Flavor Results at LHCb

57th International Winter Meeting on Nuclear Physics

P. Campana (Frascati INFN) on behalf of LHCb Collaboration

January 21st, 2019 - Bormio, Italy

Talk outline

- Run 1 and Run 2 data taking
- Rare Decays
- Status of Weak Anomalies
- CP violation
- The LHCb Upgrade

Run 1 and Run 2 data taking LHCb Cumulative Integrated Recorded Luminosity in pp. 2010-2018 2018 (6.5 TeV): 2.19 /fb 9 8 Integrated Recorded Luminosity (1/fb) 2017 (6.5+2.51 TeV): 1.71 /fb + 0.10 /fb 2016 (6.5 TeV): 1.67 /fb 2015 (6.5 TeV): 0.33 /fb LHCb Integrated Recorded Luminosity in pp, 2010-2018 2012 (4.0 TeV): 2.08 /fb 2011 (3.5 TeV): 1.11 /fb 2010 (3.5 TeV): 0.04 /fb 2018 (6.5 TeV): 2.19 /fb ntegrated Recorded Luminosity (1/fb) 012 2.2 2017 (6.5+2.51 TeV): 1.71 /fb + 0.10 /fb 2016 (6.5 TeV): 1.67 /fb 2 LS1 2015 (6.5 TeV): 0.33 /fb 1.8 2012 (4.0 TeV): 2.08 /fb 2011 (3.5 TeV): 1.11 /fb 1.6 2010 (3.5 TeV): 0.04 /fb 1.4

2011 1.2 0 E 2010 2011 2012 2013 2014 2015 2016 2017 2018 2018 Year LHCb Efficiency breakdown in 2018 0.8 0.6 2015 FULLY ON: 88.78 (%) 0.4 HV: 0.54 (%) 0.2 2010 VELO Safety: 0.86 (%) 0 Mar DAQ: 2.02 (%) Jul Sep May Nov Month of year DeadTime: 6.86 (%) Since the start of LHCb >10 fb⁻¹ delivered, >9 fb⁻¹ collected

- Outstanding performance of LHC and of LHCb (~90% data taking efficiency)
- Run 1+2 statistics $\sim 4 \div 6$ x Run 1 (including higher b-quark production cross-section and higher selection efficiency of final states)
- LHCb Technical Proposal (1998) goal: **10/fb** (at 14 TeV)

Rare Decays

The golden channels: B_{s(d)} -

At the beginning of LHC, a long-av existence of Supersymmetry, being could modify the branching fraction

Theoretically very clean and very rapidle BR $(B_s \rightarrow \mu \mu) = 3.6 \pm 0.2 \ 10^{-9}$, BF

 ${
m Br}_{
m MSSM}(B_q o \ell^+ \ell^-) \propto {M_b^2 M_\ell^2 {
m tan}^6 \, eta \over M_A^4}$

LHCb, CMS and ATLAS measurem

The golden mode: B

B physics rare decay par excellence:

 $BR(B_s \rightarrow \mu \mu)_{SM} = (3.2 \pm 0.2) \times 10^{-9}$

[A.J.Buras, arXiv:1012.1447] Precise prediction (which will improve) ! Very high sensitivity to NP, eg. MSSM: One example [O. Buchmuller et al, arXiv:0907.5568] BR(B_s \rightarrow µµ)- highly discriminatory

BR($B_s \rightarrow \mu \mu$) at 7.8 σ significance ! A milestone in flavor physics

$$\begin{split} \mathcal{B}(B^0_{\rm s} \to \mu^+ \mu^-) &= (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} \text{ at } 95\% \text{ CL} \end{split}$$

No NP effects observed. A first effective lifetime measurement also performed:

 $\tau_{\rm eff}(B_{\rm s}(t) \to \mu^+ \mu^-) = (2.04 \pm 0.44 \pm 0.05) \, ps$

Average HFLAV $\tau(B_s)=1.510\pm0.005$ ps

In SM only heavy B_s mass eigenstate (B_s^{H}) decays to $\mu^+\mu^-$ Measurement of decay time can disentangle anomalous contribution from B_s^{L} and spot non-SM effects

Full Run 1+2 statistics = $\sim x$ 3 this sample

Weak Anomalies

From the analyses of Run 1 data, **four** interesting anomalies appeared, pointing to possible violations of lepton universality

