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Abstract

Most strong-interaction resonances have decay channels involving three

or more particles, including many of the recently discovered X, Y and

Z resonances. In order to study such resonances from first principles

using lattice QCD, one must understand finite-volume effects for three

particles in the cubic box used in calculations. Here we review efforts

to develop a three-particle quantization condition that relates finite-

volume energies to infinite-volume scattering amplitudes. We describe

in detail the three approaches that have been followed, and present new

results on the relationship between the corresponding results. We show

examples of the numerical implementation of all three approaches and

point out the important issues that remain to be resolved.
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1. INTRODUCTION

One of the striking features of the strong interaction is the abundance of resonances. These are

very short-lived (having widths Γ ∼ 100 MeV), and are not asymptotic states, but are manifested

through the behavior of the scattering amplitudes of particles that are stable under the strong

interactions, e.g. pions, kaons and nucleons. Examples of resonances include the rho, decaying via

ρ→ ππ, as well as the a1(1260)→ πππ and the Roper resonance, N(1440)→ Nπ,Nππ, where in

each case we have shown the final states with the highest branching fractions.

The lightest such resonances form patterns when arranged according to basic properties such

as spin, charge and strangeness, for example the flavor SU(3) decuplet of J = 3/2 baryons (∆, Σ∗,

Ξ∗, and Ω) and the nonet of JP = 1− mesons (ρ, ω, K∗, and φ). This regularity, together with

that of the particles stable under strong decay, was crucial in determining the underlying degrees of

freedom, the quarks and gluons. This culminated in the formulation of quantum chromodynamics

(QCD) in the early 1970s (1, 2, 3).

While the lightest resonances can be categorized in quark-model language as quark-antiquark

and three-quark states, this does not hold for higher-lying states. Examples include the f0(980) and

a0(980), long considered to have a tetraquark (qqq̄q̄) component (4), and pentaquark candidates

such as the Pc(4450)+ (5). Other resonances that do not fit into the simple quark-model classi-

fication are the recently discovered X, Y and Z states, which contain open or hidden charm and

bottom quarks. For a recent summary of the experimental and theoretical status of the many states

whose classification is unclear, see Ref. (6) and the Particle Data Group listings and reviews (7).

This situation, and in particular the multitude of X, Y and Z resonances, has led to a resurgence

of interest in hadron spectroscopy, and a renewed appreciation of the need to extract predictions

from first-principles QCD. In particular, many of the new states lie close to thresholds, and involve

decays to multiple channels, and it is crucial to disentangle kinematical effects such as threshold

cusps from truly resonant behavior. The latter is identified as a pole in the analytic continuation

of a scattering amplitude to complex values of the center-of-mass energy.

A crucial tool in disentangling the underlying properties of such resonances is first-principles

calculations based in lattice QCD (LQCD). With this method, unlike with the quark model or

other approximate approaches, one can systematically remove all sources of uncertainty in the

calculations. The major such sources are the statistical errors inherent in a Monte Carlo calculation,

the need to work at nonzero lattice spacing, the use of larger-than-physical quark masses, and the

need to work with a finite space-time volume, with spatial box length1 L and Euclidean time

extent Lt. Over the last decade or so, an increasing number of LQCD results for single-particle

quantities have controlled all of these errors, in some cases at subpercent precision. One indication

of this improved level of control is the increasingly common use of physical light-quark masses in

calculations. For a review of results for well-controlled single-particle quantities using LQCD, see

Ref. (8).

Lattice QCD:
Regularization
suited to systematic

numerical

calculations.

Using LQCD to calculate the properties of resonances is, however, more challenging than for

single-particle properties. A resonance is observed experimentally by studying the scattering of the

decay products, e.g. two pions in the case of the ρ resonance. By measuring scattering rates for

various kinematics and then performing a partial-wave analysis, one can in principle determine the

scattering amplitudes projected to any given angular-momentum component and search for reso-

nances. Lattice calculations cannot, however, reproduce this setup. The use of a finite volume does

not allow the consideration of states with well-separated decay products (so one cannot approach

the in- and out-states needed for a theoretical description of scattering in quantum field theory) and

the need to use Euclidean time (in order to avoid a numerically intractable sign problem) makes

real-time processes such as scattering inaccessible. Thus one is forced to use an indirect approach.

The indirect approach that is by now widely applied was first introduced in seminal work by

Lüscher (9, 10, 11). The essential observation is that the volume dependence of the energies of

1Most LQCD calculations use cubic spatial boxes, and we consider only this case in this review.

2 Hansen and Sharpe



multiparticle states is governed by infinite-volume scattering amplitudes. By determining, in a

lattice calculation, the finite-volume spectrum as a function of L, one is thus doing something

analogous to a scattering experiment. Crudely speaking, the multi-particle finite-volume state in a

large enough box contains particles that are almost moving freely, and thus approximate a scattering

state.

In the case of resonances that only decay to channels containing two particles, this has been

placed on a rigorous footing by the derivation of so-called two-particle quantization conditions,

i.e. equations that are satisfied only at the energies of finite-volume states and yet depend on

infinite-volume scattering quantities. The simplest cases were worked out in Refs. (9, 10, 11) (and

will be reviewed in subsequent sections), and extensions to arbitrary spins, noncubic boxes, moving

frames, and multiple two-particle channels have been subsequently derived. We do not review

this literature here, as it is not the topic of this work, but point the interested reader to the

comprehensive review provided in Ref. (12).

Lüscher’s method::
Determine resonance

properties from
finite-volume

spectrum

We now come to the essential phenomenological motivation for the present review: Most res-

onances have some decay channels that involve three or more stable hadrons. Examples noted

above are the a1(1260), with a dominant decay into three pions, the Roper resonance, which decays

both to two- and three-particle channels, and many of the X, Y and Z resonances. For such reso-

nances, the two-particle formalism simply does not apply. Thus, in order to address many pressing

questions in hadron spectroscopy using LQCD, a three-particle quantization condition is needed.

This is an equation that, given information about two- and three-particle scattering, predicts the

finite-volume spectrum or, conversely, provides constraints on the scattering amplitudes given the

spectrum calculated using LQCD.2 The major purpose of this review is to explain the theoretical

progress that has been made over the last five or so years in deriving three-particle quantization

conditions.

Another motivation for this review is that advances in algorithms, methods, and the speed of

computers, have allowed LQCD calculations to determine the finite-volume spectrum in the energy

regime in which states have a significant three-particle component. Many examples can be found

in Ref. (12), but we note in particular the spectra determined in Refs. (13) and (14). At present,

these calculations use heavier-than-physical quarks (so that mπ & 230 MeV), but, nevertheless,

their interpretation requires a quantization condition that can account for three, and in some cases

more, particles. Indeed, the need for such a quantization condition becomes more pressing as the

quark masses are lowered to their physical values, for then the multi-pion thresholds drop rapidly.

Although motivated by results from LQCD, the derivations of the quantization conditions are

in fact based in finite-volume continuum quantum field theory (QFT). In particular, we assume in

the following that calculations have controlled the errors associated with nonzero lattice spacing

and unphysical quark masses by appropriate extrapolations (or, in the latter case, possibly inter-

polations). As noted above, there are also errors associated with the finite extent of the lattice in

the Euclidean time direction, Lt. Lattice calculations are mostly done with boundary conditions

in the temporal direction chosen to give the system a thermal interpretation, with temperature

T = 1/Lt. By choosing Lt large enough one works at very low temperatures, and then it is possible

to extract the spectrum with controlled errors from the dependence of correlators on the Euclidean

time separation. Thus the only issue we address here is the impact of working in a finite, cubic

box, of length L. We further assume that, as in most lattice calculations, the spatial boundary

conditions are periodic.

Box length, L:
Periodicity of the
finite-volume in each

of the three spatial

directions

Within this box one can fix all internal quantum numbers of the overall state. For example, one

can set Q = |e|, B = S = 0 (B being baryon number, and S strangeness), choose odd G-parity,3

and also fix the total three-momentum ~P to one of the allowed finite-volume values 2π~n/L (with

~n a vector of integers). Then the lightest finite-volume state corresponds to a π+ with momentum
~P , and the excitations correspond to interacting π+π+π− and π+π0π0 states. If instead one

projects onto Q = 2|e| and even G-parity, while keeping B = S = 0, then the available states are

approximately described as interacting π+π+, π+π+π+π− and π+π+π0π0 states, etc. Similarly, if

we take Q = 3|e| and odd G-parity, then the lightest state consists of π+π+π+.

It is important to keep in mind, however, that we do not need to keep track of the individual

particle components. We simply create the state with an operator having the requisite quantum

numbers. Then the QCD dynamics, encoded in terms of quarks and gluons interacting via the QCD

Lagrangian, lead to a low-lying spectrum of multi-hadron finite-volume states. The only output is

a set of L-dependent energy levels, and this is all the input needed by the quantization conditions.

It will be useful for the more technical discussion of the subsequent sections to describe some

general features of the dependence of energy levels on L. For single, stable particles, a key result

is that the energies, and other properties, depend on volume as (MπL)−n exp(−αMπL), where n

and α depend on the quantity (9). These corrections arise from virtual pions propagating to the

2As we will see in subsequent sections, the connection between finite-volume spectrum and scattering
amplitudes is more indirect in the three-particle case compared to that for two particles.

3To keep the examples discussed in this paragraph simple, we work in the limit of exact isospin symmetry.
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neighboring cells of the periodic system. They drop off rapidly with L, and it has been found that

using MπL & 4 is usually sufficient for finite-volume uncertainties to become subleading to other

sources. Throughout this review, we assume that such exponentially-suppressed dependence can be

neglected. The weakness of such dependence is crucial for the above-described successes of LQCD

in attaining subpercent precision for certain single-particle quantities.

Key approximation::
Neglect of
exponentially-

suppressed volume

dependence

The volume dependence for multiple-particle states is, however, quite different. In this case

the asymptotic behavior exhibits power-law scaling of the form L−n. We describe the origin of

this behavior below, but for now note only that multiparticle finite-L effects fall off much more

slowly than the exponentially suppressed terms and cannot be ignored. Indeed, the quantization

conditions allow this dependence to be used as a tool rather than an unwanted artifact. In this

way, an apparent source of systematic uncertainty in LQCD calculations has become a powerful

window into resonance physics.

This review is organized as follows. Three approaches have been followed in the development of

the three-particle quantization condition, and we discuss them in turn.4 The first uses a diagram-

matic, all-orders analysis in a generic effective QFT. We refer to this as the RFT approach, with

the R emphasizing that this is a relativistic approach. It was developed by us in Refs. (17, 18) for

the simplest case of three identical scalars with a Z2 symmetry forbidding 2 ↔ 3 transitions, and

subsequently generalized in collaboration with Briceño in Refs. (19, 20). This is the topic of the

following section, Sec. 2. We first describe the derivation of the two-particle quantization condition

in Sec. 2.1, providing two simple examples in order to motivate the general derivation. We then, in

Sec. 2.2, provide a description of the derivation of the three-particle quantization condition. Here

we are able to use results from Ref. (20) to simplify and shorten the derivation given in the original

work, Ref. (17). Our hope is that this will make this rather technical derivation more accessible. We

close Sec. 2 with brief discussions of how the three-particle quantization condition can be truncated

and thus made practical, and of two analytic checks of the formalism.

Two alternate approaches have subsequently been followed, both of which greatly simplify the

derivation of the quantization condition. These are described in Sec. 3. To date, these only consider

the case in which the interaction between particle pairs (denoted “dimers”) is purely s-wave. This

is in contrast to the RFT approach, for which all waves are included in the dimer interactions. The

two alternate approaches are that based on non-relativistic effective field theory (NREFT) (21, 22),

and that using a finite-volume implementation of unitarity constraints, which we refer to as the

finite-volume unitarity (FVU) approach (23, 24). For both approaches we describe the derivation of

first the two- and then the three-particle quantization conditions, and then describe the relation of

the results to those in the RFT approach. These latter two sections, Secs. 3.1.3 and 3.2.3, present

new results, which we think illuminate the similarities and differences between the approaches.

A key question for all approaches is whether they can be implemented in practice. This has

been addressed over the last year or so in all three approaches by showing how, in the simplest

approximation of s-wave dimer interactions and a local three-particle interaction, the quantization

conditions can be used to predict the finite-volume spectrum. Sec. 4 gives examples of the results

from all three approaches.

We close with a list of summary points and issues for future work.

In order to keep this review within bounds, there are many topics that we do not cover. As

already noted, we do not discuss, except in passing, the two-particle formalism, or the extensive

numerical results from LQCD calculations using the two-particle quantization condition to deter-

mine two-particle scattering amplitudes. For a recent, thorough review of both of these topics, we

refer the reader again to Ref. (12).

We also do not discuss the approach to two- and three-particle systems developed by the

HALQCD collaboration, and reviewed in Ref. (25). In the two-particle case, this approach uses

the Bethe-Salpeter amplitude in order to extract a potential that can then be inserted into the

Schrödinger equation to determine bound-state energies and scattering amplitudes. It has been

successfully applied to many two-baryon systems—for a recent example see Ref. (26). The exten-

sion to three particles (27) is, however, so far restricted to the nonrelativistic domain, and thus is

not directly applicable to most of the resonances of interest in QCD.

We also do not discuss the impressive recent progress in simulating multiple interacting nucleons

by discretizing the truncated pionless chiral EFT, and working in a finite volume. For a review see

Ref. (28), and for an example of recent work see Ref. (29). This is a powerful method for studying

bound states and near-threshold behavior, but does not apply to the resonances of interest, where

dynamical pions are essential.

Finally, we do not discuss recent ideas for determining the finite-volume multi-particle spectrum

in NRQM using a variational approach (30), as again this is restricted to the nonrelativistic regime.

4We also note the pioneering work of Ref. (15), which showed that the three-particle spectrum depends
only on S-matrix elements. Another early step towards a quantization condition was taken in Ref. (16).
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2. RELATIVISTIC QUANTIZATION CONDITIONS USING A DIAGRAMMATIC
APPROACH IN QFT

In this section we review the derivations of the two- and three-particle quantization conditions using

an all-orders diagrammatic analysis in a generic relativistic field theory. We refer to this as the

RFT approach. We begin with two particles as this allows us to explain the general strategy and to

introduce notation that will aid in the explication of the more complicated case of three particles.

We will derive these results in the simplest setting, namely for identical, spinless particles, which

is the only setting considered to date for the three-particle quantization condition.

2.1. Two-particle quantization condition in the RFT approach

The two-particle quantization condition provides the relation between the spectrum of a field theory

in a finite box and the infinite-volume two-to-two scattering amplitude, M2. We begin with some

kinematical notation forM2. We use Pµ = (E, ~P ) to denote the total 4-momentum of the scattering

pair, so that PµPµ = E2 − ~P 2 = s. Denoting the 4-momentum of one of the incoming particles as

k, and that of one of the outgoing as k′, we write the dependence of the amplitude asM2(P ; k′, k).

