
Sharing server nodes for storage and compute

David Smith1,∗, Alessandro Di Girolamo1, Ivan Glushkov2, Ben Jones1, Andrey Kiryanov3,
Massimo Lamanna1, Luca Mascetti1, Gavin McCance1, Herve Rousseau1, Jaroslava
Schovancová1, Markus Schulz1, Havard Tollefsen4, and Andrea Valassi1

1CERN, 1211 Geneva CH
2University of Texas at Arlington, 701 South Nedderman Drive, Arlington, TX 76019 USA
3Petersburg Nuclear Physics Institute, 1, mkr. Orlova roshcha., Gatchina, 188300 Leningradskaya
Oblast RU

4Norwegian University of Science and Technology (NTNU), Høgskoleringen 1, 7491 Trondheim, NO
(seconded to CERN)

Abstract. Based on the observation of low average CPU utilisation of several
hundred file storage servers in the EOS storage system at CERN, the Batch
on EOS Extra Resources (BEER) project developed an approach to also utilise
these resources for batch processing. Initial proof of concept tests showed lit-
tle interference between batch and storage services on a node. Subsequently
a model for production was developed and implemented. This has been de-
ployed on part of the CERN EOS production service. The implementation
and test results will be presented. The potential for additional resources at the
CERN Tier-0 centre is of the order of ten thousand hardware threads in the near
term, as well as being a step towards a hyper-converged infrastructure.

1 Introduction

EOS [1] is the disk-based, low-latency storage service used and developed at CERN. The
CERN EOS service is deployed on 1577 nodes. A subset of 1339 of those nodes are called
EOS FST (file storage servers). The purpose of the storage servers is to enable access to data
contained on attached disks to clients via the network as well as performing other functions
such as periodically reading and checksumming data to contribute to data integrity verifica-
tion. The storage servers are similar in specification to the batch workers at CERN but with
the addition of disks and host bus adapter. The storage servers are not virtualised.

2 Motivation

The CPU load of the storage servers of one of the CERN EOS clusters is shown in Figure 1.
It can be seen that the idle fraction was at least 80% throughout the period.

∗e-mail: david.smith@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 08025 (2019)	 https://doi.org/10.1051/epjconf/201921408025
CHEP 2018



Figure 1: CPU load and network interface usage of storage servers in a CERN EOS cluster over a 24
hour period.

Table 1: Number of EOS storage servers with 2 SSDs. Each machine uses a 10Git/s network
interface, and have 2x Intel S3510 or S3520 SSDs with 800 or 960GB capacity each. EOS uses 48
HDs on each storage server.

Number Intel(R) processor logical cores RAM/GiB
48 2x Xeon(R) CPU E5-2630 v3 @ 2.40GHz 32 64
337 2x Xeon(R) CPU E5-2630 v4 @ 2.20GHz 40 128

Since the CPU load was seen to be low it was thought that batch tasks could be run on the
storage servers with limited impact on the EOS functionality. A project was formed to use
some machines for batch jobs in addition to their role in EOS. The project was called Batch
on EOS Extra Resources (BEER). The approximate number of storage servers considered to
be suitable for BEER are shown in Table 1. The nodes were considered suitable if they had
two SSDs, so that one could be dedicated to batch functions. All the storage servers have
hyperthreading enabled, and logical cores is used to mean the number of hardware threads
available.

The combined system which is a result of the BEER project is currently in production on
some servers. The initial tests and the current state of production deployment is described in
subsequent sections.

2

EPJ Web of Conferences 214, 08025 (2019)	 https://doi.org/10.1051/epjconf/201921408025
CHEP 2018



Figure 1: CPU load and network interface usage of storage servers in a CERN EOS cluster over a 24
hour period.

Table 1: Number of EOS storage servers with 2 SSDs. Each machine uses a 10Git/s network
interface, and have 2x Intel S3510 or S3520 SSDs with 800 or 960GB capacity each. EOS uses 48
HDs on each storage server.

Number Intel(R) processor logical cores RAM/GiB
48 2x Xeon(R) CPU E5-2630 v3 @ 2.40GHz 32 64
337 2x Xeon(R) CPU E5-2630 v4 @ 2.20GHz 40 128

Since the CPU load was seen to be low it was thought that batch tasks could be run on the
storage servers with limited impact on the EOS functionality. A project was formed to use
some machines for batch jobs in addition to their role in EOS. The project was called Batch
on EOS Extra Resources (BEER). The approximate number of storage servers considered to
be suitable for BEER are shown in Table 1. The nodes were considered suitable if they had
two SSDs, so that one could be dedicated to batch functions. All the storage servers have
hyperthreading enabled, and logical cores is used to mean the number of hardware threads
available.

