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Abstract

Using pp collisions corresponding to 3 fb−1 integrated luminosity, recorded by the
LHCb experiment at centre-of-mass energies of 7 and 8 TeV, the ratio of branching
fractions

B(Λ0
b→ ψ(2S)Λ)/B(Λ0

b→ J/ψΛ) = 0.513± 0.023 (stat)± 0.016 (syst)± 0.011 (B)

is determined. The first uncertainty is statistical, the second is systematic and the
third is due to the external branching fractions used.
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1 Introduction

The LHCb collaboration has observed many Λ0
b→ J/ψX [1–7] and Λ0

b→ ψ(2S)X decays
[5, 8], where X indicates a final-state particle system. Ratios of branching fractions of
b-hadron decays into ψ(2S)X and J/ψX provide useful information on the production of
charmonia in b-hadron decays. These ratios can be used to test factorisation of amplitudes.
The ATLAS collaboration has previously measured the ratio of the branching fractions to
be B(Λ0

b→ ψ(2S)Λ)/B(Λ0
b→ J/ψΛ) = 0.501± 0.033 (stat)± 0.019 (syst) [9]. This result

differs by 2.8σ from a theoretical prediction in the framework of the covariant quark model,
B(Λ0

b→ ψ(2S)Λ)/B(Λ0
b→ J/ψΛ) = 0.8± 0.1 [10,11], and with similar measurements in

the B0 system, B(B0→ ψ(2S)K0
S )/B(B0→ J/ψK0

S ) = 0.71± 0.06 [12]. In this paper the
measurement of the branching fraction of the decay Λ0

b→ ψ(2S)Λ by LHCb is presented.
Throughout this paper, the notation of a decay always implies the inclusion of the charge-
conjugate process. Determining the branching fraction of Λ0

b→ ψ(2S)Λ decays relative
to the branching fraction of Λ0

b → J/ψΛ cancels most experimental uncertainties. A
measurement with improved precision helps to better understand this possible discrepancy
and sets new constraints on the available form-factor models [11].

2 LHCb detector

The LHCb detector [13, 14] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or
c quarks. The detector includes a high-precision tracking system consisting of a silicon-
strip vertex detector (VELO) surrounding the pp interaction region [15], a large-area
silicon-strip detector located upstream of a dipole magnet with a bending power of about
4 Tm, and three stations of silicon-strip detectors and straw drift tubes [16] placed down-
stream of the magnet. The tracking system provides a measurement of the momentum, p,
of charged particles with a relative uncertainty that varies from 0.5% at low momentum
to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the
impact parameter (IP), is measured with a resolution of (15 + 29/pT)µm, where pT is
the component of the momentum transverse to the beam, in GeV/c. Different types of
charged hadrons are distinguished using information from two ring-imaging Cherenkov
detectors [17]. Photons, electrons and hadrons are identified by a calorimeter system
consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter
and a hadronic calorimeter. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers [18]. The online event selection is
performed by a trigger [19], which consists of a hardware stage, based on information from
the muon system, followed by a software stage, which applies a full event reconstruction.
In the simulation, pp collisions are generated using Pythia [20] with a specific LHCb
configuration [21]. Decays of hadronic particles are described by EvtGen [22]. The
interaction of the generated particles with the detector, and its response, are implemented
using the Geant4 toolkit [23] as described in Ref. [24].
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3 Event selection and selection efficiencies

The J/ψ and ψ(2S) charmonium states, collectively called ψ, are reconstructed through
their decay into two muons. Two tracks not originating from any PV, that are identified
as oppositely charged muons, are required to form a good vertex. These muons have to
fulfil various trigger requirements. At the hardware stage an event is required to contain a
muon with high pT or two muons with a large product of their respective pT values. At the
software stage further requirements are placed on the pT, momenta and IP of the muons.
The reconstructed ψ masses must be within ±100 MeV/c2 of their known masses [12].

The Λ candidates are reconstructed by combining a pion and a proton candidate.
Due to its long lifetime, the Λ baryon can decay either inside or outside the VELO.
The pion and proton can be reconstructed including hits from the VELO (long track) or
without (downstream track). Combinations where the track types of pion and proton differ
are not considered. Due to different momentum resolutions of these track types, some
selection requirements differ between the two samples. The pion and proton candidates
are required to have high momentum (> 2 GeV/c) and high pT and the tracks must be
displaced from any PV. In addition, long-track proton candidates must be consistent with
the proton hypothesis. The invariant mass of the pion and proton combination has to
be compatible with the known Λ mass [12] and both tracks must come from a common
vertex. Furthermore, the Λ candidate is required to have a decay time longer than 2 ps.

