Flavor Results at LHCb

57th International Winter Meeting on Nuclear Physics

P. Campana (Frascati INFN) on behalf of LHCb Collaboration

January 21st, 2019 - Bormio, Italy

$Talk$ outline

- Run 1 and Run 2 data taking • Extensive work in test beams for different substitution in test beams of the last month.
	- Rare Decays
- Status of Weak Anomalies \sim Computing model TDR is ready and will be discussed during the discuss
	- CP violation
	- The LHCb Upgrade

- Outstanding performance of LHC and of LHCb (\sim) 90% data taking efficiency)
- Run $1+2$ statistics $\sim 4 \div 6$ x Run 1 (including higher b-quark production cross-section and higher selection efficiency of final states)
- LHCb Technical Proposal (1998) goal: $10/fb$ (at 14 TeV)

Rare Decays

The golden channels: $B_{s(d)}$ -

At the beginning of LHC, a long-availed FC existence of Supersymmetry, being could modify the branching fractions

 $BR(B_s\to\mu\ \mu) = 3.6\pm0.2\,10^{-9}$, BF , H_{min} , H $\frac{1}{\sqrt{2\pi}}$ ($\frac{1}{s}$, eq. subsets of $\frac{1}{s}$

$$
\boxed{\text{Br}_{\text{MSSM}}(B_q \to \ell^+ \ell^-) \propto \frac{M_b^2 M_\ell^2 \tan^6 \beta}{M_A^4}}
$$

LHCb, CMS and ATLAS measurem

The golden mode: B

B physics rare decay par excellence:

 $BR(B_s\rightarrow \mu\mu)_{\rm SM} = (3.2 \pm 0.2) \times 10^{-9}$ [A.J.Buras, arXiv:1012.1447]

Precise prediction (which will improve) !

Very high sensitivity to NP, eg. MSSM: **One example** [O. Buchmuller et al, arXiv:0907.5568] $BR(B_s\rightarrow \mu\mu)$ - highly discriminatory

 $\text{BR}(B_s \to \mu \mu)$ at 7.8 σ significance ! A milestone in flavor physics

 $\mathcal{B}(B_{\rm s}^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10}$ at 95% CL

No NP effects observed. A first effective lifetime measurement also performed:

 $\tau_{\text{eff}}(B_{\text{s}}(t) \rightarrow \mu^{+}\mu^{-}) = (2.04 \pm 0.44 \pm 0.05) \text{ ps}$

Average HFLAV $\tau(B_s)=1.510\pm0.005$ ps

In SM only heavy B_s mass eigenstate $(\text{B}_{\text{s}}^{\text{H}})$ decays to $\mu^+\mu^-$ Measurement of decay time can disentangle anomalous contribution from B_s^L and spot non-SM effects

Full Run $1+2$ statistics $=$ \sim x 3 this sample

Weak Anomalies

From the analyses of Run 1 data, **four** interesting anomalies appeared, pointing to possible violations of lepton universality

In R_K and R_{K*} observables, from the FCNC $b \rightarrow s 1^+l^-$ process involving loops

$$
\boxed{{\rm R}_{H}\left[q_{\rm min}^2,q_{\rm max}^2\right]=\frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2}\,dq^2\left[d\Gamma\left(B\to H\mu^{+}\mu^{-}\right)/dq^2\right]}{\int_{q_{\rm min}^2}^{q_{\rm max}^2}\,dq^2\left[d\Gamma\left(B\to He^{+}e^{-}\right)/dq^2\right]}}\;,\;\;q^2=m^2(l^+l^-)\ \ \, H=K,K^*,\phi\cdots
$$

In R_{D^*} (R_D) observables, testing universality in $B \to D^{(*)} \tau / \mu \nu$ decays

$$
R(D^*)=\frac{\Gamma\left(\bar{B}^0 \to D^{*+}\tau^-(\mu^- \bar{\nu}_\mu \nu_\tau)\, \bar{\nu}_\tau\right)}{\Gamma\left(\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_\mu\right)} \quad D^{*+}\to D^0(K^-\pi^+)\pi^+
$$

