%

−2% 10.0+2%
−2% 9.32−1%

+0% 10.0+1%
−2% 10.2+2%

−2%

power corr. −1.87+0.5
−0.25 −1.26+0.75

−0.40 −1.17+0.76
−0.43 −2.14+0.30

−0.05 −1.46+0.53
−0.21 −1.29+0.63

−0.27

Table 1. The fixed-order total cross section and the power corrections for tW− production with√
s = 8 TeV. The power corrections are defined as dσ(NLO)−dσ(NLO leading). The LO results are

different in two schemes due to the different choice of the factorization scale. The scale uncertainties

are shown.

� � � � �
�

�

�

�

�

��

��

Figure 2. The factorization scale dependence of the cross sections in the PIM scheme for tW−

production with
√
s = 8 TeV. The NLO result is obtained in the DS scheme. The plots are shown

in the region 1/8 < µf/M < 4.

transverse momentum veto. The differences between these schemes have been discussed

a lot before; see e.g. refs. [13, 14]. Since they are only relevant in the power suppressed

channels,3 we will not repeat the discussion about their difference in this paper. We

notice that in refs. [25, 26] where the higher order threshold corrections were studied, the

power corrections as well as certain leading power logarithmic independent terms are not

taken into account. In the rest of this section we only show the predictions of the process

pp → tW−. The total cross section for tW− and t̄W+ can be obtained by doubling the

results, as demonstrated in ref. [13]. The NLO cross sections in the b-jet veto scheme are

evaluated using MCFM [12] with pb−jetT < 50 GeV. The cross sections in the DS and DR

schemes are calculated by POWHEG-BOX [14, 52].

3The problem of the interference exists only in the gg → tW−b̄ or qq̄ → tW−b̄ channel which is at

subleading power near the threshold.
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Before presenting the resummed result, we firstly investigate the contribution of the

leading power terms. From table 1 we can see that the NLO corrections are sizeable,

enhancing the LO result by 29% ∼ 44% depending on the different methods to isolate the

tW process. These NLO corrections get contributions from all the bg, gg and qq′ channels,

though at LO only bg channel exists. Among them, the bg channel dominates or even

surpasses the NLO corrections, as indicated in table 1 too. Moreover, the leading power

terms of the bg channel can approximate the total result of the bg channel very well, the

difference being only 7% and 2% in the PIM and 1PI schemes, respectively. Since the

leading power terms can be obtained from the resummed results as discussed above in

eq. (2.11), they can be calculated up to higher orders in αs, namely beyond NLO. These

make up a major part of the full NNLO corrections and can be taken as an approximation

of the latter. The quality of the approximation could be estimated by looking at the

power corrections. The NNLO results are still unavailable, so we study the NLO ones

which are shown in table 1 as well. It is ready to see that they are negative and around

−20% ∼ −12% in PIM and −23% ∼ −13% in 1PI kinematic scheme depending on the

methods to deal with the interference problem. The contributions of the higher order (in

αs) power corrections can be obtained by calculating the full NNLO QCD corrections or

by making use of the next-to-leading power factorization and resummation, both of which

are difficult at the moment and beyond the scope of this paper.

Although the usual way to evaluate the scale uncertainty is to vary the scales by a

factor of two, it is also interesting to investigate the factorization scale dependence in a

larger region. From the figure 2, we can see that the ratio of the NLO over LO result is

insensitive to the factorization scale, always in the region (1.37, 1.53), when it is varied

from M/8 to 4M . This means that there is no clear choice of the factorization scale to

ensure fastest convergence. Moreover, we find that the bg channel is very sensitive to the

factorization scale when it is smaller than M/2. In order to avoid such a dependence, we

have chosen the default factorization scale at M . It can also be seen that the NLO leading

power terms dominate the bg channel over a large region.

Then we turn to the differential cross sections. We show the tW invariant mass dis-

tributions in the PIM scheme in figure 3 and the top quark pT distributions in the 1PI

scheme in figure 4. We show results at both the 8 TeV and 13 TeV LHC. It can be seen

that the leading power terms are dominant in all the invariant mass or the top pT regions,

as in the case of total cross sections. The NNLO leading terms increase the NLO leading

cross section by about 10% in most of the region.