• In R_K and R_{K^*} observables, from the FCNC $b \rightarrow s l^+l^-$ process involving loops

$$\mathbf{R}_{\mathbf{H}}\left[\mathbf{q}_{\min}^{2},\mathbf{q}_{\max}^{2}\right] = \frac{\int_{\mathbf{q}_{\min}^{2}}^{\mathbf{q}_{\max}^{2}} \, d\mathbf{q}^{2} \left[d\Gamma\left(\mathbf{B} \rightarrow \mathbf{H}\boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}\right)/d\mathbf{q}^{2}\right]}{\int_{\mathbf{q}_{\min}^{2}}^{\mathbf{q}_{\max}^{2}} \, d\mathbf{q}^{2} \left[d\Gamma\left(\mathbf{B} \rightarrow \mathbf{H}\mathbf{e}^{+}\mathbf{e}^{-}\right)/d\mathbf{q}^{2}\right]}, \ \mathbf{q}^{2} = \mathbf{m}^{2}(\mathbf{l}^{+}\mathbf{l}^{-}) \quad \mathbf{H} = \mathbf{K}, \mathbf{K}^{*}, \phi \cdots$$

• In R_{D^*} (R_D) observables, testing universality in $B \rightarrow D^{(*)} \tau/\mu \nu$ decays

$$\boldsymbol{R}(\boldsymbol{D}^*) = \frac{\Gamma\left(\bar{\boldsymbol{B}}^0 \to \boldsymbol{D}^{*+} \boldsymbol{\tau}^- \left(\boldsymbol{\mu}^- \bar{\boldsymbol{\nu}}_{\mu} \boldsymbol{\nu}_{\tau}\right) \bar{\boldsymbol{\nu}}_{\tau}\right)}{\Gamma\left(\bar{\boldsymbol{B}}^0 \to \boldsymbol{D}^{*+} \boldsymbol{\mu}^- \bar{\boldsymbol{\nu}}_{\mu}\right)} \quad \boldsymbol{D}^{*+} \to \boldsymbol{D}^0(K^- \pi^+) \pi^+$$

• Same as before, but with B_c decays

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi\tau^+\nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_\mu)}$$

• In dB/dq² and angular distributions of $B \rightarrow \mathbf{h} \mu \mu$ decays (h=K, K^{*}, ϕ , Λ)

R_{K} and $R_{K^{\ast}}$: a test of $\,\mu/e$ lepton flavor violation

They provide clean probes of New Physics for two reasons:

- \bullet new interactions may render non-universal couplings to μ and e
- hadronic uncertainties as form factors, cancel in the SM, with QED corrections at ~ % level
- A complex $l^+ l^-$ spectrum (resonances, hadronic effects, ...) q^2 upper limit set to 6 GeV² to avoid J/ $\psi(1S)$
- μ and e reconstruction efficiencies very different (5:1) due to the bremsstrahlung effects

BRs normalized to control samples $B \rightarrow K^{(*)} J/\psi (\mu \mu / ee)$

Measuring R_{K^*} double ratio (Run 1 data)

10

$$R_{K^*} m_{F_{J/\psi}} = \frac{\mathcal{B} \left(B^0 \to K^{*0} J/\psi \left(\to \mu^+ \mu^- \right) \right)}{\mathcal{B} \left(B^0 \to K^{*0} J/\psi \left(\to e^+ e^- \right) \right)} = 1.043 \pm 0.006 \pm 0.045$$

$$r_{J/\psi} = \frac{\mathcal{B} \left(B^0 \to K^{*0} J/\psi \left(\to \mu^+ \mu^- \right) \right)}{\mathcal{B} \left(B^0 \to K^{*0} J/\psi \left(\to e^+ e^- \right) \right)} = 1.043 \pm 0.006 \pm 0.045$$

•
$$R_{\psi(2s)} = \frac{\mathcal{B}\left(B^0 \to K^{*0}\psi(2s)(\to \mu^+\mu^-)\right)}{\mathcal{B}\left(B^0 \to K^{*0}J/\psi\left(\to \mu^+\mu^-\right)\right)} / \frac{\mathcal{B}\left(B^0 \to K^{*0}\psi(2s)(\to e^+e^-)\right)}{\mathcal{B}\left(B^0 \to K^{*0}J/\psi\left(\to e^+e^-\right)\right)} \quad \begin{array}{c} \text{Compatible with} \\ 1 \text{ at } 1\sigma \ (2\%) \end{array}$$