• Same as before, but with B_c decays

$$
R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)}
$$

• In dB/dq² and angular distributions of $B \to h \mu\mu$ decays (h=K, K^{*}, ϕ , Λ)

R_K and R_{K^*} : a test of μ /e lepton flavor violation

They provide clean probes of New Physics for two reasons:

- new interactions may render non-universal couplings to µ and e
- hadronic uncertainties as form factors, cancel in the SM, with QED corrections at \sim % level
- A complex l^+ l⁻ spectrum (resonances, hadronic effects, …) q^2 upper limit set to 6 GeV² to avoid $J/\psi(1S)$
- µ and e reconstruction efficiencies very different (5:1) due to the bremsstrahlung effects

BRs normalized to control samples $B\rightarrow K^{(*)} J/\psi$ ($\mu\mu$ / ee)

Measuring R_{K^*} double ratio (Run 1 data)

JHEP08 (2017) 055

10

$$
R_{K^*} \text{m}
$$
\n
$$
r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to \mu^+ \mu^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to e^+ e^-))} = 1.043 \pm 0.006 \pm 0.045
$$
\n
$$
r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to \mu^+ \mu^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to e^+ e^-))} = 1.043 \pm 0.006 \pm 0.045
$$

$$
\bullet \qquad R_{\psi(2s)} = \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2s)(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} \quad / \quad \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2s)(\to e^+e^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))} \quad \text{Complex with}
$$

- **•** $\mathcal{B}(B^0 \to K^{*0}\gamma)$ measured from γ -conversions (7%), agrees with expectations (2 σ)
- If no correction is made to simulation, <5% change to efficiency ratio
- $\mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-)$ is also measured, in agreement with JHEP11 (2016) 047
- Bremsstrahlung simulation is checked with $B\rightarrow K^*$ *J/* ψ *(ee) and* $B\rightarrow K^* \gamma$ ($\rightarrow ee$)

R_{K} and R_{K*} LHCb results

 $R_{K^{*0}} = \begin{cases} 0.66 \frac{+}{-} 0.07 \text{ (stat)} \pm 0.03 \text{ (syst)} & \text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2/c^4 & 2.5 \text{ of from SM} \\ 0.69 \frac{+}{-} 0.07 \text{ (stat)} \pm 0.05 \text{ (syst)} & \text{for } 1.1 \leq q^2 < 6.0 \text{ GeV}^2/c^4 \end{cases}$ JHEP08 (2017) 055 (3/fb)

Perspectives for Run 1 & 2 analyses: $\sigma_{\text{stat}}(R_{K^*}) \sim 0.05 - \sigma_{\text{stat}}(R_{K}) \sim 0.04$

Tests of τ/µ **LFV in** *b* [→] *c l* ^ν

- $R_{D*}(R_D)$ are theoretically clean observables, sensitive to NP, as τ can couple to new charged Higgs. In SM $R_{D^*} = 0.252 \pm 0.003$, $R_D = 0.299 \pm 0.003$
- Hadronic uncertainties and $|V_{cb}|$ cancel in ratios
- τ are difficult: **1st time fully reconstructed at LHC !!** All tools of kinematical reconstruction in use
- Two LHCb $\mathrm{R_{D^*}}$ measurements: Two LHCb R_{D*} measurements:

• PRL115 (2015) 111803, with $\tau \rightarrow uvv$ $R_{D*}=0.336\pm0.027\pm0.030$
	- PRL115 (2015) 111803, with τ→μνν R_{D*}=0.336±0.027±0.030
- PRL120 (2018) 171802, with τ→3π(π⁰)νν R_{D*}=0.291±0.019±0.029 PRD 97 (2018) 072013

Separation between B and τ critical to disentangle signal from bkg (B⁰ \rightarrow D*3 π X)

D₀

Previous anomalous results from Belle and BaBar Global fit currently 3.8 σ away from SM prediction in (R_D, R_{D^*}) plane