The combined system which is a result of the BEER project is currently in production on
some servers. The initial tests and the current state of production deployment is described in
subsequent sections.

3 Tests

Investigation was begun in 2016 on testbeds and continued though a number of iterations and
a pilot test system. The tests culminated in a pre-production service and then a production
service in 2018. Tests involving the testbeds were reported in the spring 2017 HEPiX [2].

3.1 Testbed systems

A number of test systems are described in the HEPiX report [2]. The composition of these are
shown in Table 2. All the test systems used EOS v0.3 (Aquamarine release series). Testbed 1
used older hardware, while testbed 2 hardware is typical of some production servers with 32
logical cores. A pilot test system was built subsequently and is also described below.

Table 2: Composition of testbeds and pilot. The EOS MGM is the service headnode, EOS FST is the
file storage server. HD is a count of hard disks used for EOS.

Type # RAM/GiB cores Network/Gbit/s HD OS
Testbed 1
EOS MGM 1 64 32 10 0 SL6
EOS FST 4 12 8 1 24 Centos 7
Testbed 2
EOS MGM 1 64 32 10 0 SL6
EOS FST 1 64 32 10 48 Centos 7
(added for pilot)
EOS FST 2 64 32 10 48 Centos 7

The pilot system used Puppet [3] for configuration management in a similar way as many
of the CERN Data Centre systems [4]. It used similar hardware as testbed 2 but consisted of
3 similar storage servers. EOS was configured to make two copies of each file, as is typical
in production. The storage space for the memory swap file and HTCondor [5] batch working
space is a locally attached SSD. The SSD was dedicated to these purposes. Another SSD was
used for the operating system and EOS runtime data and logs.

3.2 Results from testbed 1 and 2

CPU load generation on the testbed 1 and 2 was via vLHC@Home [6]. For testbed 1 disk
activity was generated by using dd commands on the nodes themselves. Testbed 2 contained a
storage server with a 10Gbit/s interface and in that case xrdstress was used to generate the
disk load via network access. Table 3 shows data rates achieved with and without additional
CPU load for testbed 1 and 2.

Table 3: Summary of results of the 2 testbeds.

Configuration CPU load Read rate MB/s Write rate MB/s
Testbed 1 off 357 96
Testbed 1 on 357 91
Testbed 2 off ∼500 ∼770
Testbed 2 on ∼500 ∼770

3

EPJ Web of Conferences 214, 08025 (2019)	 https://doi.org/10.1051/epjconf/201921408025
CHEP 2018



3.3 Results from the pilot system

The pilot system was integrated into the batch system so that jobs can be sent to the pilot
nodes by specifying an attribute in the job submission file. vLHC was no longer used for the
generation of CPU load. Instead jobs were sent manually at first and then using Hammer-
Cloud [7]. An example of the evolution of the number running and submitted jobs to the 3
pilot nodes via HammerCloud is shown in Figure 2. Often an example of a production job
was run which was considered typical of an LHC experiment’s Monte Carlo digitisation and
reconstruction workload.

Figure 2: Number of HammerCloud jobs submitted or running on the pilot system against time.

The pilot system was intended to gain experience with the following:

• Integrating a standard EOS storage server with a CERN batch node. To make the combi-
nation the Puppet configuration of a storage server had the batch configuration added, with
the intent to keep the number of changes to either minimal. A swap file had to be added
because the standard EOS storage servers had no swap configured whereas batch workers
have a swap file 1.5 times the size of RAM.

• Bring members of the teams involved in batch and the storage server together. The process
of combining the Puppet profiles was one way to do this.

• Make the job slots created on the pilot available via the standard CERN HTCondor system.

• Measure the pilot systems in operation.

The pilot system went through a number of changes with respect to how it was initially
configured. These changes are:

• HTCondor will start docker [8] containers and will launch each job in a container. The
reasons for this are twofold: First it was planned to also follow this route for standard batch,
and secondly it reduces the number of packages to be installed on the pilot compared to a
standard storage server.

4

EPJ Web of Conferences 214, 08025 (2019)	 https://doi.org/10.1051/epjconf/201921408025
CHEP 2018



3.3 Results from the pilot system

The pilot system was integrated into the batch system so that jobs can be sent to the pilot
nodes by specifying an attribute in the job submission file. vLHC was no longer used for the
generation of CPU load. Instead jobs were sent manually at first and then using Hammer-
Cloud [7]. An example of the evolution of the number running and submitted jobs to the 3
pilot nodes via HammerCloud is shown in Figure 2. Often an example of a production job
was run which was considered typical of an LHC experiment’s Monte Carlo digitisation and
reconstruction workload.