Now we present in table 2 the aNNLO and NLO+NNLL result defined in eq. (2.11)

and eq. (2.12), respectively. The NLO+NNLL (aNNLO) predictions increase the NLO

total cross section by 12% ∼ 17% (9% ∼ 16%) depending on the collider energy and the

threshold variable, but with larger scale uncertainties. These large uncertainties are mainly

from the variation of the factorization scale µf . At first sight, this is unexpected since we

have checked the scale independence near the threshold analytically in eq. (2.10). However,

this is based on the assumption x1,2 → 1 as discussed in appendix A. When the kinematics

is far away from the threshold limit, this assumption is not valid. The very small scale

uncertainties of the NLO results seem like a coincidence because the NLO contributions

– 7 –
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Figure 3. Invariant mass distributions in the PIM scheme for tW− production. In the upper plots,

the black lines represent the NLO cross section from bg channel while the blue and red lines are the

NLO leading and NNLO leading predictions, respectively. In the bottom plots, we show the ratio

of NLO (NNLO) leading over NLO bg by blue (red) lines.
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Figure 4. Top quark pT distributions in the 1PI scheme for tW− production. The color scheme is

the same as figure 3.
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[pb] PIM 1PI

√
s 8 TeV 13 TeV 8 TeV 13 TeV

LO 7.0+5%
−6% 22.4+5%

−2% 7.2+5%
−4% 22.9+3%

−1%

NLO 9.92+2%
−2% 32.8+1%

−1% 10.0+1%
−2% 33.0+1%

−1%

aNNLO 11.6+4%
−5% 37.1+5%

−5% 11.2+6%
−6% 35.9+7%

−6%

NLO+NNLL 11.4+7%
−7% 36.7+7%

−7% 11.7+12%
−17% 37.3+16%

−21%

aNNLO/NLO 1.16 1.13 1.12 1.09

(NLO+NNLL)/NLO 1.15 1.12 1.17 1.13

Table 2. Total cross sections for tW− production in PIM and 1PI schemes. The NLO cross sections

are calculated using DS scheme.

◆◆◆◆ ◆◆ ◆◆

◆◆

◆◆

◆◆

◆◆ ◆◆

◆◆

��

��

��

��

���

���

Figure 5. Comparison between measured cross section for tW− and t̄W+ production at the

LHC [2, 3, 6, 7] and RG-improved predictions.

from gg and qq′ channels are negative while the contributions from bg channel are positive.

Meanwhile they display an opposite behavior under the scale variation; see table 1. Our

resummed result or its expansion in αs improves only the result in bg channel. It would be

interesting to investigate whether the scale cancellation among different channels happens

at higher orders. From table 2 we also find that the total cross sections in the PIM and 1PI

scheme are compatible. And the resummed cross sections in PIM kinematics have smaller

scale uncertainties.

Lastly, we compare the theoretical results with the measurements of the total cross

section for tW− and t̄W+ production at the LHC in figure 5. After considering the large

experimental uncertainties, the NLO+NNLL predictions are in good agreement with the

data at the 8 TeV and 13 TeV LHC. We also give the predictions at the 14 TeV LHC.
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4 Conclusion

We have investigated the soft-gluon resummation for tW production in the framework of

soft-collinear effective theory. We considered the two different definitions of the threshold

limit, 1 −M2/ŝ → 0 and s4 → 0, corresponding to the PIM and 1PI kinematic schemes,

respectively. We briefly discussed the factorization and resummation formalism in both

kinematic schemes. In addition, we have calculated the hard function and soft function at

NLO. Expanding the resummed formula in αs gives the leading power terms of the fixed-

order results. We found that the NLO leading power contribution is a good approximation

to the bg channel at NLO not only for the total cross sections but also for the differential

distributions. After resumming the soft gluon effects to all orders using renormalization

group equation, we find that the NLO+NNLL results increase the NLO cross sections by

about 15(12)% in PIM and 17(13)% in 1PI scheme at the 8(13) TeV LHC, but with large

uncertainties which is mostly generated by varying the factorization scale. We compared

with the data at the 8 and 13 TeV LHC and found good agreement within uncertainties.