Future prospects:

- with full Run2 luminosity, statistics will be $x4$ (1300 \rightarrow 6000 events)
- new tauonic measurements will be incorporated, such as $R_{Ds(*)}(B_s\to D_s^{(*)}\tau v)$, $R_{Ac(*)}(\Lambda_b\to \Lambda_c^{(*)}\tau v)$ and R_D

Tests of τ/μ LFV in B_c → J/ψ semi-leptonic decays NEW TEST OF LFU WITH Bc DECAYS $\det_{\alpha} f \tau / \mu \Gamma F V$ in $R \to I / \mu$ sami leptonic decays

Angular analysis of $B \to K^*$ $\mu\mu$

A laboratory to search for NP in asymmetries and angular distributions Several observables can be build through 6 complex amplitudes $\mathcal{A}_{0,\parallel,\perp}^{\text{L,R}}$ corresponding to different transverse states of the $(K^*,\mu\mu)$ system

Large experimental effort of LHCb, Belle, ATLAS, CMS Theory errors not negligible

17 One of this variable (\mathbf{P}_5) is chosen to be less affected by hadronic effects (form factors): current best global fit is **3.4** σ away from SM (data from LHCb: JHEP02 (2016) 104). $\mathbf{P}_\mathbf{5}$ sensitive to NP in Wilson coefficients $\mathrm{C}_9^{(\prime)}$ and $\mathrm{C}_{10}^{(\prime)}$

Theory facing anomalies

 \mathcal{L} the opposite higherarchy, \mathcal{L} respectively. γ paper $>$ 760 α it E A lot of excitement induced by LFV anomalies (R_{K*} LHCb paper >700 citations)

Cl ¹⁰ is through measurements of LFU differences of angular Model-independent H_{eff} approach (Altmannshofer et al. PRD96 (2017) 055008) suggests NP at Λ < 100 TeV affecting (mainly) $\mathrm{C_9}^\mu$ Wilson coefficient $\mathcal{L}_{\mathcal{D}}$ \mathbb{N} $\frac{1}{2}$ mediated by 4-fermions contact interaction

are particularly promised in the original property property property property the observation of the observa ables P⁰ \mathcal{A} see Fig. (b). Predictions for the observables \mathcal{A} explicit mediators in the TeV mass range, that include a coloured vector \sim 1. The small predictions are close to Fig. 2. The SM predictions are close to \sim 1. The SM predictions are close to \sim 1. The SM predictions are close to \sim 1. The SM prediction of \sim 1. The SM prediction of sumple mamework (Buttazzo et a p $\left\langle \right\rangle$ to italy model-independent lower bound of the period of the recent lower bound of the recent lower bound of th \mathcal{L}_{max} al. JHEP1711 $(2017) 044$ $\left(1-\frac{1}{2}\right)$. We note that, while the SM in Clinical theory is the SM in e been proposed with two Wilson co A large number of consistent new physics models have been proposed, with lepto-quark as a particularly simple framework (Buttazzo et al. JHEP1711 (2017) 044)

 $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(1,0){\line(1,0){10}} \put(1$

 $\overline{1}$ $\overline{1}$ $\overline{1}$

a negative DP⁰

 $\frac{1}{2}$, we predict

 \angle μ

 \mathcal{A}

some Z⁰ models one finds C^l

 $\sim \mu^-$

INTERPRETING HINTS FOR LEPTON FLAVOR … PHYSICAL REVIEW D 96, 055008 (2017). PHYSICAL REVIEW D 96, 055008 (2017)

 $\frac{1}{2}$

 \mathscr{I}

 $10₁₀$

 $\overline{}$

 $\overline{}$ and $\overline{}$ than in RK. Therefore, $\overline{}$ s and b and x is best description by a non-tangled by a non-ta

Testing CKM matrix

Sensitivity to NP comes from the global consistency of various measurements (tree vs loop / CP conserving vs CP violating channels)