- $\mathcal{B}(B^0 \to K^{*0}\gamma)$ measured from γ -conversions (7%), agrees with expectations (2 σ)
- If no correction is made to simulation, <5% change to efficiency ratio
- $\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)$ is also measured, in agreement with JHEP11 (2016) 047
- Bremsstrahlung simulation is checked with $B \rightarrow K^* J/\psi$ (ee) and $B \rightarrow K^* \gamma$ ($\rightarrow ee$)

$R_{\rm K} \, and \, R_{\rm K*} \, LHCb$ results

 $R_{K^{*0}} = \begin{cases} 0.66 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.03 (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2/c^4 \\ 0.69 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.05 (\text{syst}) & \text{for } 1.1 & < q^2 < 6.0 \text{ GeV}^2/c^4 \\ & \text{JHEP08} (2017) \ 0.055 (3/\text{fb}) \end{cases}$

Perspectives for Run 1 & 2 analyses: $\sigma_{\text{stat}}(\mathbf{R}_{\text{K}*}) \sim 0.05 - \sigma_{\text{stat}}(\mathbf{R}_{\text{K}}) \sim 0.04$

Tests of τ/μ LFV in $b \rightarrow c l \nu$

 $R(D^{(*)}) = \frac{BR(B \rightarrow D^{(*)} \tau \nabla_{\tau})}{BR(B \rightarrow D^{(*)} \mu \overline{\nu}_{\mu})}$

D⁰

- $R_{D^*}(R_D)$ are theoretically clean observables, sensitive to NP, as τ can couple to new charged Higgs. In SM $R_{D^*} = 0.252 \pm 0.003$, $R_D = 0.299 \pm 0.003$
- Hadronic uncertainties and $|V_{cb}|$ cancel in ratios
- τ are difficult: 1st time fully reconstructed at LHC !!
 All tools of kinematical reconstruction in use
- Two LHCb R_{D*} measurements:
- PRL115 (2015) 111803, with $\tau \rightarrow \mu \nu \nu$
- PRL120 (2018) 171802, with $\tau \rightarrow 3\pi(\pi^0)\nu\nu$ PRD 97 (2018) 072013

 $\begin{array}{l} R_{D*}{=}0.336{\pm}0.027{\pm}0.030 \\ R_{D*}{=}0.291{\pm}0.019{\pm}0.029 \end{array}$

Separation between B and τ critical to disentangle signal from bkg (B⁰ \rightarrow D^{*} 3π X)

Previous anomalous results from Belle and BaBar Global fit currently 3.8 σ away from SM prediction in (R_D, R_{D*}) plane

Future prospects:

- with full Run2 luminosity, statistics will be $x4 (1300 \rightarrow 6000 \text{ events})$
- new tauonic measurements will be incorporated, such as $R_{Ds(*)} (B_s \rightarrow D_s^{(*)} \tau \nu)$, $R_{\Lambda c(*)} (\Lambda_b \rightarrow \Lambda_c^{(*)} \tau \nu)$ and R_D

Tests of τ/μ LFV in $B_c \rightarrow J/\psi$ semi-leptonic decays

A laboratory to search for NP in asymmetries and angular distributions Several observables can be build through 6 complex amplitudes $\mathcal{A}_{0,\parallel,\perp}^{\mathrm{L,R}}$ corresponding to different

Angular analysis of $B \rightarrow K^* \mu \mu$

transverse states of the (K^{*}, $\mu\mu$) system

Large experimental effort of LHCb, Belle, ATLAS, CMS Theory errors not negligible

One of this variable (\mathbf{P}_{5}) is chosen to be less affected by hadronic effects (form factors): current best global fit is **3.4** $\boldsymbol{\sigma}$ away from SM (data from LHCb: JHEP02 (2016) 104). \mathbf{P}_{5} sensitive to NP in Wilson coefficients $\mathbf{C}_{9}^{(i)}$ and $\mathbf{C}_{10}^{(i)}$

Theory facing anomalies

A lot of excitement induced by LFV anomalies (R_{K^*} LHCb paper >700 citations)

Model-independent H_{eff} approach (Altmannshofer et al. PRD96 (2017) 055008) suggests NP at $\Lambda < 100$ TeV affecting (mainly) C₉^µ Wilson coefficient mediated by 4-fermions contact interaction

