
J
H
E
P
1
0
(
2
0
2
0
)
0
9
2

Published for SISSA by Springer

Received: March 28, 2020

Revised: July 27, 2020

Accepted: September 3, 2020

Published: October 14, 2020

Nonperturbative matching between equal-time and

lightcone quantization

A. Liam Fitzpatrick,a Emanuel Katza and Matthew T. Waltersb

aDepartment of Physics, Boston University,

Commonwealth Avenue, Boston, MA 02215, U.S.A.
bTheoretical Physics Department, CERN,

Esplanade des Particules, Geneva, Switzerland

E-mail: fitzpatr@bu.edu, amikatz@bu.edu, matthew.walters@cern.ch

Abstract: We investigate the nonperturbative relation between lightcone (LC) and stan-

dard equal-time (ET) quantization in the context of λφ4 theory in d = 2. We discuss the

perturbative matching between bare parameters and the failure of its naive nonperturba-

tive extension. We argue that they are nevertheless the same theory nonperturbatively,

and that furthermore the nonperturbative map between bare parameters can be extracted

from ET perturbation theory via Borel resummation of the mass gap. We test this map by

using it to compare physical quantities computed using numerical Hamiltonian truncation

methods in ET and LC.

Keywords: Conformal Field Theory, Field Theories in Lower Dimensions, Nonperturba-

tive Effects

ArXiv ePrint: 1812.08177

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP10(2020)092

mailto:fitzpatr@bu.edu
mailto:amikatz@bu.edu
mailto:matthew.walters@cern.ch
https://arxiv.org/abs/1812.08177
https://doi.org/10.1007/JHEP10(2020)092


J
H
E
P
1
0
(
2
0
2
0
)
0
9
2

Contents

1 Introduction and summary 1

2 Review of perturbative matching 3

2.1 Shift in bare parameters 3

2.2 Nonperturbative failure 7

3 Map from ET to LC using Borel resummation of mass gap 8

3.1 Lightning review of Borel resummation via conformal mapping 9

3.2 Borel resumming mass gap 11

3.3 Linear closing of the gap in LC 13

4 Tests of the mapping 16

4.1 Mass gap 16

4.2 Residue at single-particle pole 17

5 Future directions 18

A 0d example 20

B Linear closing of gap in O(N) model 22

1 Introduction and summary

Quantization on surfaces of constant lightcone (LC) time x+ ≡ 1√
2
(t+x) leads to a number

of simplifications [1–5] compared to standard equal-time (ET) quantization, where one uses

surfaces of constant Lorentzian time. One pays a conceptual price for this simplification,

however. Important physics effects, such as spontaneous symmetry breaking and renor-

malization of the vacuum energy, are subtle to uncover in LC quantization [6–15]. Many

of the difficult subtleties of LC can be traced to the fact that energy p+ = µ2

2p−
is inversely

proportional to momentum p− in terms of the Lorentz-invariant µ2 = p2, and consequently

“zero modes” with vanishing p− have infinite LC energy and are lifted out of the spectrum.

From an Effective Field Theory (EFT) perspective, the heavy zero modes must be

integrated out, potentially leaving behind new interactions compared to the theory in ET

quantization. It is useful to think in terms of an “effective lightcone Hamiltonian” Heff for

the lightcone-quantized theory, containing any new interactions generated by integrating

out the LC zero modes. A general prescription for how to obtain Heff starting from an ET

Hamiltonian HET is an open problem. In [16], we proposed a method for constructing Heff

in terms of HET perturbatively, but ultimately one would like to go beyond perturbation

theory. At a minimum, one needs to be able to determine which relevant and marginal
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operators appear in Heff , at which point their coefficients can be fixed in principle in terms

of physical observables. More ambitiously, one would like to be able to nonperturbatively

determine a priori the values of the bare parameters in Heff .