We use this notation also for off-shell amplitudes, for which kµkµ 6= m2, with m the physical mass

of the particle.5 A special role is played by the c.m. (center-of-momentum) frame. We denote

quantities in this frame with a superscript ∗, e.g. the total energy is E∗ =
√
s, and the incoming

3-momentum ~k boosted to this frame is ~k∗. When the two incoming particles, with momenta k and

P − k, are each on shell, this implies a constraint on the magnitude of the CM-frame momentum,

k∗ ≡ |~k∗|. In this case one finds that the latter is equal to q∗ =
√
E∗2/4−m2, meaning that

for fixed E∗ only angular degrees of freedom remain. This allows one to decompose the on-shell

amplitude into angular-momentum components, M(`)
2 (s), in the standard way.

Superscript *:
Denotes quantities

defined in the

c.m. frame.

Unitarity provides an important constraint on M(`)
2 (s), one that will play a central role in

Sec. 3.2.1. Specifically, it implies that, for s ≥ 4m2,

M(`)
2 (s)−1 = K(`)

2 (s)−1 − iρ(s) , K(`)
2 (s)−1 =

q∗ cot δ(`)(q∗)

16π
√
s

, ρ(s) =
q∗

16π
√
s
, (1)

where the K matrix, K(`)
2 (s), is a real function that is meromorphic (analytic up to poles) for

K(`)
2 (s): Relation

between K matrix
and scattering

amplitude

s > 0. When we discuss the three-particle case we need to consider M(`)
2 (s) below threshold such

that q∗2 < 0. To make sense of this is useful to note that M(`)
2 (s) has a branch cut along the

real axis in the complex s plane, running from s = 4m2 to ∞. The conventions established above

correspond to real energies just above the cut. To remain on the same Riemann sheet for s < 4m2,

one must analytically continue the phase-space factor as ρ(s) = i|q∗|/(16π
√
s).

Turning now to the finite volume, we open with only a brief comment on our set up: In this

review we restrict attention to periodic, cubic volumes, with length L in each of the three spatial

directions.

2.1.1. Example: leading term in the threshold expansion. To gain intuition into the general ap-

proach, we discuss two simple examples of the derivation of the quantization condition. The first

concerns the lowest two-particle energy for ~P = 0, which, as was already shown over 60 years

ago (32), satisfies

E0(L) = 2m+ 4πa/(mL3) +O(1/L4) . (2)

Here a is the scattering length, defined by

Threshold expansion:
Leading order term

q∗ cot δ0(q∗) = −1/a+O(q∗2) . (3)

It is convenient here, and in the following, to introduce a finite-volume correlator that is closely

related to the two-to-two scattering amplitude, M2. This object, called M2L, will have poles

at the energies of the finite-volume states. It is defined by calculating exactly the same set of

Feynman diagrams as for M2, but with a sum rather than an integral over the allowed three-

dimensional momentum modes. For example, in λφ4 theory, the leading-order and next-to-leading-

order contributions are shown in Figure 1(a) and given by

iM2L ≡ −iλ−
λ2

2

∫
d`0

2π

1

L3

∑
~̀

i

`2 −m2 + iε

i

(P − `)2 −m2 + iε
+ · · ·+O(λ3) , (4)

where the ellipses represents the t- and u-channel diagrams. Some choice of UV regularization is

implicit here, but need not be specified as it will play no role in the final result.

Our aim is now to pull out the power-law volume dependence. If all sums were replaced by

integrals, then we would simply obtain the second-order expression for M2. For the t- and u-

5These are defined as the sum of all two-to-two amputated diagrams using the fundamental field of the
theory as the external operator. Field redefinitions can change these amplitudes off shell, but the on-shell
values, which are all that enter our final expressions, are invariant.
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⇒ 1/Ln ⇒ e−mL

(a) + + + O(�3) + +(b) + · · ·

(c) ⌦I⌦B2 M2M2 B2= +

(d) M2 B2 ⌦I⌦B2 B2 ⌦I⌦B2 B2 ⌦I⌦ B2 + · · ·= + +

B2M2L B2 M2L⌦S⌦(e) = +

B2 B2 B2⌦S⌦ B2 B2 B2⌦S⌦ ⌦S⌦M2L(f) = + + + · · ·

Figure 1

Representations of the scattering amplitude, M2 and its finite-volume correspondent, M2L. (a) First- and

second-order contributions to M2L in λφ4 theory, with the dashed rectangles indicating that the spatial

momenta are summed over the discrete finite-volume values. (b) The set of diagrams that must be
summed in order to calculate the leading order energy shift in λφ4 theory. (c) Bethe-Salpeter (BS)

equation for the infinite-volume amplitude, with B2 being the BS kernel. (d) Iterated version of the BS
equation. (e) BS equation for the finite-volume amplitude, with S and the dashed rectangle both

indicating a sum over finite-volume three-momenta. (f) Iterated version of finite-volume BS equation.

channel contributions, it can be shown, as discussed below, that the sum-integral difference has

an exponentially-suppressed volume dependence, scaling as e−mL. We neglect such dependence

throughout this review as it is numerically small in practice. Thus the only source of power-law

volume dependence is the s-channel loop shown explicitly in Eq. (4). This can be simplified by

doing the `0 integral, and then replacing the sum with the integral plus sum-integral difference.

One then obtains

iM2L = iM2 −
λ2

2

[
1

L3

∑
~̀

−
∫

d3~̀

(2π)3

]
i

2ω`2ωP−`(E − ω` − ωP−` + iε)
+O(e−mL, λ3) , (5)

where ω` ≡
√
m2 + ~̀2.

We next set ~P = 0 and consider the weak coupling limit, |M2| � 1. Then the two-particle

energy will be very close to the lowest-lying non-interacting state, E = 2m+O(λ). In this regime,

the dominant volume-dependent contribution to M2L comes from the ~̀ = 0 contribution to the

sum, leading to

iM2L = iM2 −
λ2

2

1

L3

i[1 +O(1/L)]

4m2(E − 2m+ iε)
+ . . . (6)

At this stage we identify a problem with the truncated expression. While the leading-order term

contains no poles, the next-to-leading order result contains a pole at the non-interacting level

E = 2m. Both results are incorrect for the interacting theory. The problem arises because, for

E − 2m = O(λ), the first two terms are effectively of the same order. More importantly, some of

the terms we have neglected are of this order as well.

To resolve the issue we must include all diagrams with any number of s-channel bubbles, as

shown in Figure 1(b) Doing so leads to a geometric series, and summing this leads to a shift in

the pole inM2L. To see this explicitly, we work to all orders in λ/(E − 2m) while only working to

leading-order in the scattering amplitude (so that M2 = −λ). We find

M2L =M2

∞∑
n=0

(
(−1)

2L3

[1 +O(1/L)]

4m2(E − 2m+ iε)
M2

)n
=

M2(E − 2m)

E − 2m+M2/(8m2L3) +O(1/L4)
. (7)

If we now make the replacement M2 = −32πma, valid at leading order in λ for all s (and to

Threshold shift:
Example of a shifted
pole in the

finite-volume

correlator

all orders in λ for s = 4m2), then we find that the pole is indeed shifted to the position given in

Eq. (2).

2.1.2. Example: quantization condition in 1 + 1 dimensions. Our second example shows how the

quantization condition emerges for general values of E and L. Working in 1 + 1 dimensions keeps

the essential features of the derivation while simplifying the calculation. For simplicity, we restrict

to the c.m. frame, ~P = 0, and drop the argument P in M2 and related quantities.

It is instructive to first show how the unitarity relation arises diagrammatically. To this end,

we expand M2 in powers of the Bethe-Salpeter (BS) kernel, as shown in Figures 1(c)-(d). This

6 Hansen and Sharpe



kernel is the sum of all diagrams that are two-particle irreducible in the s-channel. Thus it contains

loops with three or more particles, and single-particle poles, but no two-particle loops. We focus

on the kinematic region m < E < 3m, within which the BS kernel has no on-shell cuts, and thus is

real. Thus the only sources of imaginary contributions are the two-particle loops, which can have

on-shell cuts. Performing the time component integrals, the expression forM2 can be brought into

the form6

iM2(p′, p) =

∞∑
n=0

n−1∏
j=0

(
1

2

∫
kj+1

iB2(kj , kj+1)
i

(2ωkj )2(E − 2ωkj + iε)

)
iB2(kn, p)

∣∣∣∣
k0=p′

. (8)

Here we have left the momenta p′ and p general. We now set these on-shell, via p′ = p = q∗, and

drop the dependence on the left-hand side.

We are interested in extracting the imaginary part. Thus we use the identity relating the iε

prescription to a principal value (PV) prescription plus an imaginary δ-function term:

M2 =

∞∑
n=0

(
−B2 ⊗

[
IPV −

1

2

∫
k

i

(2ωk)2
δ(E − 2ωk)

]
⊗
)n

B2 , (9)

where ⊗ indicates integration of adjacent quantities over the common momentum, and IPV is the

pole term with the PV prescription. Thus factors of B2 adjacent to ⊗ are evaluated off shell. By

contrast, those adjacent to the delta-function can be set on shell, i.e. with 2ωkj = E.

Performing the integral we find

M2 =

∞∑
n=0

(
[−B2 ⊗ IPV⊗] +B2

i

8pE

)n
B2 . (10)

The sum on the right-hand side with the imaginary term dropped leads precisely to the K matrix,

K2, where we stress that the external arguments of the B2s are on shell. Reorganizing the full

right-hand side, keeping the imaginary term, thus gives

M2 =

∞∑
n=0

(
∞∑
m=0

[−B2 ⊗ IPV⊗]mB2
i

8q∗E

)n ∞∑
p=0

[−B2 ⊗ IPV⊗]pB2 , (11)

=
∞∑
n=0

(
−K2

[
− i

8q∗E

])n
K2 =

1

K−1
2 − i/(8q∗E)

, (12)

where again it is crucial that the B2s next to the i/(8q∗E) terms are on shell, so that it is the

Unitarity of M2:
1 + 1-dimensional
case

on-shell K2 that appears. The final result is simply the unitarity relation, Eq. (1), but written in

one spatial dimension.

We now argue that a similar analysis can be applied to the finite-volume correlatorM2L intro-

duced above. We recall that M2L is a real function of energy whose poles give the finite-volume

spectrum of the theory. The first step is to note that M2L is given by Eq. (8), except that the

integrals are replaced by finite-volume sums over kj = 2πnj/L, with nj an arbitrary integer, and

the iε is dropped. This is shown diagrammatically in Figure 1(e)-(f). The BS kernels inM2L are,

strictly speaking, the finite-volume versions, but these differ from those in infinite volume only by

exponentially-suppressed terms, a difference we neglect. This holds in our kinematic regime because

the loops inside B2 have integrands that cannot go on shell, and are thus nonsingular. One can

then use the Poisson summation formula to show that the sum-integral difference is exponentially

suppressed. This result holds in any number of dimensions, and was first derived in Ref. (10).

Key result: BS
kernels have

exponentially-

suppressed L
dependence

We now follow analogous steps to the demonstration of unitarity shown above, except that here

we separate the sum over finite-volume modes into the principal-value integral and the residual

sum-integral difference (instead of separating the iε-integral into a PV integral and an imaginary

part):

M2L =

∞∑
n=0

(
[−B2 ⊗ IPV⊗] −B2 ⊗

1

2

[
1

L

∑
k

−PV

∫
dk

2π

]
1

(2ωk)2(E − 2ωk)
⊗

)n
B2 , (13)

=

∞∑
n=0

(
[−B2 ⊗ IPV⊗] −B2

1

4EL

L2

4π2

[∑
n

−PV

∫
dn

]
1

x2 − n2

)n
B2 +O(e−mL) , (14)

where in the second line we have rearranged the expression and introduced x ≡ q∗L/(2π).

Unlike in our derivation of the unitarity relation, here we have no Dirac delta function to project

B2 to its on-shell value. Nonetheless, we note that the factors of the BS kernels in the L-dependent

6This requires a redefinition of B2 to absorb the “Z-diagram” contribution from two-particle loop, as
well as the residue function of the remaining pole.
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terms can, in fact be evaluated at k = q∗. This is justified because the difference is exponentially

suppressed[
1

L

∑
k

−PV

∫
dk

2π

]
ωk

(2ωk)2(q∗2 − k2)
[B2(p′′, k)B2(k, p′)−B2(p′′, q∗)B2(q∗, p′)] =

[
1

L

∑
k

−
∫

dk

2π

]
ωk

(2ωk)2(q∗2 − k2)

[
b(k)(q∗2 − k2)

]
∝
∑
n′ 6=0

∫
dk

2π

b(k)eiLkn
′

√
k2 +m2

= O(e−mL) . (15)

The first line here shows the difference between on- and off-shell BS kernels and, on the second

On-shell projection:
from sum-integral

difference

line, we have used the result that this must equal a smooth function (denoted b(k)) times q∗2− k2.

Canceling the pole, and then using the Poisson summation formula, we have rewritten the result as

a series of Fourier transforms with respect to integer multiples of L. This leads to our conclusion

that kernels can be placed on shell up to terms that we neglect. In this way we have an effective

delta function, in place of the true factor of δ(E − 2ω) that appeared in the unitarity derivation.

Following the remaining steps exactly as above, and using K−1
2 = q∗ cot δ(q∗)/(8q∗2E), we find

M2L =
8q∗E

cot δ(q∗) + cotφ(q∗, L)
, (16)

where

cotφ(q∗, L) ≡ x

π

[∑
n

−PV

∫
dn

]
1

x2 − n2
=
x

π

π cot(πx)

x
= cot

q∗L

2
, (17)

and the second equality follows by noting that the principal-value integral is identically zero and

the sum can be evaluated analytically. This implies that the finite-volume spectrum is given by all

solutions to

cot δ(q∗) + cot
q∗L

2
= 0 , (18)

equivalently

e2iδ(q
∗)+iq∗L = 1 , (19)

which is the well-known result for 1+1-dimensional theories (31).

Quantization
condition in 1 + 1
dimensions:

These simplified cases illustrate the key steps in the derivation of the quantization conditions:

Key steps

1. Demonstrate that power-like finite-volume dependence arises only from s-channel diagrams.

2. Sum contributions from all Feynman diagrams to identify the shift in the finite-volume

energies.

2.1.3. General derivation of two-particle quantization condition. This was first presented in the

seminal work of Lüscher (10, 11), but the approach followed here is more closely based on the

derivation of Ref. (33).

We begin with the BS equation for the two-particle scattering amplitude

MMM2 = B2 + B2 ⊗ I ⊗MMM2 , (20)

shown diagrammatically in Figure 1(c). Here we have introduced a boldface notation in which

coordinate dependence, and factors of i, are suppressed, e.g. B2 ≡ iB2(P ; k′; k). The symbol ⊗I⊗
here indicates an integral over the two-particle loop, now in 3 + 1 dimensions,

B2 ⊗ I ⊗MMMs ≡
1

2

∫
d4k

(2π)4
iB2(P ; k′′; k′)

iz(k′)

k′2 −m2 + iε

iz(P − k′)
(P − k′)2 −m2 + iε

iM2(P ; k′; k) , (21)

where z(k)/(k2 −m2 + iε) is the fully dressed propagator, normalized so that z = 1 on shell.