A large number of consistent new physics models have been proposed, with explicit mediators in the TeV mass range, that include a coloured vector lepto-quark as a particularly simple framework (Buttazzo et al. JHEP1711 (2017) 044)

Testing CKM matrix

Sensitivity to NP comes from the global consistency of various measurements (tree vs loop / CP conserving vs CP violating channels)

Excellent capabilities of LHCb to measure Unitarity Triangle angles γ , β , β_s (α is difficult in LHCb due to neutral in final states) and $B_s B_d$ properties (Δm_d , Δm_s) in several modes

Status of γ

LHCb combination (mostly from Run 1 data) of $\gamma = (74.0 + 5.0)^{\circ}$ tree-level measurements: the most precise one from a single experiment LHCb-CONF-2018-002

HFLAV World Average
$$\gamma = \left(73.5 \ {}^{+4.2}_{-5.1}
ight)^\circ$$

A large set of different ways of measuring γ:
Time integrated asymmetries in B⁺→DK⁺, B⁺→DK^{*+}, B⁰→DKπ, PLB777 (2018) 16 with D→hh, hhh (ADS, GLW methods)
Time dependent analyses of B_s→D_sK, B⁰→Dπ JHEP03 (2018) 176
Dalitz plot analyses in B⁺→DK⁺, B⁰→DK^{*0}, JHEP03 (2018) 059 with D→K_sh⁺h⁻ (GGSZ method)

Indirect measurement from V_{CKM} fit (UTFIT summer 2018)

 $\gamma \mathrm{~indirect} = (65.8 \pm 2.2)^{\circ}$

Status of β

Measurement through time-dependent CP asymmetry: interference between decays with mixing and no mixing

Golden mode of b-factories Precision of LHCb is now comparable Measured by LHCb in $B^0 \rightarrow J/\psi$ ($\mu\mu$, ee) K_s

 0.76 ± 0.03

LHCb

Status of β_s (the β angle for B_s decays)

Interference between mixing and decay gives rise to a CPV phase ($\phi_s = \phi_M - 2 \phi_D \sim 0$ in SM) **ESULT**

J/ψ K+K-

PHYS IN

 $\phi_{s} \Delta m_{s}^{s} 2 \beta_{s} \mp 72 \beta_{s} = 34.4 + 2.7(stat)^{c_{s}} + 90.025(syst) ps^{-1} (OST+SST)$

 $\begin{array}{ll} \phi_s &= -58 \pm 49 \pm 6 \ {\rm mrad} \\ \Gamma_s &= 0.6603 \pm 0.0027 \pm 0.0015 \\ \Delta \Gamma_s &= 0.0805 \pm 0.0091 \pm 0.0032 \\ \Delta m_s &= 17.711^{+0.055}_{-0.057} \pm 0.0032 \\ |\lambda| &= 0.964 \pm 0.019 \pm 0.007 \end{array}$

Powerful and theoretically clean test of SM $\phi_s^{SM} = -36 \pm 1 \text{ mrad}$

LHCb measurement (PRL114 (2015) 041801) (Run 1) still dominated by statistics and not far from entering the precision level of SM

Sizeable decay widths difference of B_s^{H} , B_s^{L} (B_s mass eigenstates) is also measured ($\Delta\Gamma_s \neq 0$)

Measurement allowed by the excellent decay time resolution of vertex detector (~ 40 fs)

Evolution of UT triangle

CKM unitary triangle as of CKM unitary triangle as of summer 2011 summer 2018 1.5 1.5 excluded area has CL > 0.95 excluded area has CL > 0.95 ad at Cl γ γ 1.0 1.0 $\Delta m_{d} \& \Delta m_{s}$ $\Delta m_{d} \& \Delta m_{s}$ sin 2β sin 2β 0.5 0.5 ∆m_d ∆m_d εκ εκ Ц Ц 0.0 0.0 α α α α -0.5 -0.5 ϵ_{K} εκ -1.0 γ -1.0 γ sol. w/ $\cos 2\beta < 0$ sol. w/ cos 2β < 0 itter fitter (excl. at CL > 0.95) axcl. at CL > 0.95) -1.5 -1.5 -0.5 0.5 -0.5 0.0 0.5 2.0 -1.0 0.0 1.0 1.5 2.0 -1.0 1.0 1.5 $\overline{\rho}$ $\overline{\rho}$