The Λ0
b candidate is reconstructed by combining the ψ and the Λ candidates and

requiring that they form a common vertex. The PV that fits best to the Λ0
b flight direction

is assigned as associated PV. It is required that the Λ0
b momentum points back to this PV

and its decay vertex is significantly displaced from this PV. Additional requirements are
imposed using a kinematic fit with constrained ψ and Λ masses. For downstream-track
candidates the reconstructed Λ decay time using this fit must be longer than 9 ps. The
χ2/ndf of this kinematic fit is required to be smaller than 36/6 for long-track candidates
and smaller than 26/6 for downstream-track candidates.

After the selection, about 1% of all events contain multiple candidates. Among
these multiple candidates a single candidate is retained using a random but reproducible
procedure. To ensure a precise efficiency determination, fiducial cuts on the Λ0

b baryon,
pT(Λ0

b) < 20 GeV/c and 2 < η(Λ0
b) < 4.5 are applied.

The signal efficiency is evaluated separately for each channel and track type, using
simulations and crosschecked with data. The simulation assumes unpolarised decays but is
corrected using theory predictions [10] for both decay channels. Sources of inefficiencies are
the geometrical acceptance of the detector, the trigger, the track reconstruction, and the
candidate selection. The last three efficiencies depend on the kinematics of the Λ0

b baryon,
which is not perfectly simulated. To account for the mismodelling, these efficiencies are
determined in bins of pT(Λ0

b) and η(Λ0
b). The same binning scheme, consisting of seven

bins for each of the two variables, is used for both decay channels. The binning scheme is
designed such that all bins are uniformly populated, with at least 100 entries in each bin.
The resulting efficiency for a given candidate is determined by linear interpolation of the
binned efficiency model to reduce effects arising from the choice of the binning scheme.
For the interpolation, the mean value in each bin is used and additional bins are added to
ensure interpolation at the boundaries. The resulting efficiency functions together with
the distribution of the corresponding signal candidates are shown in Fig. 1.
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Figure 1: Interpolated efficiency function for long-track candidates for (a) Λ0
b→ ψ(2S)Λ and

(b) Λ0
b→ J/ψΛ and for downstream-track candidates for (c) Λ0

b→ ψ(2S)Λ and (d) Λ0
b→ J/ψΛ

candidates. The distribution of the candidates on data is shown with black dots (each dot refers
to one candidate).

4 Signal yield determination

The signal yield is determined using an extended unbinned maximum likelihood fit to
the reconstructed Λ0

b mass in the range 5350 to 5750 MeV/c2 separately for both decay
channels and track types. The fit model for the reconstructed Λ0

b mass consists of several
components. The signal is modelled with a double-sided Hypatia function [25], where the
tail parameters are fixed to values obtained from fits to the simulation. The combinatorial
background is modelled with an exponential function. A background due to B0→ ψK0

S

decays, where the K0
S meson decays to two pions and one of the pions is misidentified as

a proton, is vetoed in the long-track sample by applying additional particle identification
requirements. In the downstream-track sample this component is modelled with a kernel-
density estimation using a Gaussian kernel [26] obtained from simulated B0→ ψK0

S decays.
Another source of background is Ξ−b → ψΞ− decays, where the Ξ− baryon decays to
Λπ− and the pion is not reconstructed. Contributions from this background source are
negligible in the long-track sample due to the sum of the large lifetimes of the Ξ and the Λ
baryons. Thus, the Λ→ pπ− decay only happens in less than 2% of the Ξ−b → ψΞ− decays
inside the VELO. In the downstream-track sample this background is modelled with a
kernel-density estimation using a Gaussian kernel obtained from simulated Ξ−b → ψΞ−

decays. The number of observed signal events is determined from a fit to unweighted
invariant-mass distributions. The resulting fit is shown in Fig. 2, separately for long and
downstream tracks, and the resulting yields for each data sample are shown in Table 1.
In a second fit, the efficiency-corrected yields are obtained assigning to each candidate a
weight given by the inverse of the efficiency. This fit to the two weighted invariant-mass
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Figure 2: Fits to the (unweighted) invariant-mass distributions of long-track candidates for (a)
Λ0
b→ ψ(2S)Λ and (b) Λ0

b→ J/ψΛ and for downstream-track candidates for (c) Λ0
b→ ψ(2S)Λ

and (d) Λ0
b→ J/ψΛ candidates. The signal (blue, dashed), the combinatorial background (green,

dotted), the B0→ ψK0
S background (cyan, long-dash-dotted) and the Ξ−b → ψΞ− background

(violet, dash-triple-dotted) are indicated.