To determine the finite-volume spectrum, we again useM2L, although, in fact, any finite-volume

correlator would suffice [a different choice was made in Ref. (33)]. We now use the result described

above that the finite- and infinite-volume versions of the BS kernel differ by terms scaling as e−mL

if m < E∗ < 3m (or 0 < E∗ < 4m is there is a Z2 symmetry separating even- and odd-particle

number sectors). This result allows us to write the BS equation for the finite-volume correlator

[shown in Figure 1(e)]:

MMM2L = B2 + B2 ⊗ S ⊗MMM2L , (22)

B2 ⊗ S ⊗MMM2L ≡
1

2

∫
dk′0

2π

1

L3

∑
~k′

iB2(P ; k′′; k′)
iz(k′)

k′2 −m2 + iε

iz(P − k′)
(P − k′)2 −m2 + iε

iM2L(P ; k′; k) .

(23)
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Here the finite-volume momentum ~k′ is summed over the values 2π~n/L, with ~n a vector of integers.

We next replace the sum with an integral and a sum-integral difference. All power-like L dependence

lies in the latter quantity. As in the 1 + 1-dimensional analysis above, and as shown in detail in

Refs. (33, 17), the sum-integral difference picks out the on shell values of the quantities on either

side of S. Specifically, it is found that

B2 ⊗ S ⊗MMM2L = B2 ⊗ I ⊗MMM2L + B2F
iε
2MMM2L (24)

B2F
iε
2MMM2L ≡ iB2;`′′′m′′′;`′′m′′(P ) iF iε2;`′′m′′;`′m′(P,L) iM2L;`′m′;`m(P ) , (25)

iF iε2;`′′m′′;`′m′(P,L) ≡ 1

2

[
1

L3

∑
~k

−
∫

d3~k

(2π)3

]
iY`′′m′′(~k∗)Y∗`′m′(~k∗)

2ωk2ωP−k (E − ω` − ωP−k + iε)
. (26)

where the product in the second line is now a matrix product with indices given by the angu-

F iε2 (P,L): Matrix of

geometric functions
describing L

dependence.

lar momentum in the c.m. frame of the two on-shell particles. The quantity F iε2 is a matrix of

geometric functions that encodes how angular momentum-states mix due to the reduced symme-

try of the finite-volume system.7 It is the generalization to three-spatial dimensions of the simple

one-dimensional sum evaluated in Eq. (17). We have introduced Y`m(~k∗) =
√

4π(k∗/q∗)`Y`m(k̂∗),

where the prefactor multiplying the spherical harmonic removes spurious singularities near ~k∗ = ~0.

At this stage the derivation proceeds by substituting Eq. (24) into Eq. (22) and rearranging

MMM2L = B2 + B2

[
⊗ I ⊗+Fiε2

]
MMM2L , (27)

=

∞∑
n=0

B2

[[
⊗ I ⊗+Fiε2

]
B2

]n
, (28)

=

∞∑
n=0

( ∞∑
n′=0

B2

[
⊗ I ⊗B2

]n′)[
Fiε2

( ∞∑
n′=0

B2

[
⊗ I ⊗B2

]n′)]n
, (29)

=

∞∑
n=0

MMM2

[
Fiε2MMM2

]n
=MMM2

1

1− Fiε2MMM 2

. (30)

In the first line we have substituted the identity for S, Eq. (24). Then we have iteratively substituted

the expression forMMM2L to display all volume dependence. In the third line we have regrouped into

separate sums over I and Fiε2 . In the final step, we have identified the sums involving I with M2,

using Eq. (20). Alternatively, one can formally solve Eq. (27) directly forMMM−1
2L

MMM−1
2L =

[
B−1

2 −⊗I ⊗
]
− Fiε2 , (31)

and identify the square-bracketed contribution asMMM−1
2 . But since the final step is difficult to justify

without an all-orders expansion in B2, it is not clear to us that this more direct line adds anything

to the derivation.

We deduce that, for fixed values of ~P and L, the finite-volume energy spectrum in the region

E∗ < 3m is given (up to e−mL corrections) by all solutions in E to the quantization condition

Two-particle result:
Lüscher quantization
condition for

two-particle states.

det
`′m′;`m

[
M−1

2 (E∗) + F iε2 (E, ~P , L)
]

= 0 , (32)

where M2;`′m′;`m = δ`′`δm′mM(`)
2 . The extensions to multiple coupled two-particle channels,

including different species and particles with spin, are known, as reviewed in Ref. (12).

In the following it will be useful to express the quantization condition in terms of the K matrix.

To this end we introduce a version of F2 in which the PV prescription is used in the integral in

Eq. (26) rather than the iε prescription. We denote this simply as F2 without a superscript. It is

straightforward so show [see, e.g., Ref. (17)] that the quantization condition (32) can be exactly

rewritten as

Two-particle
quantization
condition: K-matrix

form

det
`′m′;`m

[
K−1

2 (E∗) + F2(E, ~P , L)
]

= 0 , (33)

where K2;`′m′;`m = δ`′`δm′mK(`)
2 .

2.2. Three-particle quantization condition in the RFT approach

We now turn to the derivation of the three-particle quantization condition, presented in Refs. (17,

18).

As is discussed in detail in those publications, the quantization condition depends on an in-

termediate quantity, referred to as a divergence-free three-particle K matrix and denoted by Kdf,3.

This is a non-standard object that encodes the short-distance part of the the three-particle scat-

tering amplitude. It has the same degrees of freedom as the standard scattering amplitude but

7Both the sum and integral must be UV-regulated. The choice of regulator is unimportant, however, as
different choices lead to results for F iε2 differing only by exponentially suppressed terms. F iε2 is related to
the generalized zeta functions defined in Ref. (10, 11); the explicit relation is given, e.g., in Ref. (41).
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Figure 2

Skeleton expansion for finite-volume correlator CL. Filled triangles indicate the vacuum-to-three-particle
matrix elements of the creation and annihilation operators, called iσ†∗ and iσ∗, respectively, in the text.

Solid lines are fully dressed propagators with unit on-shell residue. Unfilled circles are infinite-volume BS

kernels B2 and B3, as indicated. Dashed rectangles enclose three-momenta that are summed. In the
subsequent analysis, sums are replaced by integrals plus sum-integral differences in places denoted by the

red vertical lines, and this leads to so-called F cuts. Where the interacting pair switches, there is a

contribution in which the sum is kept explicit, and this leads to the geometric quantity G. The places
where this occurs are indicated by double blue vertical lines.

should be easier to extract from the finite-volume spectrum, since it is a smooth, real function.

Most importantly, its relation to the standard 3 → 3 scattering amplitude, M3, is known (18)

and depends only on the on-shell 2 → 2 scattering amplitude. Thus, the envisioned work-flow is

summarized by

En(L) =⇒ Kdf,3,M2 =⇒ M3 . (34)

Basic work-flow:
Relating the

finite-volume
energies to M3.

In this section we sketch the derivation of the quantization condition for three identical relativis-

tic scalar particles. Following Refs. (17, 18), we restrict attention to theories with a Z2 symmetry

that decouples the even- and odd-particle-number sectors. In addition we assume that the two-

particle K matrices have no poles in the kinematic region of interest. An example of such a theory

is the 3π+ system in QCD in the isospin limit, where G-parity plays the role of the Z2 symmetry,

and the 2π+ subsystem is not resonant. The generalizations to include 2 → 3 scattering and to

describe systems with sub-channel resonances (generating K-matrix poles) have been worked out

in Refs. (19) and (20), respectively.

The derivation we present is a simplified version of that given in Ref. (17), based on the improved

approach introduced in Ref. (20). We focus on the important steps, pointing the reader to Refs. (17,

20) for detailed justifications. We begin in Sec. 2.2.1 by setting up the strategy of the derivation,

based on a skeleton-expansion of a finite-volume correlation function, CL In Sec. 2.2.2 we summarize

how the L dependence is isolated for diagrams of all topologies. We then, in Sec. 2.2.3, combine

results to reach a closed form for CL, from which immediately follows the quantization condition

in terms of Kdf,3. Finally, in Sec. 2.2.4 we review the relation between Kdf,3 and M3.

2.2.1. Preliminaries. As in the two-particle case, the derivation presented here is carried out to all

perturbative orders in a generic, relativistic quantum field theory. By “generic” we mean that no

assumptions about the vertices or power-counting scheme are required.

Consider the finite-volume correlation function

CL(E, ~P ) ≡
∫
L

d4x e−iEt+i
~P ·~x〈σ(x)σ†(0)〉L , (35)

where σ†(0) has odd-particle quantum numbers. In the region m < E∗ < 5m (where m is the

Finite-volume
correlator: Poles give

spectrum

physical particle mass and E∗ =
√
E2 − ~P 2), all power-like L-dependence arises from intermediate

three-particle states.

With this in mind, in Ref. (17) we construct a skeleton expansion in terms of BS kernels and

fully dressed propagators, as shown in Figure 2. The expansion is entirely motivated by the goal

of displaying all important L-dependence, equivalently all on-shell or long-distance intermediate
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states. The final structure can be expressed in terms of two kernels: B2, already used above, and

B3, which contains all 3-particle irreducible diagrams in three-to-three scattering (as well as one-

particle propagation that introduces no singularities in the kinematic window considered). Both

B2 and B3 have only exponentially suppressed L dependence, and thus, under the approximation

guiding the derivation, can be replaced by their infinite-volume counterparts.

As we explain in more detail in the following, the relevant volume-dependence, generated by

sums over ~k = 2π~n/L in the loops of the skeleton expansion, can be expressed in terms of two finite-

volume geometric functions, denoted F and G. The first is closely related to the zeta-function of

Eq. (26) and is defined in terms of the PV version of that quantity:8

Fk′`′m′;k`m(P,L) ≡ δk′kH(~k)F2;`′m,`m(P − k, L) . (36)

Here we display the indices that all matrices in the three-particle quantization condition share: ~k,

Kinematic function
F : Related to F2

`, and m. These can be understood by separating the three particles into a dimer [called “scattering

pair” in Ref. (17)] and a spectator.9 The spectator is constrained to have one of the discrete finite-

volume momenta, ~k = 2π~n/L, while the dimer is decomposed into angular momentum states in its

c.m. frame (as was done in the two-particle quantization condition), leading to the `m indices. The

δk′k in Eq. (36) thus represents a situation in which the spectator does not interact. The argument

of F2 gives the four-momentum flowing through the dimer, (P − k)µ = (E − ωk, ~P − ~k).

A new feature in Eq. (36) is the appearance of the cutoff function H(~k). For fixed P , as |~k|
increases, the dimer c.m. energy,

E∗2,k =

√
(E − ωk)2 − (~P − ~k)2 , (37)

passes below threshold E∗2,k = 2m and eventually drops to zero. For technical reasons explained

in Ref. (17) the formalism requires that E∗22,k ≥ 0. The cutoff function H(~k) accomplishes this by

smoothly varying from unity at and above threshold to zero when E∗2,k = 0. An explicit example

of the cutoff is given in Ref. (17), but will not be needed here. One can think of it as a soft cutoff

at |~k| ∼ m.

The presence ofH(~k) implies that the index ~k runs over a finite number of values. The full matrix

space remains infinite dimensional, however, due to the angular-momentum degrees of freedom. If

these are truncated, as is common practice in the two-particle sector, then F reduces to a finite-

dimensional matrix.

The locations in the diagrams of the skeleton expansion at which an F appears is shown in

Figure 2. A quantization condition based only on F would predict three-particle energies of the

form En(L) = ωk+E2(L, ~P −~k) where the second term is an interacting two-particle level with the

indicated momentum. Of course, for three identical particles, this cannot be the correct spectrum.

It properly encodes the interactions of two, but neglects the third which enters as a non-interacting

constituent, albeit with the proper relativistic energy. This motivates the appearance of the second

geometric function, G, that encodes the volume effects of an exchange in the scattering pair. The

explicit definition is10

Gp `′m′;k `m ≡
(
k∗

q∗p

)`′
4πY`′m′(k̂

∗)H(~k)H(~p)Y ∗`m(p̂∗)

(P − p− k)2 −m2

(
p∗

q∗k

)`
1

2ωkL3
, (38)

where ~k∗ is ~k boosted to the dimer c.m. frame when ~p is the spectator momentum, and q∗p =

Kinematic function
G: Arises from

exchange of

scattering pair√
E∗22,p/4−m2 is the momentum of each of the two dimer constituents when ~p is the spectator

momentum and all particles are on shell. The same definitions hold for ~p ∗ and q∗k, with the roles
~k and ~p exchanged. Examples of the locations in skeleton-expansion diagrams that lead to factors

of G are shown in Figure 2.

At this stage we are left to explain three more-technical aspects of the notation. First, at

various intermediate stages we consider sums over three-to-three diagrams in which an incoming or

outgoing particle is singled-out by the property of being unscattered by the outermost two-to-two

insertion. We use the superscript (u) to denote such unsymmetrized quantities. Given that we

consider identical particles, the final result cannot (and, as we prove in Ref. (17), does not) depend

on these incomplete objects. Second, we find it convenient to introduce a bold-faced notation for

the BS kernels as well as other building blocks defined via partial diagrammatic sums. This simply

denotes that factors of i and 1/(2ωL3) have been absorbed to simplify expressions, and is taken

over from Ref. (20). Third, it is convenient to begin the derivation by studying only the part of

CL(E, ~P ) that survives when we send B3 → 0. This is indicated by a [B2] superscript, CL → C
[B2]
L .

With these preliminaries established, we are now ready to jump into the derivation.

8The PV version is used since this leads to a quantization condition involving K2 instead of M2 [as in
Eq. (33)], and thus avoids the cusps in M2 that can lead to power-law finite-volume dependence (17).

9The term “dimer” can potentially lead to confusion as different definitions appear in the literature. In
this work a dimer is simply a pair of particles projected to a definite orbital angular momentum.

10In Refs. (17, 18) a slightly different form of G was used, in which the pole term has the form of that
in the definition of F2, Eq. (26). The difference between the two pole terms is nonsingular, and can be
absorbed by a change in the definition of Kdf,3. It was later realized that using the relativistic form shown
here leads to a Kdf,3 that is relativistically invariant (19).
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Figure 3

Definitions of quantities appearing in Eq. (39), using notation from previous figures. Filled circles

represent two-particle K matrices, K2. The quantity A
′(u)
L,3 is given by the horizontal reflection of the

diagrams for A
(u)
L,3. Also shown is a sketch of the derivation of the decomposition of CL,0F given in

Eq. (41), in which the sum over the left-most summed loop integral is replaced by an integral plus

sum-integral difference, the latter leading to a factor of F . For the integral term, if there are further sums
remaining, then the procedure is repeated, as indicated by the dashed blue arrow.