We provide the prediction for the 14 TeV LHC.

In future, we can obtain more precise predictions for the tW process by including

higher order hard and soft functions in the resummation formalism or by calculating the full

NNLO corrections. The latter may be achieved making use of the N -jettiness subtraction

method [53–55]. The NNLO beam function [56, 57] and N -jettiness soft function [23] for

this process have been computed. The only missing part is the two-loop hard function,

which requires a huge amount of work. We defer this study to future work.
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A RG equation of the PDFs near the threshold

In the threshold limit x1,2 → 1, the DGLAP evolution for the PDFs can be written

as [58, 59]

d

d lnµ
fi/p(x, µ) =

∫ 1

y

dz

z

[
2Ciγ

cusp(αs)

(1− z)+
+ 2γφi(αs)δ(1− z)

]
fi/p(x/z, µ), (A.1)

where the quadratic Casimir operator Ci for the quark is Cq = CF , and for the gluon is

Cg = CA. In the threshold limit s4 → 0 the evolution equations for PDFs are

d

d lnµ
fq/p(x1(s4), µ) = 2CFγ

cusp(αs)

∫ s4

0
ds′4

fq/p(x1(s
′
4), µ)− fq/p(x1(s4), µ)

s4 − s′4
+

[
2CFγ

cusp(αs) ln
s4

−ûW1
+ 2γφq(αs)

]
fq/p(x1(s4), µ),

– 10 –
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d

d lnµ
fg/p(x2(s4), µ) = 2CAγ

cusp(αs)

∫ s4

0
ds′4

fg/p(x2(s
′
4), µ)− fg/p(x2(s4), µ)

s4 − s′4
+

[
2CAγ

cusp(αs) ln
s4

−t̂W1
+ 2γφg(αs)

]
fg/p(x2(s4), µ). (A.2)

A similar derivation for tt̄ and single top production can be found in refs. [35, 38].

B Soft function

The NLO soft function can be written as

s̃NLO(L, µs) =
αs
4π

[
− CAI12 − (2CF − CA)I13 − CAI23 + CF I33

]
, (B.1)

For convenience we evaluate soft integral Iij in the position space, and then transform

them into Laplace space as

Iij(L) = −(4πµ)2ε

π2−ε
vi · vj

∫
ddk

e−ik
0x0

vi · kvj · k
(2π)δ(k2)θ(k0)

∣∣∣∣
L0→−L

, (B.2)

with L0 = ln
(
−µ2x20e2γE/4

)
, and vi are normalized momenta fulfilling on-shell conditions

as v21 = v22 = 0 and v23 = 1.

In the PIM kinematics the full set of integrals can be found in section III of ref. [60]. In

the 1PI kinematics the integral I12 can be obtained from eq. (21) of ref. [35] by replacing all

the kinematics variables to the ones related to W . The integrals I13, I23 and I33 are more

complicated, and have been first calculated in this paper. The non-vanishing integrals are

collected below

I12 = −
(
L+ ln

ŝM2
W

t̂W1 û
W
1

)2

− π2

6
− 2 Li2

(
1− ŝM2

W

t̂W1 û
W
1

)
,

I13 = −1

2

(
L+ 2 ln

MW t̂1

mtûW1

)2

− π2

12
− 2 Li2

(
1− MW

mt xtW

t̂1

ûW1

)
− 2 Li2

(
1− MW xtW

mt

t̂1

ûW1

)
,

I33 = −2L− 4
1 + βtβW
βt + βW

lnxtW ,

I23 = I13(t̂1 → û1, û
W
1 → t̂W1 ), (B.3)

with

βt =
√

1− 4m2
t ŝ/(m

2
t −M2

W + ŝ)2,

βW =
√

1− 4M2
W ŝ/(m

2
t −M2

W − ŝ)2,
xtW =

√
xt xW and xi = (1− βi)/(1 + βi) .

In the limit of MW → mt, the integrals reproduce those for tt̄ production in ref. [35].

– 11 –
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