Table 1: Yields from the invariant-mass fits in the range 5350 to 5750 MeV/c2 of (top) Λ0
b→ J/ψΛ

decays and (bottom) Λ0
b→ ψ(2S)Λ decays for each component.

track type Λ0
b→ J/ψΛ B0→ J/ψK0

S Ξ−b → J/ψΞ− combinatorial

downstream 11 090± 120 2 330± 210 800± 400 6 790± 240
long 3 800± 60 − − 1 130± 40

Λ0
b→ ψ(2S)Λ B0→ ψ(2S)K0

S Ξ−b → ψ(2S)Ξ− combinatorial

downstream 819± 33 160± 60 60± 90 920± 60
long 317± 19 − − 140± 13

distributions is shown in Fig. 3 for each data sample and the resulting efficiency-corrected
signal yields for each data sample are reported in Table 2.

4



]2c [MeV/Λ(2S)ψm
5400 5500 5600 5700

 )2 c
C

an
di

da
te

s 
/ (

 8
 M

eV
/

210

310

410

510 long track
LHCb (a)

]2c [MeV/ΛψJ/m
5400 5500 5600 5700

 )2 c
C

an
di

da
te

s 
/ (

 8
 M

eV
/

210

310

410

510

610 long track
LHCb (b)

]2c [MeV/Λ(2S)ψm
5400 5500 5600 5700

 )2 c
C

an
di

da
te

s 
/ (

 4
 M

eV
/

210

310

410

510 downstream track
LHCb (c)

]2c [MeV/ΛψJ/m
5400 5500 5600 5700

 )2 c
C

an
di

da
te

s 
/ (

 4
 M

eV
/

210

310

410

510

610 downstream track
LHCb (d)

Figure 3: Fits to the weighted invariant-mass distributions of long-track candidates for (a)
Λ0
b→ ψ(2S)Λ and (b) Λ0

b→ J/ψΛ and for downstream-track candidates for (c) Λ0
b→ ψ(2S)Λ

and (d) Λ0
b→ J/ψΛ candidates. The signal (blue, dashed), the combinatorial background (green,

dotted), the B0→ ψK0
S background (cyan, long-dash-dotted) and the Ξ−b → ψΞ− background

(violet, dash-triple-dotted) are indicated.

Table 2: Efficiency-corrected yields of Λ0
b→ ψ(2S)Λ and Λ0

b→ J/ψΛ signal decays from the fit
to the weighted invariant mass for both track types.

track type NΛ0
b→ψ(2S)Λ NΛ0

b→J/ψΛ

downstream 223 000± 13 000 3 320 000± 50 000
long 280 000± 18 000 3 980 000± 80 000

5 Result

The ratio of branching fractions of Λ0
b→ ψ(2S)Λ and Λ0

b→ J/ψΛ decays is determined
separately for long- and downstream-track candidates using

B(Λ0
b→ ψ(2S)Λ)

B(Λ0
b→ J/ψΛ)

=
NΛ0

b→ψ(2S)Λ

NΛ0
b→J/ψΛ

· B(J/ψ → µ+µ−)

B(ψ(2S)→ µ+µ−)
, (1)

where N is the number of efficiency-corrected signal candidates, and B(J/ψ → µ+µ−) and
B(ψ(2S)→ µ+µ−) are the known branching fractions of the ψ mesons to two muons [12].
Assuming lepton universality, the value for the branching fraction of ψ(2S) into two
electrons, B(ψ(2S)→ e+e−) = (0.793± 0.017)% [12], is used in the calculation due to its
lower uncertainty compared to the muon decay. Using the value for the branching fraction
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Table 3: Relative systematic uncertainties on the ratio of branching fractions.

value

Simulated dataset size 1.1 %
Binning choice 1.6 %
Trigger efficiency 1.2 %
Fit model 1.6 %
Simulation correction 1.3 %
B(cc→ ``) 2.2 %

total 3.8 %
total without B(cc→ ``) 3.1 %

of J/ψ into two muons, B(J/ψ → µ+µ−) = (5.961 ± 0.033)% [12] and the efficiency-
corrected signal yields, given in Table 2, the ratios of branching fractions for both track
types are calculated to be[

B(Λ0
b→ ψ(2S)Λ)

B(Λ0
b→ J/ψΛ)

]
long track

= 0.528± 0.036,[
B(Λ0

b→ ψ(2S)Λ)

B(Λ0
b→ J/ψΛ)

]
downstream track

= 0.504± 0.029,

where the statistical uncertainty only includes the uncertainty on the measured signal
yields. The results for the two classes of tracks are in good agreement and are combined
using a weighted average into

B(Λ0
b→ ψ(2S)Λ)

B(Λ0
b→ J/ψΛ)

= 0.513± 0.023.

6 Systematic uncertainties

The sources of systematic uncertainty are summarised in Table 3. The effect of each of
these sources on the measured ratio is evaluated independently and is quoted as a relative
uncertainty on the measured ratio of branching fractions. These relative uncertainties are
summed in quadrature to obtain the total systematic uncertainty.