2.2.2. Decomposing to the level of Kdf . We begin with Eq. (174) of Ref. (17), expressed in boldface

notation as in Eq. (49) of Ref. (20),

C
[B2]
L = CL,0F −

2

3
σσσ∗Fσσσ†∗ + A

′(u)
L,3F

(0)
33

∞∑
n=0

(
K

(u,u)
L,33 F

(0)
33

)n
A

(u)
L,3 , (39)

F
(0)
33 ≡ F

1

1−K2F
. (40)

To obtain this result we have applied the method that led to the two-particle quantization condition

Initial
decomposition:
Factorizing
L-dependence

between adjacent
K2 factors.

for diagrams in which adjacent factors of B2 are attached to the same dimer. This explains the

appearance of K2 ≡ i[2ωL3]K2, which is diagonal in spectator indices,11 as well as F ≡ iF/(2ωL3).

The other quantities in Eq. (39) involve diagrams in which particles pairwise scatter via K2,

with the remaining loops (containing exchange propagators) involving sums over the finite-volume

momenta. These quantities are finite-volume objects, as indicated by the subscript L. They are

shown Figure 3. Specifically, K
(u,u)
L,33 is sum of all fully connected three-to-three scattering diagrams

involving alternating pairwise scattering, while A
(u)
L,3, A

′(u)
L,3 and CL,0F are defined similarly, but with

additional endcap factors σσσ†∗ and σσσ∗.

The remaining task is to decompose the volume dependence of CL,0F , A
′(u)
L,3 , A

(u)
L,3 and K

(u,u)
L,33 ,

expressing each object as matrix products of infinite-volume quantities and finite-volume geometric

functions. To this end one can show that

CL,0F = C [B2]
∞ + 2A

′(s)
3 F(A

(u)
L,3 − σσσ

†∗) , (41)

A
′(u)
L,3 = A

′(u)
3 + 2A

′(s)
3 F

(
K

(u,u)
L,33 + K2

)
, (42)

A
(u)
L,3 = A

(u)
3 +

(
K

(u,u)
L,33 + K2

)
F 2A

(s)
3 , (43)

thereby reducing all unfactorized L-dependence to that of K
(u,u)
L,33 . The derivation of the result for

Second
decomposition:
Reducing all terms

to K
(u,u)
L,33 .

CL,0F is sketched in Figure 3; those for the other quantities is similar. The idea is to move from

left to right, replacing a given momentum sum with an integral plus a sum-integral difference. The

term with the difference leads to a factor of F whereas that with the integral is further decomposed,

by applying the same prescription to the next sum in the chain. In this way all contributions are

cast into the same form: an F-cut with an infinite-volume expression to the left and remaining L

dependence to the right.

11For technical reasons, in the subthreshold region (E∗2,k < 2m), K2 is defined to includes a smooth

interpolation from the sub-threshold K matrix (∝ [ q∗ cot δ]−1) to the sub-threshold scattering amplitude
(∝ [ q∗ cot δ + |q∗|]−1).
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At this stage it only remains to decompose K
(u,u)
L,33 . One finds

K
(u,u)
L,33 = K

(0)
L,33 + [1 + TG]K

(u,u)
df,33

1

1−GKK
(u,u)
df,33

[1 + GT] , (44)

where

Final decomposition:
Displaying all L

dependence as
products of

geometric functions.

K
(0)
L,33 ≡

1

1−K2G
K2GK2 , T ≡ K2

1

1−GK2
, GK ≡

1

1−GK2
G . (45)

This decomposition, explained in Ref. (20), leads to the first appearance of the second geometric

function G = i(2ωL3)−1G, as well of the intermediate infinite-volume quantity K
(u,u)
df,33 = iK(u,u)

df,3 .

Here the subscript “df” stands for divergence free and indicates that kinematic singularities present

in the three-to-three scattering amplitude are absent from this quantity.

2.2.3. Combining and symmetrizing. We now substitute all decompositions into Eq. (39) and or-

ganize terms by the number Kdf,33 factors that they contain.

Beginning with the Kdf -independent contributions, note that K
(u,u)
L,33 −→ K

(0)
L,33 in the limit of

Kdf,33 → 0. This can be used to show that the factor appearing between A
′(u)
L,3 and A

(u)
L,3 in Eq. (39)

reduces as

F
(0)
33

∞∑
n=0

(
K

(u,u)
L,33 F

(0)
33

)n Kdf→0−−−−−→ F
1

1−TF
≡ Z . (46)

It is then straightforward to reduce the two endcaps as well as CL,0F to reach

A
′(u)
L,3

Kdf→0−−−−−→ A′3 − 2A
′(s)
3 (1− FT) , (47)

A
(u)
L,3

Kdf→0−−−−−→ A3 − (1−TF)2A
(s)
3 , (48)

CL,0F − C [B2]
∞

Kdf→0−−−−−→ 2A
′(s)
3 F

(
A3 − (1−TF)2A

(s)
3 − σσσ

†∗
)
. (49)

Here we have expressed the endcaps in terms of A′3 ≡ A
′(u)
3 + A

′(s)
3 + A

′(t)
3 and similarly for the

unprimed object. This combines the three possible choices of momentum assignment for the external

particle that is not attatched to the outermost 2→ 2 insertion. Although we are forced to consider

unysmmetrized quantities at various stages of the derivation, it is crucial that the final result should

only depend on objects that have exchange symmetry with respect to the momenta of the three

identical particles. This is proven explicitly for all systems considered so far in Refs. (17, 18, 19, 20).

Substituting the four relations [Eqs. (46)-(49)] into Eq. (39) leads to a complicated expression.

However, the important part is given by the term containing the two symmetrized endcap factors

A′3 and A3:

C
[B2]
L − C [B2]

∞ ⊃ A′3ZA3 = A′3

[
F + F

1

1−K2(F + G)
K2F

]
A3 , (50)

where in the equality we have given an alternative, expanded expression for Z. Remarkably, this

simple result almost captures the full volume dependence at leading order in Kdf,33. The set

of remaining contributions modifies the result in two minor ways. First, many of the additional

terms can be proven to have only exponentially-suppressed L dependence and are absorbed into

a redefinition of C
[B2]
∞ . Second, the one additional volume cut that survives (after significant

reshuffling) is a term that corrects the numerical factor multiplying A′3FA3. One finds

C
[B2]
L − C [B2]

∞ = A′3F33A3 +O(Kdf) , (51)

F33 ≡
1

3
F + F

1

1−K2(F + G)
K2F . (52)

As we will see below, F33, which combines geometric functions together with factors of K2, is

Leading order result:

C
[B2]
L at leading

order in Kdf .

the three-particle analog of F2. It is the central object entering the three-particle quantization

condition.

We now continue the pattern by considering the next order in Kdf,33. For example, from

the decomposition of K
(u,u)
L,33 in Eq. (44) together with the Kdf -independent result [Eq. (46)] it is

straightforward to show that

F
(0)
33

∞∑
n=0

(
K

(u,u)
L,33 F

(0)
33

)n
= Z + Z(1 + TG)K

(u,u)
df,33 (1 + GT)Z +O(K2

df) . (53)

The next step is to identify the O(Kdf) contributions to A
′(u)
L,3 , A

(u)
L,3 and CL,0F−C [B2]

∞ and assemble

all terms to identify the corresponding contribution to C
[B2]
L − C [B2]

∞ . However, for the purposes

of this review, we think it more instructive to consider a single contribution to C
[B2]
L , given by

sandwiching the O(Kdf) part of Eq. (53) between symmetrized, infinite-volume endcaps,

A′3Z(1 + TG)K
(u,u)
df,33 (1 + GT)ZA3 =

A′3

[
F + F

1

1−K2(F + G)
K2(F + G)

]
K

(u,u)
df,33

[
F + (F + G)K2

1

1− (F + G)K2
F

]
A3 . (54)
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As above, the inclusion of all other terms leads to only minor modifications to this key result.

Again various L-independent terms are absorbed, not only into C
[B2]
∞ but also into A′3 and A3. A

new feature that arises here is that the unsymmetrized K matrix, K
(u,u)
df,33 , can be replaced with a

symmetrized form, up to a correction of the symmetry factor on the isolated F term (F → F/3)

and a modification of the cuts multiplying K
(u,u)
df,33 . The upshot is that the square-bracketed factors

are replaced with F33, the same three-particle volume cut that appeared at the previous order:

C
[B2]
L − C [B2]

∞ = A′3F33A3 + A′3F33K
[B2]
df,33F33A3 +O(K2

df) . (55)
NLO result: C

[B2]
L at

next-to-leading
order in Kdf .

At this stage, we see the structure emerging and can assign a physical interpretation to the

pattern. Within the finite-volume correlator, the three-particle state is created with an insertion

of A3. This is equal to a matrix element of σ† and measures the probability amplitude to create

a three-particle state from the vacuum.12 The three particles then propagate and rescatter in the

box, leading to a pattern of Feynman diagrams that translates into a set of nested geometric series.

We organize these in powers of the short-distance three-to-three interaction, Kdf,33. Then at

leading order the volume affects arise due to a single insertion of F33. This, in turn, is equal to

a factor of F together with a sum over all terns of the form FK2FK2G · · ·FK2F where either F

or G can appear between any two factors of K2. The sum over all such terms represents the fact

that any particle pair can scatter (inducing a factor of K2) and then propagate between consecutive

re-scattering events (giving F), or alternatively exchange the scattering pair (leading to G). Finally

the term that is linear in Kdf,33 is governed by this same structure, together with the observation

that a short-distance three-particle interaction may arise anywhere in the series of two-particle

scattering events.

From the physical intuition it is perhaps not so surprising that the same pattern continues to

all orders in Kdf . This is proven explicitly in Refs. (17) and (20). In addition, the inclusion of the

three-particle BS kernels turns out to only modify the definition of the divergence-free K matrix.

This can be accommodated by replacing K
[B2]
df,33 with Kdf,33. Putting all this together leads to the

main result of Ref. (17)

CL − C∞ =

∞∑
n=0

A′3F33

[
Kdf,33F33

]n
A3 = A′3F33

1

1−Kdf,33F33
A3 . (56)

Thus the poles in the finite-volume correlator occur whenever the matrix appearing between A′3
and A3 has a divergent eigenvalue. We deduce that, for fixed values of ~P and L, the finite-volume

energy spectrum in the region m < E∗ < 5m is given (up to e−mL corrections) by all solutions in

E to the quantization condition

det
~k′`′m′;~k`m

[
Kdf,3(E∗) + F3(E, ~P , L)−1] = 0 . (57)

Here we have returned to the non-bold notation, using F33 = iF3 and Kdf,33 = iKdf,3, that we

Three-particle
quantization
condition: RFT

approach

will use for the remainder of the discussion.

2.2.4. Relating Kdf ,3 to M3. In the previous sections we have related Kdf,3(E∗) to the finite-

volume energy spectrum. This object can, in principle, be constrained by calculating finite-volume

energies, for example from the Euclidean-time decay of correlators calculated numerically using

LQCD, and then applying Eq. (57). Of course, this is only of interest if Kdf,3(E∗) can be related

to infinite-volume observables.

Indeed, as was shown in Ref. (18), this modified K matrix is related to the three-to-three

scattering amplitude via an integral equation that depends only on known functions as well as the

on-shell two-particle scattering amplitude. The relation has a number of desirable features. The

equations are defined at fixed energy, meaning that Kdf,3(E∗) is only required for E∗ where the

physical scattering amplitude is to be determined. In addition once the quantization condition is

fixed, there is no ambiguity or scheme dependence in the relation between Kdf,3 andM3. Finally the

Kdf,3 to M3 relation manifestly encodes the complicated unitarity constraints of the three-particle

scattering amplitude (34).

The relation is derived in a slightly round-about way. In particular we show in Ref. (18) that

one can define an alternative finite-volume correlation function, M3L, that becomes the physical

scattering amplitude in a carefully constructed L → ∞ limit. This new correlator differs from CL
only in the interpolating fields. As a result it admits a similar skeleton expansion and a similar

decomposition into geometric functions. In Ref. (18) we show that

M3L[Kdf,3,K2] ≡ S
[
D(u,u)
L − L(u)

L

1

1 +Kdf,3F3
Kdf,3R(u)

L

]
, (58)

12Strictly speaking this does not hold because of the removal of singular long-distance contributions. To
recover the standard matrix element these have to be put back in, following an approach analogous to the
relation between Kdf,3 and M3 discussed in Sec. 2.2.4 below.
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where D(u,u)
L , L(u)

L and R(u)
L are known explicitly, and are closely related to F3, while S indicates

symmetrization.

As an aside, we observe from Eq. (58) that we can useM3L instead of CL in order to derive the

quantization condition, as its poles lie at the same positions. Indeed, the unsymmetrized quantity

in square braces is very similar to the dimer-particle scattering amplitude used in the alternative

approaches to deriving the quantization condition discussed below.

We now obtain M3 by taking a judiciously chosen L → ∞ limit of M3L. This requires that

factors of iε in the pole terms be first put back in, so the L → ∞ limit is well defined. Thus we

have

M3(Kdf,3,K2) = lim
ε→0

lim
L→∞

M3,L(Kdf,3,K2) , (59)

which gives a set of purely infinite-volume integral equations, given explicitly in Ref. (18). These

map the real, short-distance three-body quantity Kdf,3 to the complex, unitary, relativistic three-

to-three scattering amplitude.

2.3. Truncating the quantization condition

The quantization condition Eq. (57) is a formal result, because the determinant runs over an

infinite-dimensional matrix space. This is exactly as in the two-particle case and, in direct analogy

to that case, truncating K2 and Kdf,3 to vanish above some `max is sufficient to reduce all matrices

in the quantization condition to have finite dimension (17). Specifically, the matrices then have

dimension [(2`max + 1) ×N~k] where N~k is the number of finite-volume momenta, ~k, for which the

cutoff function, H(~k), is non-zero.

The simplest approximation is to take `max = 0: the s-wave approximation. This is the approx-

imation used from the beginning in the alternative approaches described below. It assumes that

K2 and the dimer within Kdf,3 are both dominated by s-wave interactions. Given this truncation,

K2 reduces to a single function of the two-particle CM energy, whereas Kdf,3 retains dependence

on the spectator momenta ~k′∗ and ~k∗. This is the form of the RFT quantization condition that is

used in the comparison with the results from alternate approaches; it is given explicitly in Eq. (88)

below.

The s-wave approximation is well motivated at energies close to the three-particle threshold,

since higher waves are then suppressed by factors of (q∗k)`. To study this systematically, one expands

K2 and Kdf,3 about threshold in powers of s − 9m2 and related quantities. For K2 this leads to

the effective range expansion, with the leading term being the scattering length. The expansion of

Kdf,3 is constrained because it is relativistically invariant, symmetric under initial and final particle

interchange, and time reversal invariant (19). Using these symmetries, one can show that the first

two terms in the expansion are not only pure s-wave but also isotropic, i.e. independent of the

spectator momenta (19, 35, 36). At third order one must include d-wave contributions in both K2

and Kdf,3 (36).