Figure 2: Number of HammerCloud jobs submitted or running on the pilot system against time.

The pilot system was intended to gain experience with the following:

• Integrating a standard EOS storage server with a CERN batch node. To make the combi-
nation the Puppet configuration of a storage server had the batch configuration added, with
the intent to keep the number of changes to either minimal. A swap file had to be added
because the standard EOS storage servers had no swap configured whereas batch workers
have a swap file 1.5 times the size of RAM.

• Bring members of the teams involved in batch and the storage server together. The process
of combining the Puppet profiles was one way to do this.

• Make the job slots created on the pilot available via the standard CERN HTCondor system.

• Measure the pilot systems in operation.

The pilot system went through a number of changes with respect to how it was initially
configured. These changes are:

• HTCondor will start docker [8] containers and will launch each job in a container. The
reasons for this are twofold: First it was planned to also follow this route for standard batch,
and secondly it reduces the number of packages to be installed on the pilot compared to a
standard storage server.

• In order to limit resources that can be used by batch jobs, and therefore be unavailable to
EOS, HTCondor was to be run in cgroup [9] sets limiting a number of resources. Initially
this included use of cpusets to explicitly ensure that certain CPU threads were not available
to batch jobs. However this was changed to use cpushares instead. See Section 4 for a
description of current cgroup use. The use of cpusets to force hardware thread affinity
was abandoned due to the need to tailor the configuration across nodes with processors
with varying number of cores. It also follows a principal of allowing the Linux process
scheduler as much flexibility as possible.

4 Resource limits

A maximum memory limit and process count for the HTCondor processes was set in the
systemd unit file /etc/systemd/system/condor.service:

[Service]
MemoryLimit = 50455563264
TasksMax = 8000

Systemd sets the above in the appropriate cgroup controllers. While the above would
apply to HTCondor service process or processes directly started by HTCondor, the model
chosen to run batch jobs was to have HTCondor start docker and then start the user’s job
inside the docker container. HTCondor does this by using docker run. To ensure all such
jobs had overall limits applied the dockerd options in /etc/sysconfig/docker had a
parent cgroup added. i.e. �cgroup-parent system-htcondor.slice. The following
limits were set in the parent cgroup:

memory/memory.memsw.limit_in_bytes = 103079215104
memory/memory.limit_in_bytes = 50455560192
blkio/blkio.weight = 50
pids/pids.max = 8000

HTCondor will start the job in sub-cgroups and additionally set memory and cpushares
limits derived from the job requirements.

Figure 3 shows the CPU load against time and also the network interface traffic for the
same period. The machines have hyperthreading enabled and have 32 logical cores. HTCon-
dor is configured to run up to 24 single core jobs with a maximum of 96GiB of memory. The
user can submit jobs with specific requirements for number of cores or memory, in this case
the jobs were multi-process and required 8 logical cores. It was concluded from Figure 3 that
neither the impact of CPU load on the network activity generated by EOS data access nor the
impact on CPU load by serving EOS data were readily evident.

5 Transition to production

Four machines in the pre-production storage server pool had the pilot configuration applied.
The machines were required to run Centos 7 and have an SSD which could be dedicated to
swap file and batch scratch space. The second SSD had to be drained if it had previously
been used as EOS storage space.

5

EPJ Web of Conferences 214, 08025 (2019)	 https://doi.org/10.1051/epjconf/201921408025
CHEP 2018



Figure 3: CPU load and network interface traffic against time of the pilot test system. The pilot
system used 3 storage servers.

6 Production

The BEER configuration entered production in July 2018, initially with 70 storage server
nodes associated with the ATLAS experiment. A month later a number of LHCb experiment
storage servers were added. Currently there are 85 ATLAS and 41 LHCb storage servers
presenting up to 3780 single core job slots.

Figure 4 shows the batch system occupancy for the BEER nodes for a week during
November. At the moment use of the BEER compute resources is split by LHC experi-
ment, such that LHCb jobs run on storage servers which are part of the LHCb EOS instance
etc.

7 Next Steps

BEER resources will be made available to the CMS experiment on a number of the storage
servers in the CMS EOS instance. A part of the CMS workflow requires use of singular-
ity [10] by the job. As explained, HTCondor was set to start docker and run each job inside
docker. Thus there is the situation where singularity needs to work inside docker. As of
November 2018 this is not supported as the docker container does not have the correct priv-
ileges to allow singularity to work. Additional linux capabilities need to be granted to the
docker container. A configuration change is being prepared to allow this.