All efficiencies are evaluated from simulated data, therefore the precision is limited
by the size of the simulated dataset. This effect is determined by varying the binned
efficiencies within binomial uncertainties and re-evaluating the efficiency-weighted signal
yield. The result varies by 1.1 %, which is assigned as the systematic uncertainty. The
effect of the chosen number of bins in both dimensions for the efficiency determination
is determined by varying the numbers of bins between five and ten in each dimension
independently. The largest difference compared to the the baseline result is a change of
1.6% in the ratio of yields, which is assigned as systematic uncertainty. To estimate a
systematic uncertainty for the trigger efficiency, kinematically similar channels with higher
rates, B+→ J/ψK+ and B+→ ψ(2S)K+, are used [27]. The resulting trigger efficiency
on data is compatible with that obtained on simulation, but the systematic uncertainty
due to the size of the sample used for this method is 1.2 %. The effect of using alternative
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fit models that describe the mass distributions are evaluated using pseudoexperiments.
Candidates are generated using an alternative model and then fitted with the default
model. The 1.6% relative difference between the fitted and generated yield is assigned as
systematic uncertainty. The used correction on the helicity angles in simulation is taken
from theory predictions [10]. An alternative approach is to use the measured distributions
from data and this leads to a difference of 1.3% to the baseline result, which is assigned
as systematic uncertainty. The effect of neglecting peaking backgrounds for long-track
candidates is evaluated by including the Ξ−b → ψΞ− and B0→ ψK0

S components in the
long-track sample fits and letting their yields vary freely. The resulting yields for these
components are compatible with zero and the variation of the signal yield is negligible.
Summing these uncertainties in quadrature leads to a systematic uncertainty of 3.1 %.
Another uncertainty arises from the external values for the branching fractions of the
charmonium to two muon decays, which is 2.2 % [12].

The consistency of the results has been checked by repeating the analysis separately
with datasets with different magnet polarities and years of data taking. In another
crosscheck, the B0→ ψK0

S background is vetoed instead of being included in the fit. None
of these checks shows a significant deviation from the baseline result.

7 Conclusion

In summary the ratio of branching fractions is determined to be

B(Λ0
b→ ψ(2S)Λ)

B(Λ0
b→ J/ψΛ)

= 0.513± 0.023 (stat)± 0.016 (syst)± 0.011 (B),

where the first uncertainty is statistical, the second is systematic and the third is due
to the uncertainty of the used ψ meson branching fractions to two leptons [12]. This
measurement is compatible within one standard deviation with the measurement from
the ATLAS collaboration [9] and has a better precision. It confirms the discrepancy with
the covariant quark model theory predictions [10,11] and sets additional constraints on
available models.
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C. Lazzeroni47, R. Le Gac6, R. Lefèvre5, A. Leflat35,42, J. Lefrançois7, F. Lemaitre42, O. Leroy6,
T. Lesiak29, B. Leverington12, P.-R. Li63,z, T. Li3, Y. Li7, Z. Li61, X. Liang61,
T. Likhomanenko69, R. Lindner42, F. Lionetto44, V. Lisovskyi7, X. Liu3, D. Loh50, A. Loi22,
I. Longstaff53, J.H. Lopes2, D. Lucchesi23,o, M. Lucio Martinez41, H. Luo52, A. Lupato23,
E. Luppi16,g, O. Lupton42, A. Lusiani24, X. Lyu63, F. Machefert7, F. Maciuc32, V. Macko43,
P. Mackowiak10, S. Maddrell-Mander48, O. Maev33,42, K. Maguire56, D. Maisuzenko33,
M.W. Majewski30, S. Malde57, B. Malecki29, A. Malinin69, T. Maltsev38,w, G. Manca22,f ,
G. Mancinelli6, D. Marangotto21,q, J. Maratas5,v, J.F. Marchand4, U. Marconi15,
C. Marin Benito40, M. Marinangeli43, P. Marino43, J. Marks12, G. Martellotti26, M. Martin6,
M. Martinelli43, D. Martinez Santos41, F. Martinez Vidal72, A. Massafferri1, R. Matev42,
A. Mathad50, Z. Mathe42, C. Matteuzzi20, A. Mauri44, E. Maurice7,b, B. Maurin43,
A. Mazurov47, M. McCann55,42, A. McNab56, R. McNulty13, J.V. Mead54, B. Meadows59,
C. Meaux6, F. Meier10, N. Meinert67, D. Melnychuk31, M. Merk27, A. Merli21,42,q,
E. Michielin23, D.A. Milanes66, E. Millard50, M.-N. Minard4, L. Minzoni16,g, D.S. Mitzel12,
A. Mogini8, J. Molina Rodriguez1,x, T. Mombächer10, I.A. Monroy66, S. Monteil5,
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