The s-wave approximation plus isotropic Kdf,3 is referred to as the isotropic approximation. In

this most extreme truncation Kdf,3 depends only on E∗, so we can write

Kdf,3 = δ`,0δm,0|1〉Kiso
df,3(E∗)〈1| , (60)

where |1〉 is an unnormalized vector with unit entry for every active spectator momentum. If one

further restricts to the A1 irreducible representation (irrep) of the cubic group, then, as shown in

Ref. (17), all nontrivial solutions to the quantization condition satisfy

Kiso
df,3(E∗) = −1/F iso

3 (E, ~P , L) , F iso
3 ≡ 〈1|F3,s|1〉 , (61)

where F3,s is the form of F3 after s-wave truncation [see Eq. (88)]. Thus, in this approximation, we

recover a one-to-one correspondence between finite-volume energy levels and the value of Kiso
df,3(E∗).

This approximation has been studied numerically in Ref. (37), and some of the results are shown

in Sec. 4 below.

2.4. Analytic investigations of the RFT quantization condition

In this subsection we describe two analytic investigations of the three-particle quantization condi-

tion, Eq. (57). The main aim is to check the formalism by comparing to known results in special

limits, but a side-benefit is that some new analytic results are obtained.

2.4.1. 1/L expansion. Without interactions, the lowest energy state of three particles with ~P = 0

has energy 3m. Turning on interactions, this level will shift to E0(L). For sufficiently large L,

E0(L) − 3m can be expanded in powers of 1/L, the so-called threshold expansion. The leading

term scales as 1/L3, corresponding to the probability of two particles to overlap, while three-

particle interactions enter first at 1/L6. This expansion was worked out previously, using NRQM,

up to O(1/L7) (38, 39, 40).
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We determined the threshold expansion, starting from Eq. (57), in Ref. (41). We found13

E0(L) = 3m+
12πa

mL3

{
1− I a

πL
+
( a

πL

)2 (
I2 + J

)
+

64π2a2

mL3
C3 +

3πa

m2L3
+

6πra2

L3

+
( a

πL

)3(
− I3 + IJ + 15K+

16π3

3
(3
√

3− 4π) log

(
mL

2π

)
+ C′

)}
− M3,thr

48m3L6
+O

(
1

L7

)
,

(62)

where we have introduced the following geometric constants: I = −8.914, J = 16.532, K = 8.402,

C3 = −0.05806, C′ = 2052, whose origin is explained in Ref. (41). The scattering parameters

that enter here are the scattering length, a, the effective range, r, and the threshold three-to-three

scattering amplitude M3,thr. The latter has a somewhat subtle definition, due to the fact that the

full scattering amplitude diverges at threshold and thus requires a subtraction. Again see Ref. (41)

for details. Note that the leading term is three times that found in Eq. (2) for the two-particle

system, as expected since there are three pairs of particles that can interact.

The result of Eq. (62) agrees with the results of Refs. (38, 39) for the terms through O(1/L5).

This provides a strong check on the formalism. Relativistic effects enter at O(1/L6) and here no

general check is available. However the logL term is universal and its coefficient also agrees with

earlier work. To check the remaining 1/L6 terms, in Refs. (42, 43) we calculated E0(L) in λφ4

theory up to O(λ4), finding complete agreement with Eq. (62). Working at this order checks all

the terms entering at 1/L6.

We also note that, for weakly interacting systems, the threshold expansion might provide a

partial alternative to the full quantization condition. By fitting the L dependence of the threshold

state at many volumes, one could in principle extract M3,thr and thereby determine the near-

threshold scattering amplitude. This approach has been followed successfully in λφ4 theory in the

recent work of Ref. (44).

2.4.2. Volume-dependence of a three-body bound state. Our second analytic result concerns the

volume-dependence of a non-relativistic three-scalar Efimov bound state (45) in the unitarity limit

for two-particle interactions, i.e. with 1/a→ 0. This was studied in Ref. (46) using non-relativistic

quantum mechanics in a finite-volume. The authors found that, when the infinite volume system

contains a bound state, then the lowest lying state in finite volume has energy

EB(L) = 3m− κ2

m
+ ∆E(L) , (63)

where κ is the binding momentum, and

∆E(L) = c|A|2 κ
2

m

1

(κL)3/2
e−2κL/

√
3 + · · · . (64)

Here the ellipsis indicates terms suppressed by additional factors of κ2/m2 or 1/(κL) as well as

faster-decaying exponentials. The result depends on c ' −96.351, a known geometric constant,

and |A|2. The latter is a normalization correction that arises because the asymptotic wave-function

is not a strict solution to the Schrödinger equation. It is expected to be close to unity when the

pairwise interactions of the theory are well-described by a short-range potential.

The generic relativistic quantization condition presented above, Eq. (57), holds for systems

with a three-particle bound state, as long as there are no bound dimers. Indeed, in our numerical

implementation in the isotropic approximation, we have found that the formalism can support

such bound states (37). Assuming the existence of such a state (i.e. that there is a subthreshold

pole in M3), in Ref. (47) we were able to provide another check on the quantization condition

by reproducing the coefficient, power-law envelope and exponential decay given by Eq. (64). In

addition we extended the result to non-zero momentum in the finite-volume frame, and found that

the moving-frame energy is shifted according to

∆E(~P , L) = f3
[
~n
]

∆E(L) + · · · , f3
[
~n
]

=
1

6

∑
ŝ

ei(2π/3)ŝ·~n , (65)

where ~n = L~P/(2π) and the sum runs over the six unit vectors pointing along the finite-volume

axes. An interesting corollary is that the leading-order volume shift vanishes for ~n = (0, 1, 1).

3. ALTERNATIVE APPROACHES

As noted in the Introduction, two other approaches for deriving the three-particle quantization

condition have been used, and in this section we describe them, quote the resulting form for the

quantization condition, and explain in what ways these approaches agree with and differ from the

13In Ref. (41) we write CF + C4 + C5 in place of C′.
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generic RFT approach described in the previous section. In particular, we present new results

concerning the analytic relation between the three approaches in the s-wave approximation, which

is the only case that has been worked out explicitly within the new approaches.

We discuss the two other approaches in historical order, beginning with that based on non-

relativistic effective field theory (NREFT), introduced in Refs. (21, 22), and then describing the

approach based on extending the form of amplitudes required to satisfy unitarity to finite vol-

ume (23). We refer to the latter as the “finite-volume unitarity” (FVU) approach.

3.1. NREFT approach

NREFT is applicable when the momenta of all particles are in the non-relativistic domain, |~p | � m.

In this regime there is no particle creation, which greatly simplifies the diagrammatic analysis.

Examples where it is directly applicable in a three-particle context include three pions close to

threshold in an isospin-symmetric world (so that G-parity forbids three-to-two transitions) and

three nucleons close to threshold.

The first calculations using NREFT to determine finite-volume properties of three-particle sys-

tems were numerical calculations for the triton (48, 49) and Efimov states (50). This approach was

then used in Refs. (21, 22) to develop the three-particle quantization condition, which we review in

the following.

The authors consider a theory of identical scalars (i.e. the same setup as used in the REFT

analysis presented earlier) for which the NREFT Lagrangian is14

L = ψ†
(
i∂0 +

∇2

2m

)
ψ + L2 + L3 , (66)

L2 = − 1
2
C0ψ

†ψ†ψψ + 1
4
C2

(
ψ†
←→
∇ 2ψ†ψψ + h.c.

)
+ . . . , (67)

L3 = − 1
6
D0ψ

†ψ†ψ†ψψψ + 1
12
D2

(
ψ†ψ†

←→
∇ 2ψ†ψψψ + h.c.

)
+ . . . , (68)

where h.c. indicates hermitian conjugate,
←→
∇ = (

−→
∇ −

←−
∇)/2 is the Galilean-invariant derivative,

NREFT Lagrangian:
Expansion in powers

of |~p |2/m2 including

LECs

and derivatives act only on adjacent objects.The field ψ only destroys particles, since there is no

corresponding antiparticle in the theory. NREFT is an expansion in |~p |2/m2, and thus interaction

terms are classified by the number of derivatives, with the constraint from Bose symmetry that

only an even number is allowed. Thus the ellipses in Eqs. (67) and (68) indicate terms with four or

more derivatives, at which order arise the first terms that lead to d-wave interactions between pairs

of particles. The effects of virtual particle-antiparticle pairs in the underlying relativistic theory

are subsumed into the a priori unknown (dimensionful) constants Ci and Di. We refer to these

generically as LECs—low-energy constants.

This theory has been extensively studied in infinite volume, e.g. in its application to the three

nucleon system (where the fields become fermionic and have a spin index). For a review, see

Ref. (53). The LECs are to be determined by solving the two- and three-particle scattering and

bound-state problems (involving the solution of integral equations) and comparing to experimental

results for phase shifts and bound-state energies. One must choose a regularization, a topic with an

extensive literature given the subtleties that arise in the presence of large scattering lengths (54, 55).

For numerical applications, however, the standard choice is a hard cutoff, |~p | < Λ, and this is what

is used in Refs. (21, 22).

The overall strategy employed in this approach is as follows. The NREFT is to be solved in

finite volume, working first with only the leading order couplings C0 and D0, and including higher-

order terms as needed. These LECs are to be determined by comparing the theoretically predicted

spectrum to that obtained in a lattice calculation. In a second step, the NREFT is then solved

in infinite-volume, predicting the three-particle scattering amplitudes and bound-state properties.

This approach makes use of a crucial property of the LECs, namely that they are expected to be

volume-independent, since they arise from integrating out short-distance physics. Thus the values

obtained in finite volume can be applied unchanged in the infinite-volume calculations.

This two-step strategy is similar to that used in the RFT analysis presented earlier, where

the intermediate, cutoff-dependent quantity Kdf,3 was needed, and infinite-volume quantities were

obtained by solving integral equations. In the NREFT approach the intermediate quantities are the

LECs, which are also cutoff dependent, and thus not directly physical. What the NREFT approach

provides in addition is a systematic power-counting scheme, valid as long as one works in the NR

regime.

Advantage of
NREFT: Systematic

power-counting
scheme

An important technical point discussed in Ref. (22) concerns a class of higher-order terms in L2

and L3 that lead to vanishing on-shell contributions to physical scattering amplitudes at tree level.

An example from L2 is a term leading to a vertex proportional to (~k2− ~p2)2, where ~k and ~p are the

relative momenta between the two particles in initial and final states, respectively. It is argued that

one can choose the regularization such that these terms do not contribute to physical quantities

14There are also single-particle operators involving higher-order derivatives, which must be included per-
turbatively, along the lines of Ref. (51). Implementation of these terms is underway (52).
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(a) ⌧L += + + · · ·

fM3L Z
⌧L fM3LZ(b) = +

(c) Z = +

Figure 4

Diagrammatic representation of components of NREFT derivation of the quantization condition. As
above, a dashed rectangle indicates that the three-momentum in the loop is summed over finite-volume

values. Single lines are NREFT particle propagators, which are always forward in time. Double lines

indicate the dimer propagator. (a) The finite-volume dimer propagator τL, with filled squares representing
the contributions from the interactions in L2 [see Eq. (67)]. (b) Integral equation for the dimer-particle

scattering amplitude. (c) The three-particle interaction kernel Z, with filled squares representing

contributions arising ultimately from interactions in L3.

even when included in loop diagrams, and thus that they can be dropped from the beginning.

In this way the intermediate quantities in the NREFT approach provide a complete description

of the physical amplitudes. This is the analog here of the result in the RFT formalism that the

intermediate quantity Kdf,3 is an on-shell amplitude.

Technical result:
Only physical LECs
need to be included

The restriction to “physical” LECs is implemented in Ref. (22) using auxiliary dimer fields.

These are simply a technical device in which a composite field is introduced for two of the par-

ticles for each choice of their relative angular momentum (which here is constrained to be even).

Integrating out the infinite tower of dimer fields leads back to the original Lagrangian, Eq. (66),

but with only the physical LECs. The angular momentum of the dimer corresponds exactly to the

indices ` and m in the RFT approach. Details of the implementation of the dimer fields can be

found in Ref. (22).

Technical
implementation: Use

of auxiliary dimer

fields

The NREFT quantization condition has been worked out explicitly so far only for the case of

an s-wave dimer. This is the analog of truncating the RFT formalism to ` = 0, an approximation

described in Sec. 2.3 above. This approximation requires that the two-particle scattering amplitude

vanish for all higher waves, and that the three-particle interaction does not couple to higher waves

in a pair. A further restriction introduced to simplify the derivation is that ~P = 0.

3.1.1. Two-particle quantization condition. The first step in the derivation of the three-particle

quantization condition is to determine the dimer propagator in finite volume, denoted τL(~k) (with

dependence on the total energy E kept implicit). Here ~k is the spectator momentum, ~k, which

determines the dimer momentum to be ~P − ~k = −~k. τL is proportional to the finite-volume

scattering amplitude, M2L, discussed in Sec. 2.1. If we denote the s-wave component of the latter

quantity, evaluated in the NR regime,15 by MNR
2L,s(P − k), where the argument denotes the dimer

four-momentum, then the precise relation is

32πmτL(~k) =MNR
2L,s(P − k) . (69)

The dimer propagator is given by the diagrams shown in Figure 7(a). Summing the geometric

series leads to

τL(~k)−1 = fτ (q∗2k ) +
4π

L3

∑
~a

1

mENR − ~k2 − ~a2 − ~k · ~a
. (70)

Here fτ arises from the vertices in L2, and thus is a known function of the Ci. It is proportional

Finite-volume dimer
propagator:

to the inverse of the BS kernel. It depends on the squared relative c.m. momentum of the particles

in the dimer,

q∗2k = 1
4

[
(E − ωk)2 − ~k2 − 4m2

]
. (71)

Finally, ENR = E − 3m is the nonrelativistic energy, while ~a is summed over the allowed finite-

volume values.

We see here how the NR limit simplifies the analysis compared to that outlined in Sec. 2.1.

Here there are only s-channel loops, and these contain only two particles. All the other loops in

RFT collapse to the point-like interactions parametrized by the LECs. In particular, the BS kernel

required in Sec. 2.1 is replaced here by the function 1/[32πmfτ ]. The nontrivial effort required to

15We use the phrase “in the NR regime” here and below to indicate that we keep only terms linear in
ENR = E − 3m and ~k2/(2m).
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show that this kernel has only exponentially suppressed volume dependence in the RFT approach

is replaced here by the assumed general result from EFT that LECs are independent of volume.16

With this result in hand, one simply determines the volume dependence implicitly by calculating

the dimer propagator with the loop integrals replaced by sums.