A useful model for investigating these issues in detail is λφ4 scalar theory in d = 2. In

this case, the perturbative prescription in [16] reduces to the earlier prescription of [17, 18],

which says that the entire effect of the zero modes is simply a shift in the bare parameters:

m2 → m2
eff = m2 + 12λ〈φ2〉. (1.1)

As we will review, this prescription passes nontrivial checks at the perturbative level, but

fails nonperturbatively. However, comparisons of numerical analyses of the theory in LC

quantization indicate that there is a critical value of the mass, or more precisely of the

dimensionless ratio λ̄ = λ
m2 , where the theory reaches a scale-invariant fixed point in the

IR, but with a shifted value of the critical coupling as compared to numerical analyses of

ET quantization. So, one may take this as evidence that although the exact form (1.1)

for m2
eff is only valid perturbatively, there is still some value of m2

eff that matches the ET

theory. In other words, the Lagrangian in ET and LC quantization are really describing the

same theory, once their respective bare parameters have been fixed in terms of a physical

observable. In this paper, we will argue that this is true, and that furthermore one can

extract the correct matching of bare parameters from the perturbative equation (1.1),

though in a more involved way than one might naively have expected.

The basic idea is that the physical mass gap µgap in the theory should be the Borel

resummation of its perturbation series in both ET and LC quantization. This is the main

assumption of the procedure we apply for extracting a map between bare parameters of

the two quantizations. Assuming this is true, then (1.1) relates the two perturbation series

to all orders, and therefore together with Borel resummation it allows one to calculate µgap

as a function of the bare parameters in both quantization schemes starting with just the

perturbation series of µgap and 〈φ2〉 in ET. Since the gap is a physical quantity, one can

then extract a map between bare parameters by equating the gap obtained as a function

of λ̄ in LC and in ET.

To implement this procedure, we will use the recent results of [19] obtaining the per-

turbation series of the gap and the vacuum energy to eighth order in the coupling. We will

also closely follow their implementation of Borel resummation, originally from [20], which

involves optimizing over two additional parameters to improve the convergence rate. We

reproduce their Borel resummation of the mass gap in ET quantization, and additionally

obtain the Borel resummation of the mass gap in LC quantization. From this calculation

of the gap, we can extract a map λ̄LC(λ̄ET). This result is shown in figure 5.

In principle, with high enough orders in the perturbation series, one should get the

same result independently of whether one Borel resums the perturbation series for the mass

gap or some power µαgap. In practice, with only finitely many perturbative terms, the result

does depend on which power of the gap one chooses to resum. In ET quantization, the

convergence rate is fastest if one Borel resums µgap [19], due to the fact that the critical

exponent ν = 1 in d = 2 and therefore µgap ∼ |λ̄ − λ̄∗| as one approaches the critical

coupling λ̄∗. By contrast, in LC, we argue that µ2
gap should close linearly in the bare
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coupling as one approaches the critical point. Therefore, we expect the convergence rate

to be fastest if we Borel resum µ2
gap in LC quantization.

To test our procedure, we compare the results of the Borel resummation to physical

quantities calculated in ET and LC quantization using the nonperturbative methods of

Hamiltonian truncation (i.e. ET renormalized Hamiltonian truncation [21–31] and LC con-

formal truncation [16, 32–36], respectively). That is, we use Hamiltonian truncation to

numerically compute physical quantities as a function of the bare parameters in ET and

LC, and then use the map λ̄LC(λ̄ET) obtained from Borel resummation to compare them.

The first physical quantity we compare is just the mass gap itself, and we find very good

agreement, as shown in figure 7. Because the mass gap is the quantity that we used to ex-

tract the map between parameters, this test is equivalent to a check that Borel resumming

the gap works well in both ET and LC.

The second physical quantity that we compare is the residue Z of the single-particle

pole of the φ propagator. Equivalently, it is (the square of) the matrix element of φ between

the vacuum and the single-particle state. We find that the ET and LC results for Z in

terms of the physical quantity µ2
gap/λ agree over a wide range of couplings until close to the

critical point, where truncation effects limit the convergence rate. This agreement for Z is

further evidence that both ET and LC quantization compute the same physical observables

once we identify the bare parameters with our matching procedure.