Excellent capabilities of LHCb to measure Unitarity Triangle angles γ , β , β_s (α is difficult in LHCb due to neutral in final states) and $B_s B_d$ properties $(\Delta m_d, \Delta m_s)$ in several modes

Status of γ

 $\gamma=\left(74.0~^{+5.0}_{-5.8}\right)^\circ$ LHCb combination (mostly from Run 1 data) of tree-level measurements: the most precise one from a single experiment LHCb-CONF-2018-002

$$
\text{HFLAV World Average} \quad \gamma = (73.5 \, \substack{+4.2 \\ -5.1})^\circ
$$

A large set of different ways of measuring γ: - Time integrated asymmetries in $B^+{\rightarrow} D K^+,$ B^+ → DK^{*+}, B^0 → DKπ, PLB777 (2018) 16 with D→hh, hhh (ADS, GLW methods) - Time dependent analyses of $B_s \rightarrow D_s K$, $B^0 \rightarrow D \pi$ JHEP03 (2018) 176 - Dalitz plot analyses in B^+ \rightarrow DK^+, B^0 \rightarrow $DK^{*0},$ JHEP03 (2018) 059 with $D\rightarrow K_s h^+h^-$ (GGSZ method)

Indirect measurement from $\rm V_{CKM}$ fit (UTFIT summer 2018)

 γ indirect $=(65.8\pm2.2)^\circ$

Status of β

al yield asymmetry

ಸ

yield asymmetry

Measurement through time-dependent CP asymmetry: interference between decays with mixing and no mixing $\frac{1}{2}$ with mixing and no mixing

Golden mode of b-factories Precision of LHCb is now comparable Measured by LHCb in $B^0 \rightarrow J/\psi$ ($\mu\mu$, ee) K_s and $B^0 \rightarrow B^0$ and $B^0 \rightarrow J/\psi$ Measured by LHCb in R^0 *B*oluen mode of D-factories
Precision of **J** HCb is now a *J*
J/ P/*e*, and *e*-*b*, *D*/*e*, and *P*/*e*, and $\operatorname{Measured}$ by LHCb in $B^0{\rightarrow} J$

 $0.5 \frac{\text{Bole}}{\text{N FPL}}$ 0.7 $0.8 \frac{\text{m}}{\text{N FPL}}$ 0.8 $0.9 \frac{\text{m}}{\text{N FPL}}$ 1

Belle

ALEPH PLB 492, 259 (2000)

OPAL EPJ C5, 379 (1998)

CDF

LHCb

PRL 108 (2012) 171802

PRD 61, 072005 (2000)

HFLAV Moriond 2018

s (2000) **a** sin(2000) **a** sin(2000) **c** sin(2000)

22

 $\left| \begin{array}{c} \n\text{-0.44} \\
\text{-0.44}\n\end{array} \right|$ 0.76 ± 0.03

 $0.84^{+0.82}_{-1.04} \pm 0.16$

 $3.20^{+1.80}_{-2.00} \pm 0.50$

 $0.79_{\ -0.44}^{\ +0.41}$

S

• Status of β_s (the β and **Status of** β_s (the β angle for B_s decays)

 \overline{S} Interference between mixing and decay gives $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ rise to a CPV phase ($\phi_s = \phi_M - 2 \phi_D \sim 0$ in SM) res esult

 $J/\psi K+K^-$

 IN

Į $\phi_{s} \frac{\partial^{M}}{\partial m_{s}} 2 \beta_{d} \mp 72 \beta \frac{\partial^{M}}{\partial t} 0.041_{\{s \neq 0\}} \phi_{s}^{(s)} + 0.025(syst) ps^{-1}$ (OST+SST) $\frac{1}{10}$ = 344 + 27(stat $\frac{\sqrt{c_3}}{c_4}$ g/g/s $10\frac{1}{\phi_s} = -58 \pm 49 \pm 6 \text{ mrad}$ $\frac{S_M}{\sqrt{3}}$ 281 \pm 728 are 041 (ot the set *V*^cs^{*V* L_e}