Advantage of
NREFT: Simplified
analysis of

finite-volume effects

The function fτ can be determined by considering the dimer propagator in infinite volume,

τ(~k), obtained from Eq. (70) by changing the sum into an integral with an iε prescription for the

pole. Regulating the ultraviolet divergence in some manner, the integral evaluates to

Iε(q
∗2
k ) ≡ 4π

∫
~a

1

mENR − ~k2 − ~a2 − ~k · ~a+ iε
= 4π

∫
~a∗

1

~q∗2k − a∗2 + iε
=
√
−q∗2k + IPV(q∗2k ) . (72)

Here
∫
~a
≡
∫
d3a/(2π)3, and ~a∗ is the result of boosting ~a to the dimer c.m. frame. IPV is the same

integral except defined using the principal-value (PV) pole prescription. Thus IPV is a real, analytic

function of q∗2k , which in fact evaluates to a constant. The square-root in Eq. (72) is defined to

have a negative imaginary part above threshold. Using these results we obtain

τ(~k)−1 = fτ (q∗2k ) + IPV +
√
−q∗2k , (73)

which, when compared to the known form of the scattering amplitude [see Eq. (1) above]17

τ(~k)−1 = 32πm
[
MNR

2,s (P − k)
]−1

= 32πm
[
KNR

2,s (q∗k)
]−1

+
√
−q∗2k , (75)

leads to the conclusion that

fτ (q∗2k ) + IPV = 32πm
[
KNR

2,s (q∗k)
]−1

. (76)

This shows explicitly how the LECs Ci, contained in fτ , are related to the physical quantity K2,s,

albeit in a cutoff dependent manner.18

Combining Eqs. (70) and (76) we obtain the final result for τL,[
32πmτL(~k)

]−1

= KNR
2,s (q∗k)−1 +

1

8m

[
1

L3

∑
~a

−PV

∫
~a

]
1

mENR − ~k2 − ~a2 − ~k · ~a
, (77)

= KNR
2,s (q∗k)−1 + FNR

2,s (P − k, L) . (78)

The first equality is our preferred way of writing Eq. (3.2) of Ref. (22), as it shows that the volume-

dependence of τL arises from a sum-integral difference, just as in the analysis in Sec. 2.1.19 To obtain

the second equality, we note that the sum-integral difference is simply the s-wave component of

F2(P − k, L), Eq. (26), evaluated in the NR regime, and with the iε pole prescription replaced by

the PV prescription. Thus we call it FNR
2,s , which we emphasize is a real quantity.

The two-particle quantization condition can now be obtained as an intermediate result. Energy

levels are given by the positions of poles in M2L, leading to the algebraic result

τ−1
L = 0 ⇒ (KNR

2,s )−1 + FNR
2,s = 0 . (79)

This is equivalent to the result derived in Sec. 2.1, Eq. (33), when one keeps only the s-wave

component and works in the NR regime.

Two-particle
quantization
condition in NREFT:

3.1.2. Three-particle quantization condition. This is derived in Ref. (22) by considering a quantity,

M̃3L, the particle-dimer scattering amplitude. This is closely related to the s-wave restriction of

the finite-volume three-particle amplitude, M3L, introduced in Sec. 2.2.4.20 To obtain M3L from

M̃3L, one adds vertices at each end connecting the dimer to two particles, and then symmetrizes.

This implies that, as forM3L, the poles of M̃3L occur at the energies of three-particle finite-volume

states, so that it is a good quantity to consider to derive the quantization condition. In NREFT,

M̃3L satisfies

M̃3L;pk = Zpk +
8π

L3

∑
~q

ZpqτL(~q)M̃3L;qk , (80)

which is shown schematically in Figure 7(b). Here, the subscripts p, q and k are shorthands for

Matrix equation
leading to
three-particle
quantization
condition in NREFT:

16This discussion shows that the LECs are, in general, not strictly independent of volume but instead can
have an exponentially-suppressed dependence.

17The relation between the NR and relativistic versions of K2,s is purely kinematical, and given by

K2,s(P − k) =
√

1 + q∗2k /m2KNR
2,s (q∗k) . (74)

18In Ref. (22), the integral is regulated by dimensional regularization, in which case IPV vanishes. However,
since the sums are regulated in a different manner (using a hard cutoff) we find it more consistent to use
the same cutoff throughout, and thus keep IPV nonvanishing. This allows us to verify explicitly that the
final results of Ref. (22) are regulator independent.

19The result quoted in Ref. (22) contains only the sum, but is equivalent to that here since the corre-
sponding integral vanishes in the regularization used in that work.

20Strictly speaking, M̃3L is most closely related to the unsymmetrized amplitude M(u,u)
3L defined in

Refs. (17, 18).
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the corresponding spectator momenta, while the kernel Zpq, shown in Figure 7(c), is

Zpq = Z0
pq +

H0(Λ)

Λ2
+ . . . , Z0

pq =
1

~p 2 + ~q 2 + ~p · ~q −mENR
. (81)

Here H0 is a dimensionless constant proportional to D0/C
2
0 , Λ is the hard cutoff on the sums, and

the ellipsis represents contributions from higher order terms in L3, proportional to D2, etc.

To use Eq. (80) one assumes that K2,s has been determined using the two-particle quantization

condition, and thus that τL is known. Since the sum over ~q is cut off, Eq. (80) is a finite matrix

equation for M̃3L, which can be solved numerically for a given choice of the LECs. One then adjusts

the LECs until the finite-volume spectrum determined from a calculation in the underlying theory

(i.e. lattice QCD if considering the 3π+ system) matches that given by Eq. (80). In practice, one

should project onto irreps (irreducible representations) of the symmetry group of the cubic lattice,

as described in Ref. (56), which allows a more explicit formula for the quantization condition to

be given. We will, instead, provide an alternative explicit formula in the following, one that shows

more clearly the relationship to the RFT result derived in the previous section.

Once one has determined the LECs as just described, a second step is required to predict the

infinite-volume scattering amplitude M3 and, from this, the properties of any bound states and

three-particle resonances. In the NREFT approach this step is simple: one uses Eq. (80) but with

τL replaced by τ and the sum replaced by an integral with an iε pole-prescription. This leads to the

standard NREFT integral equation for three-particle scattering, reviewed, for example, in Ref. (53).

This step is the analog of the integral equation relating Kdf,3 to M3 described in Sec. 2.2.4.

We now comment briefly on the derivation of Eq. (80). This is conceptually just as straightfor-

ward as for two particles. This is because, in NREFT, all loops in a three-particle amplitude contain

three particles, in constrast to a generic QFT in which (with a Z2 symmetry) one can have five,

seven, etc. This allows one to calculate all the diagrams explicitly, without introducing auxiliary

objects such as the BS kernels. In finite volume one simply replaces the integrals in these loops with

momentum sums (after the time-component integral is done). LECs are again volume-independent,

and summing all diagrams leads to Eq. (80).

3.1.3. Relation to RFT approach. It has been shown in Ref. (22) that the NREFT quantization

condition described implicitly above, and the RFT quantization condition of Eq. (57), are alge-

braically equivalent when only the s-wave dimer is included in the latter and if only the leading

order, momentum-independent, two- and three-particle interaction terms are kept, i.e. if the only

nonvanishing LECs are C0 and D0. Here we give an alternative derivation of this result that is

more direct and explicit.

We begin by noting that Z0 is simply related to the switch factor G given in Eq. (38). Denoting

the s-wave (`′ = ` = 0) part of G in the NR regime by GNR
s , one can easily show that

Z0
pq = −4mL3GNR

s,pk . (82)

Here we have used the fact that the cutoff functionsH(~k) are unity to all orders in the NR expansion.

To simplify subsequent manipulations we introduce the definitions

M3L ≡
M̃3L

4mL3
and H ≡ 1

4mL3

(
H0(Λ)

Λ2
+ . . .

)
= H0 + . . . . (83)

In terms of these quantities Eq. (80) can be rewritten as

M3L = (−GNR
s +H) + (−GNR

s +H)MNR
2L,sM3L , (84)

where we have also used Eq. (69). This is a matrix equation, in which all spectator-momentum

indices are implicit. Solving, we find

M3L =
1

1− (−GNR
s +H)MNR

2L,s

(−GNR
s +H) , (85)

which has a pole whenever

det
[
1− (−GNR

s +H)MNR
2L,s

]
= 0 . (86)

This can be rewritten using Eqs. (69) and (78) as

det
[
(KNR

2,s )−1 + FNR
s +GNR

s −H
]

= 0 . (87)

Here, as in Sec. 2.2, we have elevated KNR
2,s into a diagonal matrix with entries KNR

2,s (q∗k), while,

Three-particle
quantization
condition in NREFT:

following Eq. (36), we denote the matrix form of FNR
2,s by FNR

s . Equation (87) is the NREFT

quantization condition of Refs. (21, 22) expressed in notation similar to that of Ref. (17). Note

that the expansion of K2,s and H in powers of momentum has not been truncated at this stage,

i.e. all the Ci and Di are still included. The determinant is finite-dimensional because of the hard

cutoff applied to the implicit spectator-momentum indices.
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We now compare this to the quantization condition of Ref. (17), given in Eq. (57). In the s-wave

approximation, this has the form

det
[
F−1
3,s +Kdf,3,s

]
= 0 , F3,s =

Fs
2ωL3

[
1

3
− 1

K−1
2,s + Fs +Gs

F2,s

]
. (88)

Here the subscript s indicates keeping only `′ = ` = 0 contributions, so all quantities are matrices

with only spectator-momentum indices. Note that, at this stage, the NR limit has not been taken,

so the sums are cut off by the functions H(~k) in Fs [see Eq. (36)] and Gs [see Eq. (38)]. By

straightforward algebraic manipulations, Eq. (88) can be written in a form that looks similar to the

NREFT result, Eq. (87):

det
[
K−1

2,s + Fs +Gs −H
R
]

= 0 , H
R

= −(K−1
2,s +Gs − 2Fs)Kdf,3,s

Fs
6ωL3

. (89)

Thus for the two quantization conditions to agree three conditions must be satisfied: (i) we must

Relativistic
quantization
condition: restricted

to s-wave

consider Eq. (89) in the NR regime (so that Gs → GNR
s , etc.), (ii) we must use a hard cutoff in this

equation, and (iii) we must demonstrate H = H
R

.

We consider these requirements for equivalence in turn. The spectator momenta in Eq. (89) run

up to a smooth (rather than hard) cutoff at ΛR ∼ m. In principle, one could reduce ΛR into the

NR regime so that Gs → GNR
s etc. Then, setting aside the issue of H vs. H

R
, the only difference

between the results would be that between a hard and a smooth cutoff.

In practice, however, reducing ΛR into the NR regime is problematic. Present calculations using

LQCD are done with mπL ∼ 4− 6 and mπ ≈ mphys
π . With these parameters, even the first excited

state lies outside the NR regime:

E1/mπ =
√

1 + [2π/(mπL)]2 ∼ 1.5− 1.9 . (90)

Thus a practical quantization condition should have its cutoff at a relativistic energy and include

relativistic kinematics. In this regard, we note that Ref. (22) argue that the NREFT quantization

condition can be “relativized” by including the correct kinematical factors. Indeed, we see that

this can be accomplished in the present instance by replacing each of the NR quantities by their

relativistic counterparts, as introduced in the RFT approach.

Need for relativistic
kinematics in
practice:

The final requirement for the agreement between the two quantization conditions, H = H
R

, is,

at first sight, more problematic. L3H is an infinite-volume quantity, while L3H
R

is not, since it

contains Gs and Fs. In addition, Hpq is, by construction, a smooth function of ~p and ~q, while the

presence of Gs and Fs implies that there are singularities in H
R

.21 It turns out that these issues

can be resolved if one (a) takes the NR limit of Eq. (89), (b) assumes that KNR
2,s is independent of

momentum, which is equivalent to keeping only the leading C0 term in the NR expansion of L2,

i.e. keeping only the scattering length in the effective range approximation, and (c) assumes that

Kdf,3,s and H are independent of spectator momenta. For Kdf,3,s, this is the isotropic limit that

holds near threshold, as discussed in Sec. 2.3. For H this means keeping only the leading D0 term

in the NR expansion of L3. In other words, we consistently keep only the leading-order terms in

the NR limit.

In this combined limit, Kdf,3,s = |1〉Kiso
df,3〈1|, with |1〉 the unnormalized isotropic vector having

a unit entry in all positions. This allows us to use the following identity

GNR
s |1〉 = 2FNR

s |1〉+ INR
s |1〉 , with INR

s;pk = δpk
IPV

16πm
, (91)

together with its transpose. Recall that IPV is a momentum-independent, regularization-dependent

Key identity between
F and G: Valid in

isotropic

approximation

constant. Denoting the leading contribution to H
R

in the NR limit by H
NR

, we then find

H
NR

= −([KNR
2,s ]−1 + INR

s )Kdf,3,s
[KNR

2,s ]−1 + FNR
s +GNR

s − INR
s − [KNR

2,s ]−1

18mL3
. (92)

Inserting this result into the NR form of Eq (89), the matrix inside the determinant can be written[
1 +

(KNR
2,s )−1 + INR

s

18mL3
Kdf,3,s

] [
(KNR

2,s )−1 + FNR
s +GNR

s

]
−

1

18mL3

[
(KNR

2,s )−1 + INR
s

]
Kdf,3,s

[
(KNR

2,s )−1 + INR
s

]
. (93)

This allows the leading NR term in the relativistic quantization condition to be written in exactly

the form of the NR quantization condition, Eq. (87), with

H = H0 =

[
1 +

(KNR
2,s )−1 + INR

s

18mL3
Kdf,3,s

]−1

[(KNR
2,s )−1 + INR

s ]
Kdf,3,s

18mL3
[(KNR

2,s )−1 + INR
s ] . (94)

Using the fact that KNR
2,s and INR

s are proportional to the identity, it is simple to show that this

Relation of RFT and
NREFT quantization
conditions: s-wave

dimers only, and in

the NR limit

21Of course, these quantities are evaluated only for discrete, finite-volume momenta, so one will in general
not hit the singularities, but the point here is that the two quantities appear to have very different momentum
dependence.
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result is isotropic, as required for complete equivalence. The overall factor of 1/(mL3) also matches

that in H0 [see Eq. (83)]. Furthermore, since for any constant x, we have

1

1 + x|1〉〈1| |1〉 = |1〉 1

1 + xN
, N = 〈1|1〉 ∝ (LΛ)3 , (95)

we see that the L3 in the first factor in Eq. (94) cancels, so that the right-hand side is a volume-

independent constant, as required to match H0.22 The presence of the cutoff dependent quantity

INR on the right-hand side is not an issue, because both H0 and Kdf,3,s are cutoff dependent.

Indeed, this result allows one to map the cutoff dependence of H0 known from NREFT to that of

Kdf,3,s.

3.1.4. Summary. The derivation of the three-particle quantization condition is dramatically simpli-

fied by using NREFT, compared to the RFT derivation described earlier. This is partly due to the

fact that, so far, only the s-wave dimer has been included in the former. But the primary reasons

for the simplicity are (a) that the number of diagrams is sufficiently small that one can straight-

forwardly include them all in a simple and explicit integral equation; and (b) that the two-step

approach using intermediate quantities is embraced from the beginning. No attempt is made to

explicitly find all sources of power-law volume dependence by focusing on sum-integral differences.

Instead, one simply uses the same NREFT in separate finite- and infinite-volume calculations.

Given point (a) above, this can be done without further approximation. An additional advantage

of the NREFT approach is that it is valid also in the presence of subchannel resonances, since any

volume-dependence they introduce is included automatically.