The rest of the paper is organized as follows. In section 2, we review the perturbative

matching between ET and LC, and how its naive extension to a nonperturbative matching

fails. In section 3, we obtain the matching between bare parameters by Borel resumming

the mass gap both as a function of ET parameters and LC parameters, and equating them.

In section 4, we perform tests of the mapping by using it to compare physical quanti-

ties computed with conformal truncation techniques in the two quantizations. Finally, in

section 5, we conclude with a discussion of potential future directions.

2 Review of perturbative matching

In this section, we will review the perturbative matching between the bare parameters in

λφ4 theory in LC quantization vs. ET quantization. We will also discuss the difficulty in

extending the perturbative matching to the nonperturbative level.

2.1 Shift in bare parameters

We consider the following Lagrangian in d = 2:

L =
1

2
:(∂φ)2 :− 1

2
m2:φ2 :− λ:φ4 :, (2.1)

where :O : indicates that the operator is normal-ordered. The theory has a single dimen-

sionless parameter that we will denote λ̄ ≡ λ
m2 .1

The proposal in [16] for how to determine the effective LC Hamiltonian Heff is essen-

tially a matching procedure, where correlators are computed in ET and LC quantization,

1Note that, due to normal-ordering, the bare mass parameter m2 is finite.
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and new terms are added to the LC Hamiltonian to make them agree. More explicitly, this

matching is achieved using the following trick. The matrix elements of the ET Hamilto-

nian can be read off from matrix elements of the unitary evolution operator U(t) through

the relation H = limt→0 i∂tU(t). Matrix elements of U(t) are simply given by two-point

functions of operators, which are independent of the quantization scheme. However, the

LC Hamiltonian generates evolution with respect to x+ rather than t, so we extract it from

U(t) by taking

Heff = lim
x+→0

i∂x+U(x+), (2.2)

where the partial derivative is now taken with respect to x+ rather than t. The spatial

coordinates are also treated differently: the external states in ET have fixed momentum

Px, whereas in LC they have fixed lightcone momentum P−, so in the former case we

Fourier transform with respect to x and in the latter with respect to x−. Perturbatively,

one can evaluate U in terms of its Dyson series. Naively, only the linear term in λ in

the Dyson series contributes, both for H and for Heff , because higher order terms involve

multiple integrals over time, all of whose region of integration vanishes in the limit t →
0 or x+ → 0, respectively. The subtlety is that in LC coordinates, the higher order

terms in the Dyson series can contain δ functions of LC time, which therefore can have

a nonvanishing contribution even from an infinitesimal region of integration.2 Such δ

functions in position space correspond to contributions independent of some momentum

q+ flowing through the diagram in momentum space, or more generally, to contributions

that are simply polynomials in q+. In λφ4 theory, the class of diagrams that depend on q+

this way are diagrams with the topology of a “plant” shown in figure 1, i.e. the diagram is

an arbitrarily complicated subdiagram connected to a scalar line at a single point.3 This

conclusion reproduces an earlier result due to Burkardt [17], from inspection of Feynman

diagrams. It is clear that in perturbation theory, these plant diagrams simply renormalize

the mass by a shift proportional to the loop diagrams for the vev (in ET quantization)

of :φ2 :,

m2
LC = m2

ET + 12λET〈:φ2 :〉. (2.3)

Remarkably, in a heroic effort, the perturbative coefficients of both the vacuum energy

density Λ(λ̄) and the mass gap µgap(λ̄) have recently been computed to O(λ̄8) in this

theory [19]. We summarize their result here:

Λ̄ET ≡
Λ

m2
ET

=

∞∑
n=2

anλ̄
n
ET, µ̄2

ET ≡
µ2

gap

m2
ET

= 1 +

∞∑
n=2

cnλ̄
n
ET, (2.4)

2See also [37] for another perspective on why interpolations between LC and ET are discontinuous at

the LC limit.
3The basic idea, explained more thoroughly in [16], is that most diagrams have q+ dependence in the

denominator ∼ i
2q+q−−m2+iε

of internal propagators. For plant diagrams, however, none of the external

spatial momentum p− flows through the nontrivial part of the diagram, so there is a contribution from

the region of integration where the loop momentum q− vanishes and therefore the denominator does not

depend on q+.
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φ φ

Figure 1. General structure of “plant” diagrams.