6

EPJ Web of Conferences 214, 08025 (2019)	 https://doi.org/10.1051/epjconf/201921408025
CHEP 2018



Figure 3: CPU load and network interface traffic against time of the pilot test system. The pilot
system used 3 storage servers.

6 Production

The BEER configuration entered production in July 2018, initially with 70 storage server
nodes associated with the ATLAS experiment. A month later a number of LHCb experiment
storage servers were added. Currently there are 85 ATLAS and 41 LHCb storage servers
presenting up to 3780 single core job slots.

Figure 4 shows the batch system occupancy for the BEER nodes for a week during
November. At the moment use of the BEER compute resources is split by LHC experi-
ment, such that LHCb jobs run on storage servers which are part of the LHCb EOS instance
etc.

7 Next Steps

BEER resources will be made available to the CMS experiment on a number of the storage
servers in the CMS EOS instance. A part of the CMS workflow requires use of singular-
ity [10] by the job. As explained, HTCondor was set to start docker and run each job inside
docker. Thus there is the situation where singularity needs to work inside docker. As of
November 2018 this is not supported as the docker container does not have the correct priv-
ileges to allow singularity to work. Additional linux capabilities need to be granted to the
docker container. A configuration change is being prepared to allow this.

Figure 4: Batch system occupancy of BEER in production, over a week during November 2018.

7.1 Estimated resources that can be made available

Table 4 shows estimated HEP-SPEC06 (HS06) that could be made available with the intro-
duction and expansion of BEER in the near term. The near term estimate is based on the
addition of nodes listed in Table 1. The long term outlook is based on hypothetically extend-
ing BEER to the majority of currently availble storage servers. However further expansion
beyond the near term is expected to be via new hardware not yet available in the Data Centre.

Table 4: Estimated HS06 that may be available: Assuming machines will offer 75% of logical cores
and an estimated 10 HS06 per logical core. The HS06 count is compared to the 2018 Tier-0 pledge
size for reference.

Storage servers note BEER use cores HS06 T0 pledge
385 near term 75% 11262 112620 8.9%
1200 long term 75% 30800 308000 ∼24%

8 Conclusion

The BEER project has allowed for the use of compute resource that exists within the EOS
storage servers at CERN. ATLAS and LHCb have been using these resources. It is planned
that use will be extended to CMS shortly. To date no impact on EOS operations due to BEER
has been found.

7

EPJ Web of Conferences 214, 08025 (2019)	 https://doi.org/10.1051/epjconf/201921408025
CHEP 2018



References

[1] X. Espinal et al., Disk storage at CERN: Handling LHC data and beyond J. Phys.: Conf.
Ser. 513 042017 (2014)

[2] A. Kiryanov et al., Harvesting Cycles on Service Nodes HEPiX Spring 2017 conference
(2017)
https://indico.cern.ch/event/595396/contributions/2532584/ [accessed 2018-11-28]

[3] Overview of Puppet’s architecture
https://puppet.com/docs/puppet/4.6/architecture.html [accessed 2018-11-28]

[4] P. Andrade et al., Review of CERN Data Centre Infrastructure J. Phys.: Conf. Ser. 396
042002 (2012)

[5] D. Thain, T. Tannenbaum, and M. Livny, Distributed Computing in Practice: The
Condor Experience Concurrency and Computation: Practice and Experience Vol. 17,
No. 2-4, pages 323-356 (2005)

[6] N. Høimyr et al., BOINC service for volunteer cloud computing J. Phys.: Conf. Ser. 396
032057 (2012)

[7] J. Schovancová et al., Evolution of HammerCloud to commission CERN Compute
resources The 23rd International Conference on Computing in High Energy and Nuclear
Physics, Sofia (2018) Draft https://cds.cern.ch/record/2646247 [accessed 2018-11-29]

[8] Docker overview. Docker Documentation
https://docs.docker.com/engine/docker-overview/ [accessed 2018-11-28]

[9] Linux kernel documentation on cgroups
https://www.kernel.org/doc/Documentation/cgroup-v2.txt [accessed 2018-11-28]

[10] Singularity Documentation https://www.sylabs.io/docs [accessed 2019-02-15]

8

EPJ Web of Conferences 214, 08025 (2019)	 https://doi.org/10.1051/epjconf/201921408025
CHEP 2018