The simplicity of the NREFT approach is not available in a generic RFT, since one cannot

solve the three-particle scattering problem in a generic theory. Thus one is forced to keep track

of finite-volume effects explicitly, leading to a more complicated derivation, and with additional

considerations required for subchannel resonances.

Of course, if both approaches are carried out correctly, they should agree when we take the NR

limit of the relativistic approach. This is indeed the case, as first discussed in Ref. (22), and as

shown explicitly earlier in this section.

The main drawback with the NREFT approach is simply that most three-body systems of

interest in nuclear and particle physics are relativistic. We have already commented on the kine-

matics of three pions [see Eq. (90)]: for the volumes used in lattice QCD calculations the sum over

spectator momenta necessarily lies in the relativistic domain. This conclusion appears unavoidable

for applications of the three-particle quantization condition to lattice QCD.

A further comment on the NREFT approach is that, once interaction terms quartic in derivatives

are included, i.e. once C4 and D4 are nonzero, then one must also include d-wave (` = 2) dimers, as

they enter at the same power in the NR expansion. As one goes further into the relativistic domain,

many higher-order terms will be needed, and thus many higher-order dimers must be included.

In summary, for the NREFT approach to have broad utility, it is necessary both that the

formalism be explicitly extended to include higher waves (which we expect to be relatively straight-

forward) and that the kinematics somehow be relativized. This second step is claimed also to be

straightforward in Ref. (22). We think, however, that it will be important at each stage to check

that the results agree with those from the RFT approach.

3.2. Finite-volume unitarity (FVU) approach

The third approach that has been used to derive a three-particle quantization condition aims to

maintain relativistic invariance but to avoid much of the work of the diagrammatic RFT approach

by using the constraints arising from unitarity (23). The starting point is a representation ofM3 in

terms of dimers23 that is explicitly unitary in the s-channel (57). Then, by a judicious replacement

of integrals with sums, a representation of a quantity similar to M3L is obtained, and from this

follows the quantization condition. As in the NREFT approach, the formalism has been worked

out so far only for s-wave dimers, and for ~P = 0.

3.2.1. Two-particle quantization condition. The discussion begins by considering the two-particle

subsystems. The infinite-volume s-wave scattering amplitude is written as (57)

M2,s ≡ −v(q1, q2)
1

D(s12)
v(p1, p2) , (96)

where pi and qi are the initial and final momenta, respectively, of the scattering pair, and s12 =

(p1 + p2)2. The s-channel cut lies in D, which is thus complex, while v is a smooth, real function.

By relativistic invariance, it can depend only on s12, but it is convenient to write it as a function

22More precisely, this is true up to corrections suppressed by powers of 1/(ΛL).
23In Refs. (57, 23) the dimers are referred to as “isobars”, but they play essentially the same technical

role in the analysis, so we prefer to use the name dimer throughout.
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of Q2 = −(p1 − p2)2 = s12 − 4m2 (using the mostly-minus metric). The form used in Ref. (24) is

v(p1, p2) = λ(s12)f(Q2) , f(Q2) =
1

1 + exp [Q2/4− (1− Λ/2)2]
, (97)

where λ is a smooth function and Λ a parameter. Unitarity determines the imaginary part of

the denominator D, and the full quantity can be reconstructed using an appropriately subtracted

dispersion relation. The result can be written24

D(s12) = s12 −M2
0 −

λ(s12)2

2

∫
~q

1

2ωq

f(4~q 2)2

s12 − 4ω2
q + iε

, (98)

with M0 an additional parameter. Thus we see that the introduction of the form factor in Eq. (96)

leads to its appearance as a convergence factor in the loop integral in D. The claim is that this form

for D, when inserted into Eq. (96), gives the most general unitary result forM2,s. In applications,

the form for λ(s12) must be tuned so as to match the known phase shift.

The next step is to claim that the finite-volume amplitudeM2L is obtained simply by replacing

the integral in Eq. (98) with the finite-volume momentum sum. Although the integral is frame-

invariant, the sum depends on the choice of frame. Anticipating the three-particle application, we

label the frame by the spectator momentum, ~k (so that the dimer momentum is −~k):

M2L,s(~k) = −von(~k)
1

DL(~k)
von(~k) , (99)

Here von is the same vertex function as appearing in Eq. (99), but the new subscript is used to

emphasize that external particles are on shell. The expression for DL(~k) for general ~k is given in

Ref. (23), but here we show only the form for the dimer at rest:

DL(~k = 0) = E∗22,k −M2
0 −

λ(E∗22,k)2

2

1

L3

∑
~q

1

2ωq

f(4~q 2)2

E∗22,k − 4ω2
q + iε

, (100)

where E∗22,k = (E − ωk)2 − ~k2 is the value of s12. The two-particle quantization condition for a

general frame is then obtained from the poles of M2L. Since the vertex function is nonsingular,

the poles occur when

DL(~k) = 0 . (101)

This is the s-wave two-particle quantization condition, which can be used to constrain the param-

eters in λ(s) and f(Q2) given the finite-volume spectrum.

FVU approach:
2-particle

quantization

conditions

This approach can be justified by the following argument, which we describe in some detail as we

have not found it given explicitly in the literature. As discussed in Sec. 2.1, power-law finite-volume

behavior results only from sum-integral differences over singular summands/integrands. Unitary

cuts pick out exactly those loops for which integrands have poles, because it is only by integrating

across a pole (with an iε prescription) that one can obtain an imaginary part. In the present case,

this can occur only for two-particle loops (as long as s12 < 16m2). Thus the unitary cuts pick out

exactly those loops whose sum-integral difference leads to power-law volume effects. By writing

M2 in the form given by Eqs. (96) and (98) one is able to isolate the contributions from such

loops. The infinite-volume quantities in these expressions, M0, v, λ(s) and f(Q2), certainly involve

loop contributions, but these do not have singular integrands, and so sum-integral differences are

exponentially suppressed. Thus they can be used unchanged in the expression forM2L, Eq. (100).

We find this argument very plausible, but to be completely convinced of the conclusion we rely

on the fact that the quantization condition in Eq. (101) can be shown to be equivalent to that

derived above in the RFT approach. This is straightforward to show, as noted in Ref. (24), but it

is useful to provide the explicit argument as the result will be used later. The key point is that DL
and D differ only by a sum-integral difference, and this can be rewritten in terms of the Lüscher

zeta-function F iε2,s. We find that, for any choice of ~k,

DL(~k) = D(~k)− von(~k)F iε2,s(~k)von(~k) . (102)

Note that the sum-integral difference projects the function f to its on-shell value, leading to F iε2,s
being sandwiched between on-shell vertex functions. Using Eq. (96), we can rewrite DL as

DL(~k) = −von(~k)
[
M2,s(~k)−1 + F iε2,s(~k)

]
von(~k) . (103)

Finally, since von is nonsingular, the quantization condition (101) is equivalent to

0 =M2,s(~k)−1 + F iε2,s(~k) = K2,s(~k)−1 + F2,s(~k) , (104)

where we recall that F2,s differs from F iε2,s by using the PV pole prescription. These results are

identical to the s-wave projections of the conditions given in Eqs. (32) and (33). We stress that

there are no caveats to this equivalence—it is an identity that holds for all ~k.

Equivalence of FVU
and RFT 2-particle
quantization
conditions:

24This is equivalent to the form given in Eq. (3) of Ref. (24) after correcting a typographical error.
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3.2.2. Three-particle quantization condition. In Ref. (57) a representation of the three-particle

scattering amplitude, M3, is given in the presence of a single dimer. A key component is the

particle-dimer scattering amplitude, denoted T (~p,~k), with ~p and ~k spectator momenta. This is the

relativistic version of the quantity M̃3 appearing in the NREFT derivation. It is shown in Ref. (57)

that, if one assumes that T satisfies a Bethe-Salpeter-type equation

T (~p,~k) = B(~p,~k)−
∫
~q

B(~p, ~q)
1

2ωqD(~q)
T (~q,~k) , (105)

with D the dimer propagator introduced above, then M3 is unitary as long as B takes the form

B(~p, ~q) = B0(~p, ~q) + C(~p, ~q) , B0(~p, ~q) ≡ −
λ(E∗22,p)f([P − q − 2p]2)f([P − 2q − p]2)λ(E∗22,q)

(P − p− q)2 −m2 + iε
,

(106)

with C a smooth function.25 Comparing to the NREFT derivation, we observe that Eq. (105)

is the relativistic analog of (the infinite-volume version of) Eq. (80), while B0 is the relativistic

version of the kernel Z0 defined in Eq. (81). We stress that the one-particle exchange (OPE) form

of B0 follows from enforcing unitarity, and not from calculating Feynman diagrams. There are no

constraints on C, other than smoothness.

An important question is whether this construction of T is completely general. In other words,

while it has been shown that it results in a unitary M3, is the freedom left in the function C

sufficient to describe an arbitrary theory? This question is not addressed in Ref. (57). We shall

assume in the following that the construction is general.

The next step in the derivation is to assert that, in order to obtain the finite-volume version of

T , and thus ofM3, it is sufficient (up to exponentially-suppressed contributions) to replace D with

DL and the integral in Eq. (105) with a finite-volume sum. Assuming so, then

TL;pk = Bpk −
1

L3

∑
~q

Bpq
1

2ωqDL(~q)
TL;qk , (107)

where we have written the quantities in matrix form, since the spectator momenta are now discrete,

e.g., Bpk = B(~p,~k). We stress again that there is an implicit dependence of all quantities on the

overall energy E. In addition, the sum over ~q has to be cut off, and in Refs. (23, 24) this is done

with a hard cutoff |~q | < Λ. Then Eq. (107) is a matrix equation for TL that can be inverted. Poles

in M3L occur when TL has a divergent eigenvalue, which leads to the quantization condition

det(T−1
L ) = 0 . (108)

This can be further reduced by projecting onto irreps of the cubic group (23, 24, 56), but the

unreduced form will be sufficient here.

The derivation is structurally similar to that given in the NREFT approach, with the LECs

being replaced here by the unknown functions C, λ and f . What differs is that, whereas in the

NREFT approach loops involve only three particles, here, in any given relativistic theory, there are

loops involving any (odd) number of particles. The claim is that the decomposition used above

picks out all the three-particle loops that contain poles, because it is these loops that lead to the

imaginary parts needed to satisfy unitarity. These loops must be summed when in finite volume,

while the other loops (contained inside C, λ etc.) can be kept in infinite volume. As for the

two-particle quantization condition, this argument is very plausible, but does not constitute in our

view a complete derivation. Thus we think that it is important to demonstrate the equivalence of

Eq. (108) to the results of the RFT approach in the limit of including only the s-wave dimer, as we

do in the following.

3.2.3. Relation to RFT approach. We begin by rewriting the FVU quantization condition. Defining

ω and DL as diagonal matrices as in the RFT derivation, we can solve Eq. (107) to find

TL =
1

1 +B 1
2ωL3DL

B = 2ωL3DL
1

B + 2ωL3DL
B . (109)

The quantization condition (108) can thus be rewritten as

det
(
B + 2ωL3DL

)
= 0 . (110)

We next note that

B = −vonGsvon(2ωL3) + C′ , C′ − C = vonGsvon(2ωL3)−B0 , (111)

25It is possible to change the definition of B0 away from the pole, leading to changes in the definition of
C. Here we show the form from Ref. (57). Somewhat different choices are made in Refs. (23, 24).
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with Gs the s-wave part of G, Eq. (38). The key point here is that the two terms in C′ − C have

the same residue at the OPE pole, so that the difference cancels the pole and is smooth.26 We also

need the result from Eqs. (103) and (104) that

DL = −von
(
K−1

2,s + Fs
)
von , (112)

where Fs is the matrix form of F2s [see Eq. (36)]. Putting this all together, and using the smoothness

of von, the FVU quantization condition becomes

det
[
K−1

2,s + Fs +Gs − C̃(2ωL3)−1
]

= 0 , C̃ = v−1
on C

′v−1
on . (113)

Aside from one technical point, to be discussed shortly, this is an exact rewriting of the result of

Ref. (23). This new result looks very similar to the form of the NREFT quantization condition given

in Eq. (87), with C̃ here playing the role of 2mL3H. This emphasizes again the close connection

between the two approaches, although of course here the result here is not restricted to the NR

regime.

The technical point just alluded to concerns the difference between the cutoff schemes in the

RFT and FVU approaches: the former using the smooth cutoff function H(~k), the latter a hard

cutoff Λ.27 Thus, for example, Fs from Eq. (36) includes H(~k), whereas DL does not. Similarly

there is a contribution to K2,s proportional to 1−H(~k) that turns on near the cutoff. This implies

that Eq. (112) breaks down for |~k| ∼ m, and thus that Eq. (113) is not strictly a valid rewriting of the

FVU quantization condition. We view this, however, as a technical, and not a fundamental, issue.

The differences between cutoffs occur for spectator momenta such that E∗22,k . 0. In this regime,

the three-particle threshold lies far away (it opens up at E∗22,k = 4m2). Thus the contributions to

the sum over ~k with E∗22,k . 0 lead only to exponentially-suppressed volume effects, and we expect

that varying the cutoff in this regime can be compensated by changes to infinite-volume quantities,

namely the functions C and Kdf,3. This is exactly what happens in NREFT, but in that case in a

way that is simple to calculate. Here the cutoff dependence of C and Kdf,3 will not be simple. In

light of these considerations, we will proceed using Eq. (113) as written.

Returning to the algebraic relation between the quantization conditions, we begin from the

form of the RFT quantization condition, Eq. (89), that looks most similar to the FVU result,

Eq. (113). As in the NREFT case, this similarity is superficial, because H
R

in the former equation

and C̃/(2ωL3) here have very different properties. However, if we assume that Kdf,3,s is isotropic,

Kdf,3,s = |1〉Kiso
df,3〈1|, then, by essentially the same algebraic steps as earlier, we can show that the

two quantization conditions agree if

C̃ =

[
1 + (K−1

2,s + Is)
Kdf,3,s

9L3

1

2ω

]−1

(K−1
2s + Is)

Kdf,3,s

9
(K−1

2,s + Is) . (114)

Here the relativistic generalization of the integral INR
s is

Is,pk = δpkPV

∫
~a

H(~a)

2ωa([P − k − a]2 −m2)
, (115)

where a specific choice for the regulator has been made. Unlike in the NR regime, this integral does

depend on ~k. Using the definition of C̃, we can manipulate Eq. (114) into an equation for C′:

C′ = von(K−1
2s + Is)|1〉

1

1 +Kiso
df,3〈1|(2ω)−1(K−1

2,s + Is)|1〉/(9L3)

Kiso
df,3

9
〈1|(K−1

2,s + Is)von . (116)

This provides an explicit relation between the quantization conditions in the limit of an isotropic

Kdf,3,s. Note that

〈1|(2ω)−1(K−1
2,s + Is)|1〉

L3
=

∫
~k

K2,s(~k)−1 + Is(~k)

2ωk
+O([ΛL]−1) , (117)

so the right-hand side of Eq. (116) is volume independent up to cutoff effects.