where

a2 = −21ζ(3)

16π3
, a3 =

27ζ(3)

8π4
, a4 = −0.11612596491, a5 = 0.394953418,

a6 = −1.62979422, a7 = 7.8540421, a8 = −43.192021, (2.5)

c2 = −3

2
, c3 =

9

π
+

63ζ(3)

2π3
, c4 = −14.65586922, c5 = 65.9730843,

c6 = −347.888128, c7 = 2077.70336, c8 = −13 711.0454. (2.6)

We can extract the vev 〈:φ2 :〉 from the vacuum energy by taking derivatives. Naively, since

the coefficient of :φ2 : in the action is m2, the derivative of the vacuum energy with respect

to m2 is 〈:φ2 :〉. However, m2 also shows up in the action through the renormalization

scheme. Specifically, in defining the Lagrangian (2.1) in terms of normal-ordered operators,

we subtracted off the divergent contributions to the vacuum energy and bare mass, which

depend on m2. We can make this additional m2-dependence explicit by rewriting the

Lagrangian without normal-ordering, using the relations [25, 26]

:φ2 : = φ2 − 1

4π
log

Λ2
cutoff

m2
, :φ4 : = φ4 − 3

2π
log

Λ2
cutoff

m2
φ2 +

3

16π2
log2 Λ2

cutoff

m2
, (2.7)

where we’ve imposed a uniform cutoff Λcutoff on the loop momenta. The resulting expres-

sion for the Lagrangian is

L =
1

2
(∂φ)2 − 1

2

(
m2 − 3λ

π
log

Λ2
cutoff

m2

)
φ2 − λφ4 − δΛ, (2.8)

∂δΛ

∂m2
= − 1

8π

(
1 +

3λ̄

π

)
log

Λ2
cutoff

m2
, (2.9)

where we have added mass and vacuum energy counterterms. So the actual relation between

the vacuum energy and the vev 〈:φ2 :〉 is

∂

∂m2
Λ =

1

2

(
1 +

3λ̄

π

)(
〈φ2〉 − 1

4π
log

Λ2
cutoff

m2

)
=

1

2

(
1 +

3λ̄

π

)
〈:φ2 :〉. (2.10)

In terms of the dimensionless quantities Λ̄, λ̄, this equation takes the following form, which

is what we will use to extract 〈:φ2 :〉:

〈:φ2 :〉 = 2
Λ̄− λ̄ d

dλ̄
Λ̄

1 + 3λ̄
π

. (2.11)
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From now on we will suppress the normal-ordering notation :O :, with the understanding

that all local operators are to be normal-ordered.

Once we have the perturbative expansion of the vev 〈φ2〉, we can obtain the perturba-

tive relation between the LC and ET couplings λ̄. Equation (2.3) implies that

λ̄LC =
λ

m2
LC

=
λ̄ET

1 + 12λ̄ET〈φ2〉
. (2.12)

Using the perturbative coefficients of Λ, the first few coefficients of λ̄LC in terms of λ̄ET are

λ̄LC = λ̄ET −
63ζ(3)

2π3
λ̄4

ET +
513ζ(3)

2π4
λ̄5

ET + . . . . (2.13)

It is straightforward to invert this equation to any order in perturbation theory:

λ̄ET = λ̄LC +
63ζ(3)

2π3
λ̄4

LC −
513ζ(3)

2π4
λ̄5

LC + . . . . (2.14)

To compare the gap µ̄ET to a LC calculation, we divide the gap by the LC parameter mLC

and express the result in terms of λ̄LC:

µ̄2
LC(λ̄LC) =

µ2
gap

m2
LC

=
µ̄2

ET(λ̄ET)