Powerful and theoretically clean test of SM $\phi_s = \phi_s^{\text{SM}} = -36 \pm 1 \text{ mrad}$ $\Gamma_s =$

LHCb measurement (PRL114 (2015) 041801) $\mu = 0.964 + 0.01$ $\begin{bmatrix} \Delta & \Delta \\ \Delta & \Delta \end{bmatrix}$ far from entering the precision level of SM (Run 1) still dominated by statistics and not

Sizeable decay widths difference of B_s^H , B_s^L $(B_s$ mass eigenstates) is also measured $(\Delta\Gamma_s\neq 0)$

18.08.2011 Measurement allowed by the excellent decay time resolution of vertex detector $($ \sim 40 fs)

$$
\begin{array}{c|cccc}\n-0.4 & - & 0.1 & 0.2 & 0.3\n\end{array}
$$

÷,

W^* control \mathcal{C} is \mathcal{C} in Run \mathcal{C} has \mathcal{C} h **Evolution of UT triangle**

CKM unitary triangle as of CKM unitary triangle as of summer 2011 summer 2018 1.5 1.5 excluded area has CL > 0.95 excluded area has CL > 0.95 **REATED** γ γ 1.0 1.0 Δm_d & Δm_s Δm_a & Δm_s $sin 2\beta$ $sin 2\beta$ 0.5 0.5 $\Delta m_{\rm d}$ $\Delta m_{\rm d}$ $\varepsilon_{\rm K}$ $\varepsilon_{\rm K}$ $\overline{\overline{1}}$ $\overline{\eta}$ 0.0 $0.0\,$ α α α α -0.5 -0.5 $\varepsilon_{\rm K}$ $\epsilon_{\rm K}$ -1.0 γ -1.0 γ sol, w/cos $2\beta < 0$ sol. W/ $\cos 2\beta < 0$ fitter $(excl. at CL > 0.95)$ excl. at $CL > 0.95$ -1.5 -1.5 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 $\overline{\rho}$ $\overline{\rho}$

Large impact of LHCb data on **γ**, Δm_d , Δm_s measurements

CP violation in charm decays

LHCb has collected a charm sample $100 - 1000$ larger than previous experiments An independent way to probe New Physics (but not theoretically clean): $c \rightarrow u$ decays can reach very large mass scales $\Lambda \sim O(1000) \text{ TeV}$ Several observables: direct CPV in $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^- (a_{CP})$;

D-Dbar oscillations and CPV in mixing in $D^0 \rightarrow K^+\pi^-$ (x and y parameters)

25

Credit: National Geographic The LHCb Upgrade 26 LHCb will be upgraded to reach $L = 2 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ (x 5 w.r.t. Run1 & 2, with higher trigger efficiency) during LS2 shutdown Goal: $\sim 15/fb$ in Run 3 (2021-23) and $\sim 25/fb$ in Run 4 (2026-29) Proposing a phased further upgrade in LS3 & LS4 (for HL-LHC) Detector: CERN-LHCC-2017-003 - Physics case: arXiv:1808.08865

Physics prospects for Run 3 (and beyond) Dl ₁: Dl ₁ Dl ₂ and Dl ₂ and Dl and l and l and l and l and l and l LHYSICS prospects for nun of and beyond in the trigger. The trigger

Conclusion

- In Run 1 & 2, the LHCb experiment has collected 9/fb. Larger data set will allow a significant error reduction ($x + 6$ depending on specific channel)
- Most of the analyses have still exploited only Run 1 sample. In the near future will be extracted from the full data set
- $B_s \rightarrow \mu\mu$ is entering the domain of precision tests, also looking to possible non SM effects in the measurement of effective lifetime
- Weak anomalies in LFV provide a consistent picture, to be verified by the larger statistics of Run 2, and by future Belle2 data
- A large set of CKM variables can be measured precisely at LHCb in many different ways. The search for SM inconsistencies is still open
- Starting to install the upgrade of LHCb, which will bring another \sim 15/fb by 2023