Large impact of LHCb data on γ , Δm_d , Δm_s measurements

CP violation in charm decays

LHCb has collected a charm sample 100 ÷1000 larger than previous experiments
An independent way to probe New Physics (but not theoretically clean): c → u decays can reach very large mass scales Λ ~ O(1000) TeV
Several observables: direct CPV in D⁰→K⁺K⁻, D⁰→π⁺π⁻(a_{CP});

D-Dbar oscillations and CPV in mixing in $D^0 \rightarrow K^+\pi^-$ (x and y parameters)

No CP violation found in charm decays yet Probing it at now at $10^{-2} \div 10^{-3}$ level

Credit: National Geographic

The LHCb Upgrade

LHCb will be upgraded to reach $L = 2 \ 10^{33} \ cm^{-2} \ s^{-1}$ (x 5 w.r.t. Run1 & 2, with higher trigger efficiency) during LS2 shutdown Goal: ~ 15/fb in Run 3 (2021-23) and ~ 25/fb in Run 4 (2026-29) Proposing a phased further upgrade in LS3 & LS4 (for HL-LHC) Detector: CERN-LHCC-2017-003 - Physics case: arXiv:1808.08865

Physics prospects for Run 3 (and beyond)

Observable	Current LHCb	Run 3 [[•] 25/fb]	Upgrade II	
EW Penguins				-
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	$0.1 \ [274]$	0.025	0.007	$\sigma(\mathbf{R}_{\mathbf{K}\mathbf{K}*}) \sim 3\%$
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ [275]$	0.031	0.008	(n , n)
R_{ϕ},R_{pK},R_{π}	_	0.08, 0.06, 0.18	0.02,0.02,0.05	
<u>CKM tests</u>				
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	1°	
γ , all modes	$\binom{+5.0}{-5.8}^{\circ}$ [167]	1.5°	0.35°	$\sigma(\gamma) \sim 1.5^{\circ}$
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.04 [609]	0.011	0.003	(1)
ϕ_s , with $B_s^0 \to J/\psi \phi$	49 mrad [44]	14 mrad	4 mrad	$O(\varphi_s) \sim 15 \text{ mrad}$
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	35 mrad	$9 \mathrm{mrad}$	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	$39 \mathrm{\ mrad}$	$11 \mathrm{mrad}$	
$a_{ m sl}^s$	$33 \times 10^{-4} \ [211]$	10×10^{-4}	3×10^{-4}	
$\left V_{ub} ight /\left V_{cb} ight $	$6\% \ [201]$	3%	1%	
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$90\% \ [264]$	34%	10%	$\sigma(B_d) \sim 30\%$
$ au_{B^0_s ightarrow\mu^+\mu^-}$	22% [264]	8%	2%	$\sigma(\tau_{-}) \sim 8\%$
$S_{\mu\mu}$	_	-	0.2	O(UBs) OVO
$b ightarrow c \ell^- ar{ u_l} { m LUV} { m studies}$				
$\overline{R(D^*)}$	$0.026 \ [215, 217]$	0.0072	0.002	
$R(J/\psi)$	0.24 [220]	0.071	0.02	
Charm				
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	1.7×10^{-4}	$3.0 imes 10^{-5}$	$\sigma(CP_c) \sim 10^{-4}$
$A_{\Gamma} \ (\approx x \sin \phi)$	$2.8 \times 10^{-4} \ [240]$	4.3×10^{-5}	1.0×10^{-5}	
$x\sin\phi$ from $D^0 \to K^+\pi^-$	$13 \times 10^{-4} \ [228]$	$3.2 imes 10^{-4}$	$8.0 imes 10^{-5}$	
$x \sin \phi$ from multibody decays	_	$(K3\pi) 4.0 \times 10^{-5} (K$	$(3\pi) 8.0 \times 10^{-6}$	

Conclusion

- In Run 1 & 2, the LHCb experiment has collected 9/fb. Larger data set will allow a significant error reduction (x $4 \div 6$ depending on specific channel)
- Most of the analyses have still exploited only Run 1 sample. In the near future will be extracted from the full data set
- $B_s \rightarrow \mu\mu$ is entering the domain of precision tests, also looking to possible non SM effects in the measurement of effective lifetime
- Weak anomalies in LFV provide a consistent picture, to be verified by the larger statistics of Run 2, and by future Belle2 data
- A large set of CKM variables can be measured precisely at LHCb in many different ways. The search for SM inconsistencies is still open
- Starting to install the upgrade of LHCb, which will bring another $\sim 15/\text{fb}$ by 2023