1 + 12λ̄ET〈φ2〉
, (2.15)

where λ̄ET is converted to a function of λ̄LC by inverting (2.12).4 Expanded out to λ̄6
LC,

the prediction for the gap in LC quantization is

µ̄2
LC = 1− 3

2
λ̄2

LC +
9

π
λ̄3

LC − 11.4906λ̄4
LC + 52.7576λ̄5

LC − 287.357λ̄6
LC + . . . . (2.16)

We have independently computed these coefficients up to λ̄5
LC in LC quantization using

old-fashioned perturbation theory. More precisely, we computed the Hamiltonian in LC

quantization in a basis of operators with dimension up to ∆max, and then we substituted

these matrix elements into the time-independent perturbation theory formula for the single-

particle state energy.5 We obtained the numeric result

µ̄2
LC = 1− 1.49995λ̄2

LC +
8.9999

π
λ̄3

LC − 11.52λ̄4
LC + 52.9λ̄5

LC + . . . , (2.17)

in reasonable agreement with (2.16).

4Equivalently, µ̄2
ET(λET) = (1 + 12λ̄ET〈φ2〉)µ̄2

LC

(
λ̄ET

1+12λ̄ET〈φ2〉

)
.

5We also had to extrapolate our results to infinite ∆max, since we were limited by computation time

to ∆max ≤ 33. We extrapolated by fitting the dependence of each perturbative coefficients on ∆max with

a power law, a∆−Nmax + b, where a, b and N were obtained from fitting. The main source of error on the

coefficients is due to uncertainties in the fit parameters a, b, and N ; we estimate that this error is in the

last digit shown in each coefficient in (2.16).
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2.2 Nonperturbative failure

Next, we would like to generalize the perturbative matching condition (2.3) to a nonper-

turbative relation. The most natural guess would be that (2.3) is simply true exactly,

giving mLC directly as a function of λET once the nonperturbative vev 〈φ2〉 is known as a

function of λET. However, as noted in [16], this guess is not consistent with numeric results

obtained using Hamiltonian truncation, or with results from Borel resummation [19]. We

will review the relevant numeric results here.

To test the conjecture that (2.3) is true as an exact statement, we can take µ̄2
ET and

〈φ2〉 from a numeric computation in ET quantization as a function of λ̄ET, as well as µ̄2
LC

numerically in LC quantization as a function of λ̄LC, and use eqs. (2.12) and (2.15) to

convert µ̄2
ET(λ̄ET) to µ̄2

LC(λ̄LC). The result of the numeric computation of 〈φ2〉 is shown

in figure 2.6 Immediately, however, one encounters a problem. The issue is that with the

vev 〈φ2〉 as shown, the map (2.12) from λ̄ET hits a local maximum at around λ̄LC ≈ 0.7

and then turns around. If this prediction were correct, it would mean that no value of

λ̄ET would correspond to λ̄LC & 0.7. Equally problematically, it would imply that a single

value of λ̄ET would correspond to two different values of λ̄LC. Neither of these bizarre

predictions is seen in the numeric analysis of LC quantization, as we review below.

We emphasize that this turnaround problem does not depend on any particularly

special feature of the numeric result for 〈φ2〉. From (2.12), it is easy to see that such a

turnaround occurs if at any point

d

dλ̄ET
〈φ2〉 =

1

12λ̄2
ET

. (2.18)

Since d
dλ̄ET
〈φ2〉 starts out small at small λ̄ET, its derivative must therefore stay below

(12λ̄2
ET)−1 to avoid a turnaround. Therefore, even rather modest growth in 〈φ2〉 as a

function of coupling leads to the above problem eventually.

Less obvious a priori is the fact that the turnaround point occurs at smaller values of the

coupling than the critical coupling λ̄ET,∗, where the gap closes. A reasonable conjecture

would have been that (2.3) is valid nonperturbatively but only in the unbroken phase.