The most important lesson from Eq. (116) is that, if Kdf,3,s is isotropic, then the function C′

cannot be. The main reason for this is the presence of the vertex factors von in Eq. (116). Recall

that von is a diagonal matrix with entries

λ(E∗22,k)f(Q2
k) , Q2

k = E∗22,k − 4m2 . (118)

Thus it has a significant dependence on ~k, with f increasing as |~k| becomes large and Q2
k becomes

negative with a large magnitude. Additional dependence on ~k enters through both K2,s and Is.

This means that the vector

von(K−1
2,s + Is)|1〉 (119)

26Away from the pole, the two terms on the right-hand side of C′ − C differ both because Gs contains
cutoff functions H(~k) while B0 does not, but also because the vertices in B0 are evaluated off shell.

27In this regard, we note that the vertex functions in the FVU approach do not provide damping factors
in the sums over spectator momenta, as can be seen for example by the appearance of v−1

on in C̃.
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Figure 5

Spectrum of three-particle states evaluated using the RFT formalism in the isotropic approximation, for

various choices of the scattering length, a, and vanishing three-body interaction, Kiso
df,3 = 0. The thick

orange curves show the interacting levels and the thin black lines show the corresponding energies of three

non-interacting particles (i.e. the spectrum when a = 0). In each plot, the dashed curve shows the 1/L

expansion for the threshold state, Eq. (62), which is expected to work well when a/L� 1.

appearing on both ends of the expression for C′ is far from isotropic once one leaves the NR regime.

We stress that this difference occurs not just near the cutoff, but rather over the entire range of

relativistic spectator momenta.

We do not think this conclusion is fundamentally surprising, since we do not expect either Kdf,3

or C′ to be close to isotropic once one leaves the NR regime. Indeed, as shown in Refs. (35, 37),

one can systematically expand Kdf,3 about threshold, and only the leading two terms are isotropic.

Presumably the same holds for C′. Once in the relativistic domain one needs the whole tower of

higher-order terms, which are not isotropic (and also bring in higher-order dimers).

3.2.4. Summary. The FVU method provides a direct and relatively simple approach to obtain the

three-particle quantization condition that is not restricted to the NR regime. It follows steps that

are, roughly speaking, the relativized version of those used in the NREFT derivation. The simplicity

compared to the RFT approach is partly due to keeping only a single dimer, but mainly because

unitarity is used to determine which finite-volume momentum sums have singular summands, rather

than a diagrammatic analysis. Another advantage of the FVU approach is that it expected to work

also in the presence of subchannel resonances.

As noted above, we find the arguments for this approach very plausible, but are not convinced

that it constitutes a complete derivation. Thus we think that it is important to show that it is

equivalent to the result of the RFT approach. We have taken the first steps in this direction above,

showing algebraic equivalence in the particular case of an isotropic Kdf,3,s. Extending this analysis

to more general forms for Kdf,3 and to include higher-order dimers is an important future challenge.

An important issue in this regard is whether the parametrization of M3 given in Ref. (57)

is completely general. One way of checking this would be to make a detailed comparison with

the representation of M3 in terms of Kdf,3 that is a byproduct of the RFT approach (sketched in

Sec. 2.2.4 above) (18). Since this representation follows from an all-orders diagrammatic approach,

it must be unitary, and indeed this can be shown explicitly (34).

4. NUMERICAL IMPLEMENTATIONS

In this section we give a brief summary of numerical results that have been calculated using each of

the three formalisms presented above. In all cases, the results were determined by taking a model

or ansatz for the infinite-volume interactions and then determining the corresponding finite-volume

energy levels. We view these results as a proof of principle that, for all three formalisms, the

mapping between finite-volume energies and infinite-volume scattering observables is feasible. A

dedicated study in which only LQCD inputs are used to extract the three-body scattering amplitude

has yet to be implemented, although Ref. (24) already made first steps in this direction.

Beginning with the RFT formalism described in Sec. 2.2, here we present two numerical results

that are described in greater detail in Ref. (37). In both calculations, the numerical evaluation

was performed using the isotropic approximation, outlined in Sec. 2.3. We additionally consid-

ered systems for which the two-to-two scattering amplitude is well-described by the leading-order

effective-range expansion, and thus depends only on the scattering length, a.
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Figure 6

Finite-volume bound-state energy (left) and the corresponding infinite-volume wave function (right). In

the left panel we show the infinite-volume bound-state mass (horizontal red line) together with the
leading-order non-relativistic prediction (green curve) and the result of numerically solving the RFT

quantization condition (orange points). The asymptotic prediction agrees well with the numerical solution

for κL > 3, but deviates for smaller volumes, as expected. The right panel shows the result for the residue
of M3 at the bound-state pole, obtained by solving the integral equations relating Kdf,3 to M3. We use a

very large effective volume as a tool for numerically solving the infinite-volume equations and the
consistency of the various data points indicates that we have reached the infinite-volume limit to high

precision. The solid black curve is an analytic prediction (not a fit to the data) given in Ref. (47).

For our first application, we suppose that the local three-body interaction is negligible and set

Kiso
df,3 = 0. Within this set-up, each choice of scattering length gives a prediction for the three-

particle energies En(L), as shown in Figure 5. These curves serve as a benchmark since, in future

LQCD calculations, only by measuring deviations from the Kdf,3 = 0 predictions can one obtain

information about three-body interactions.

In the second numerical example from Ref. (37), we work close to the unitary limit 1/(ma) =

−10−4, corresponding to a two-particle interaction that almost, but not quite, leads to a bound

dimer. In this limit, we find that, still working in the isotropic approximation, we can tune Kiso
df,3

so that the infinite-volume system develops an Efimov-like bound state (45). In our example, the

bound state energy is EB ≈ 2.99m, corresponding to a binding momentum of κ ≈ 0.1m. The

quantization condition then determines the volume dependence of this state, with results that are

compared with the prediction of Ref. (46), Eq. (64), in the left panel of Figure 6. We find good

agreement for sufficiently large L, with the single parameter determined to be |A|2 ≈ 0.95. This is

in the expected range of values, i.e. close to unity. We expect, and find, that the curve deviates from

the asymptotic form once κL < 3, because neglected 1/(κL) corrections then become important.

A key point, however, is that the quantization condition itself incorporates all terms suppressed by

any power or any exponent of κL. Its validity requires only that mL is sufficiently large. Thus one

could, in this simple model, extract a value for Kiso
df,3 from the spectrum for mL ≈ 5 (where typical

LQCD calculations are done), in a regime where the asymptotic formula, Eq. (64), completely fails.

The right right panel of Figure 6 shows a further test of the RFT formalism. Here we im-

plemented our Kdf,3 ⇒ M3 relation (described in Sec. 2.2.4) to obtain the residue of M3 at the

bound-state pole. The resulting, numerically-determined residue is compared to the known analytic

prediction in the plot. This prediction is derived in Ref. (47) using NRQM, and, given the result

for |A|2 from the fit to the spectrum, is parameter-free. The good agreement over seven orders of

magnitude shows that this simple model of interactions captures the physics of the Efimov effect

over a wide range of scales.

We next describe an example of the numerical results obtained using the NREFT approach,

as presented in Ref. (56). The setup is quite similar to that just described for the RFT results,

with the two-particle interactions described by an s-wave scattering length, and a single isotropic

three-body coupling constant. The total momentum is ~P = 0, and only the A+
1 irrep is considered.

The scattering length is chosen so that there is a bound dimer with NR energy, ENR = −1/(ma2),

and H0 is chosen so that there is a deeply bound trimer with ENR = −10/(ma2). It turns out that,

with these parameters, there is, in infinite volume, a second trimer, with ENR = −1.016/(ma2),

consisting of a loosely bound dimer and particle. In finite volume, one then expects a plethora of

states: the deeply bound trimer with (asymptotically predicted) volume dependence, the second

trimer with a different volume dependence, a spectrum of states lying close to the energies of a

noninteracting dimer and particle, and, finally, states that lie near the energies of three free particles.

An example of the resulting spectrum is shown in Figure 7, with only the non-bound-states shown.

The expected states are seen, but with a number of avoided level crossings making the interpretation

nontrivial. The overall conclusion is that this rather complicated physical situation is successfully

encoded into the NREFT quantization condition.

Finally, we describe results from a recent numerical study of the FVU approach (24). In this

study the authors were motivated to make contact with a physical system by considering finite-

volume π+π+ as well as π+π+π+ states. They work in the isospin-symmetric limit, so these

two sectors are not connected. The π+π+ → π+π+ scattering amplitude, needed as an input
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Figure 7

Examle of three-particle energy levels obtained using the NREFT quantization condition in Ref. (56).

Here E is the NR energy, called ENR elsewhere in this review. The triangles show the results of solving

the quantization condition for the parameters described in the text. Only the states above the bound
dimer-particle threshold at ENR = −1/(ma2) are shown (so the two bound trimer states lie below the

bottom of the plot and are not visible). The dashed blue lines show the energies of noninteracting

dimer-particle states with varying back-to-back momenta. The purple dotted curves show the free
three-particle states. The solid black line is the prediction of the threshold expansion, Eq. (62), keeping

terms only up to O(1/L5). We observe that dimer-particle interactions push the energies up in finite

volume, as shown by the lowest two [(n = 1) and (n = 2)] levels shown. The third level shown, however,
changes its nature as L/a decreases: starting as a dimer-particle state, converting to a three-particle

threshold state at L/a ∼ 9, and then converting back to a different particle-dimer state at L/a ∼ 6.5.
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Three-pion energy levels (solid lines, various colors) presented in Ref. (24). The curves are based on

two-to-two interactions determined from chiral perturbation theory combined with the inverse amplitude
method. As in Figure 5, the three-body interaction term, C, is set to zero. In contrast to previous plots,

in this case the interactions and the values of mπL are varying simultaneously, by changing the physical
value of mπ while keeping the box size fixed at L = 2.5 fm. Only states in the A+

1 irrep are shown, and the

dashed lines show the noninteracting three-particle levels. The inset zooms in on the fit that is used to

constrain the three-particle interaction. We caution that the lowest plotted values of mπ correspond to
mπL ≈ 1.8, for which the neglected, exponentially-suppressed terms may be significant.

to the quantization condition, was modeled by combining chiral perturbation theory amplitudes

with the so-called inverse amplitude method. The resulting functional form also encodes pion-mass

dependence, allowing mπ to be varied from its physical value to a value around four times larger.

In the energy range considered the approximation of keeping only s-wave dimers is expected to be

very good.

This set-up enabled the authors to change mπL while holding the box size fixed at L = 2.5 fm,

with the resulting finite-volume energies varying due to the change in the effective box size (mea-

sured in units of mπ) as well as due to modifications in the interactions of the theory. Figure 8
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shows the the resulting spectrum of π+π+π+ states. For the lowest level (the threshold state) the

energies can be compared to those previously determined by the NPLQCD collaboration in a nu-

merical LQCD calculation (58, 59), allowing the three-body coupling C to be constrained. Using the

(non-isotropic) form C(~p, ~q) = c δ3(~p−~q), the result is consistent with zero, c = (0.2±1.5)×10−10.

SUMMARY POINTS

1. A method for determining predictions from lattice QCD (LQCD) for the properties of

resonances that have decay channels into three or more particles is urgently needed. This

will allow LQCD to address the nature of many of the higher-lying resonances, in particular

the recently observed X, Y and Z states.

2. To address this problem one requires a quantization condition that relates the finite-volume

spectrum of QCD, which can be obtained directly in LQCD calculations, to the infinite-

volume scattering amplitudes that encode resonance properties. The two-particle quanti-

zation condition is known and widely used; this review focuses on progress towards the

three-particle quantization condition.

3. Three approaches have been used: one that is general and relativistic (RFT approach), and

also leads to a very complicated derivation; a second based in NREFT that leads to a much

simpler derivation; and a third that implements the constraints of unitarity in the finite

volume (FVU approach), which also leads to a simpler derivation than the RFT approach

but is nevertheless relativistic. The latter two approaches have only been formulated to

date for s-wave dimer interactions.

4. All three approaches lead to a two-step relation between the finite-volume spectrum and

infinite-volume scattering amplitudes, involving intermediate, cut-off dependent, unphysical

infinite-volume quantities.

5. The three approaches can be shown to be equivalent in certain regimes.

6. All three approaches have been successfully implemented numerically in model calculations

using the simplest approximations for interactions.

FUTURE ISSUES

The development of the three-particle quantization condition has reached a pivotal stage.

The groundwork has been laid, but many technical issues must be addressed for the methodol-

ogy to be applicable to most resonances of phenomenological interest. Overall, we think that

resolving these issues will be more straightforward than the work that has been done so far,

and thus we are optimistic about the future applicability of the methodology. We list here

those issues that we consider most pressing.

1. For all approaches, the formalism needs to be generalized to incorporate nonidentical par-

ticles and particles with nonzero spin.

2. The NREFT and FVU approaches need to be extended to include dimers beyond s-waves

and moving frames, and to include the possibility of 2↔ 3 transitions.

3. The NREFT approach needs to be “relativized” in order to be applicable to results from

LQCD.

4. In the RFT approach, the second step of connecting Kdf,3 to M3 must be implemented

above threshold. This work is further advanced in the NREFT and FVU approaches.

5. A technical issue in the RFT approach as presently formulated is the need to use a relatively

low cutoff (so that two-particle invariant masses are kept positive, i.e. E∗22,k ≥ 0). Extending

the formalism to allow a higher cutoff (concomitant with that used in the other approaches)

should be investigated. This is also related to an issue that we have not had space to discuss

here, namely whether the presence of the left-hand cut in the two-particle amplitude (which

opens up at E∗22,k = 0) can lead to difficulties for the formalisms.

6. Practical parametrizations of the three-particle interaction terms—Kdf,3, H(Λ) and C—

must be developed that are based on phenomenological input and are flexible enough to

describe resonances encountered in the strong interactions.

7. The numerical implementations must be extended to include 2 ↔ 3 transitions. This is

needed, for example, to study the Roper resonance.

8. The relation between the approaches must be studied when higher-spin dimers and more

complicated three-particle interactions are included.

9. Ultimately, the extension to four or more particles must be considered. This has been

worked out so far only for the energy of the threshold state in NRQM (38) and for the

volume dependence of an N -body NR bound state (60).
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36. Blanton TD, Romero-López F, Sharpe SR. Work in progress (2019)

37. Briceño RA, Hansen MT, Sharpe SR. Phys. Rev. D 98:014506 (2018)

38. Beane SR, Detmold W, Savage MJ. Phys. Rev. D 76:074507 (2007)

39. Tan S. Phys. Rev. A 78:013636 (2008)

40. Detmold W, Savage MJ. Phys. Rev. D 77:057502 (2008)

41. Hansen MT, Sharpe SR. Phys. Rev. D 93:096006 (2016) [Erratum: ibid 96:039901 (2017)]

42. Hansen MT, Sharpe SR. Phys. Rev. D 93:014506 (2016)

43. Sharpe SR. Phys. Rev. D 96:054515 (2017) [Erratum: ibid 98:099901 (2018)]
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