However, one can see from figure 2 that the turnaround occurs for λ̄ET ∼ 1, whereas the

critical point is at the much larger value λ̄ET ∼ 3, so this conjecture is also wrong. It

appears that if (2.3) has some nonperturbative meaning, it must be more subtle. A hint is

that the physical quantity µ̄2
ET is an asymptotic series of the coupling, but one that Borel

resums to the true value [19]. So in principle, µ̄2
ET is determined by its perturbation series

through Borel resummation, and one might hope this is true of µ̄2
LC in terms of λ̄LC as

well. Then, the perturbative equation (2.3) would simply be the connection between the

two perturbation series, and would need to be combined with Borel summation to obtain a

nonperturbative matching relation between the two quantizations. In the following sections,

we will turn to analyzing this possibility in detail. We relegate to appendix A a discussion

6Concretely, the nonperturbative ET data for 〈φ2〉 was obtained via eq. (2.11) from the vacuum energy

Λ initially computed with renormalized Hamiltonian truncation in [25], as well as the computation of Λ via

Borel resummation in [19].
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Figure 2. Left, top: plot of 〈φ2〉 as a function of λ̄ET. Right, top: mass-squared gap µ̄2
ET in ET

quantization as a function of λ̄ET. Left, middle: m2
LC as a function of m2

ET, setting λET = λLC = 1,

according to eq. (2.3). Right, middle: λ̄LC as a function of λ̄ET, again according to eq. (2.3).

Bottom: ∂〈φ2〉
∂λ̄ET

(solid black line) compared with the turnaround threshold 1
12λ̄2

ET

(dashed gray line).

All five plots include results obtained using both renormalized ET Hamiltonian truncation [25]

(“HT”) and Borel resummation [19] (“Borel”). The close agreement between the HT and Borel

methods is evidence of their accuracy. The turnaround in the middle two plots indicate that the

literal interpretation of (2.3) would incorrectly imply that the map from λ̄ET to λ̄LC is not invertible;

two different values of λ̄ET would correspond to the same λ̄LC.

of zero-dimensional analogue, where one can see more explicitly how a relation like (2.3)

might have a straightforward interpretation to all orders in perturbation theory, but involve

additional subtleties nonperturbatively.

3 Map from ET to LC using Borel resummation of mass gap

We’ve now seen that the proposed map (2.3) between ET and LC couplings, which holds

to all orders in perturbation theory, clearly fails nonperturbatively. Based on this result,
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one might näıvely suspect that no such nonperturbative map exists, or at least cannot be

found by knowing only perturbative data. However, in this section, we demonstrate that

the map λ̄LC(λ̄ET) can be constructed by instead computing the mass gap µ̄2
gap(λ̄) in both

ET and LC quantization by Borel resumming the two perturbation series, then matching

the two functions to indirectly obtain the nonperturbative map between the two couplings,

µgap,LC = µgap,ET ↔
µ̄2

gap(λ̄LC)

λ̄LC
=
µ̄2

gap(λ̄ET)

λ̄ET
⇒ λ̄LC(λ̄ET). (3.1)

The fact that the intermediate function µ̄2
gap(λ̄) can be accurately computed by Borel

resumming its perturbative expansion was demonstrated recently for the case of ET quan-

tization in [19]. There, the authors directly computed the perturbative expansion of

µ̄2
gap(λ̄ET) up to O(λ̄8

ET), then used these series coefficients to numerically determine the

fully resummed function. These resummation results successfully reproduced previous non-

perturbative calculations of µ̄2
gap(λ̄ET) via Hamiltonian truncation.

In this section, we repeat this procedure for the case of LC quantization. Specifically,

we use eq. (2.3) to convert the perturbative expansion of µ̄2
gap in powers of λ̄ET into the

corresponding expansion in terms of λ̄LC. Using the same approach as [19], we then use

these new LC perturbative coefficients to numerically determine the resummed function

µ̄2
gap(λ̄LC). Once we have this function, we can combine it with the results of [19] to finally

obtain the desired nonperturbative map λ̄LC(λ̄ET).7

It is worth emphasizing that in this entire calculation, we only use data obtained in

ET quantization. The perturbative expansion of µ̄2
gap(λ̄LC) is obtained solely from the ET

expansions for µ̄2
gap and 〈φ2〉, combined with the perturbative map (2.3). This strategy is

sketched in figure 3. In section 4, we compare our resummation results with Hamiltonian

truncation results obtained directly in LC quantization, but at this stage we are using

strictly ET data.

3.1 Lightning review of Borel resummation via conformal mapping

Before focusing on the application to LC quantization, let’s briefly review the resumma-

tion technique used in [19], though interested readers should consult that work for more

details. In general, we are interested in studying a function F (g), which has the asymptotic

expansion

F (g) =

∞∑
n=0

Fn g
n, (3.2)

where, for our particular case of interest, F → µ̄2
gap and g → λ̄. In principle, we would like

to compute the Borel-Le Roy transform

Bb(t) =
∞∑
n=0

B(b)
n tn, B(b)

n ≡
Fn

Γ(n+ b+ 1)
, (3.3)

7Note that we are not simply Borel resumming the perturbative expansion of λ̄LC(λ̄ET) from (2.3),

since for λ̄ET less than the turnaround point, that should just reproduce the naive prescription where we

apply (2.3) as an exact relation. For larger λ̄ET, the Borel integral should diverge, since it is attempting to

reproduce a noninvertible function.
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Figure 3. Outline of the procedure for extracting the map between bare couplings in LC and ET

from the ET perturbation series.

which can then be used to obtain the Borel resummed function

FB(g) =
1

gb+1

∫ ∞
0

dt tbe−t/gBb(t). (3.4)

However, we do not have the full asymptotic series, only the first N + 1 terms,

F (N)(g) =

N∑
n=0

Fn g
n, (3.5)

and if we näıvely apply this procedure to the truncated sum, we simply get the same

expression back. The problem is that the Borel transform Bb(t) only has a finite radius of

convergence, due to a singularity at t = − 1
a ,8 but the inverse Borel transform evaluates

Bb(t) far beyond this radius of convergence. Because of this, we cannot exchange the sum

with the integration and inverse Borel transform term-by-term.

We can avoid this issue with the change of variables,

t =
4

a

u

(1− u)2
, (3.6)

which maps the entire complex plane to the unit disk |u| ≤ 1, with the branch cut sin-

gularity originating from t = − 1
a mapped to the edge of the disk. If we now study the

series expansion of B̃b(u) ≡ Bb(t(u)), we find that it converges over the entire range of

integration, which means we can safely inverse Borel transform each term in the sum,

FB(g) =
1

gb+1

∞∑
n=0

B̃(b)
n

∫ 1

0
du

dt

du
tb(u) e−t(u)/gun. (3.7)

8The location of this singularity is given by the classical action of the leading instanton configuration,

which can be computed numerically to obtain a = 0.683708 [19]. Under mild assumptions about the series

coefficients of the gap and vacuum energy in ET, the same a should control the asymptotic behavior of the

LC series coefficients. We have also explicitly checked that the difference in ratios of subsequent terms for

ET and LC coefficients is only a couple percent at eighth order.
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Since the coefficients B̃
(b)
n only depend on Fn′ with n′ ≤ n, truncating the original asymp-

totic series to the first N + 1 terms is equivalent to restricting this sum for FB(g) to its

first N+1 terms. However, this new series is a convergent one, which makes this truncated

sum a reasonable approximation to the full expression.

We can actually improve the convergence of this series by introducing a second param-

eter s, which is defined by rewriting the Borel transform as

B̃b(u) =
1

(1− u)2s

∞∑
n=0

B̃(b,s)
n un. (3.8)

While this rewriting obviously has no effect on the full expression, at any finite order in

the series, the parameter s allows us to better model the behavior as g →∞.

Given the first N + 1 terms in the perturbative expansion of F (g), we can therefore

compute the truncated resummation

F
(N)
B (g) =

1

gb+1

N∑
n=0

B̃(b,s)
n

∫ 1

0
du

dt

du
tb(u) e−t(u)/g un

(1− u)2s
, (3.9)

which approaches FB(g) as N →∞. Note that while the exact function FB(g) is indepen-

dent of both the Le Roy parameter b and the summation variable s, at any finite truncation

there is still some residual dependence on these two variables, which we can use to improve

the accuracy of our results. Specifically, following [19], we choose the values of b and s to

minimize the function

∆F
(N)
B ≡ (∂bF

(N)
B )2 + (∂sF

(N)
B )2 +

(
|F (N)
B − F (N−1)

B | − |F (N−1)
B − F (N−2)

B |
)2
. (3.10)

We can then obtain a rough estimate of the associated error by varying the parameters

about the best-fit values b0, s0 and measuring the resulting shift in F
(N)
B .

3.2 Borel resumming mass gap

Now that we have reviewed the general resummation procedure, let’s apply it to our specific

example of µ̄2
gap(λ̄LC). To do so, we first need to construct the perturbative expansion of

this function to some order in λ̄LC. As discussed in section 2, we can do this by applying

our perturbative map between couplings (2.3) to the expansion of µ̄2
gap(λ̄ET), replacing

each power of λ̄ET with a series in λ̄LC to obtain

µ̄2
gap

(
λ̄ET(λ̄LC)

)
= 1− 3

2
λ̄2

LC +
9

π
λ̄3

LC − 11.4906 λ̄4
LC + 52.7576 λ̄5

LC

− 287.357 λ̄6
LC + 1758.23 λ̄7

LC − 11901.4 λ̄8
LC +O(λ̄9

LC).
(3.11)

In the language of the previous subsection, this expansion of the mass gap to O(λ̄NLC)

defines our truncated series F (N)(g). Using the terms in this sum, we can construct the

Borel transform coefficients B̃
(b,s)
n , then multiply these coefficients by the inverse Borel

transform integrals given in eq. (3.9) to obtain the resummed function F
(N)
B (g), which

depends explicitly on the two parameters b and s.
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Figure 4. Plots of estimates of the gap from 6th, 7th, and 8th order, for (blue, dot-dashed), (red,

dotted), and (black, solid), respectively. The upper and lower lines are the upper and lower values

from moving b, s away from their “best-fit” values as described in the text. Additional errors due

to the change from one order in perturbation theory to the next can be read off by comparing the

different lines. We also show in purple, dashed, a plot of the Taylor series truncated at λ8.

For a given truncation level N , we then scan over values of λ̄LC between 0.2 and 0.9,

and for each value of the coupling, determine the b and s which minimize the function

∆F
(N)
B given in eq. (3.10). This gives us a distribution of values for b and s, and we use

the central values b0, s0 to define our final resummed function. For example, in the case of

N = 8, which is the highest truncation level we consider, we obtain the values

b
(N=8)
0 = 4.14, ∆b(N=8) = 0.14,

s
(N=8)
0 = 2.84, ∆s(N=8) = 0.0065,

(3.12)

where ∆b(N),∆s(N) simply correspond to the difference between the highest and lowest

values of b, s obtained by scanning over couplings.

Figure 4 shows the resulting resummed µ̄2
gap(λ̄LC) for N = 6 (blue, dot-dashed), 7 (red,

dotted), and 8 (black, solid). For each value of N , the upper and lower lines correspond to

b
(N)
0 ±∆b, s

(N)
0 ±∆s, where ∆b,∆s correspond to the difference between the maximum and

minimum values of b, s obtained over all considered values of the coupling 0.2 ≤ λ̄LC ≤ 0.9

and truncation order 6 ≤ N ≤ 8,

∆b = 0.58, ∆s = 0.56. (3.13)

As we can see, there is a significant correction in going from N = 6 to N = 7, but by

N = 8 the sum appears to have largely converged for all λ̄LC below the critical coupling,

where the mass gap closes. The estimated error for N = 8 is much smaller than the

previous orders, which indicates that this result is largely independent of b and s, as we’d

expect for the fully resummed function. However, it is worth pointing out that simply

varying the resummation parameters clearly underestimates the overall error (at least for

low N), since the error bars for N = 6 do not contain the results for N = 7, 8.
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Figure 5. Left : gap µ̄2 as a function of λ̄ET, from Borel resumming its perturbation series at

eighth order. Center : gap µ̄2 as a function of λ̄LC from Borel resumming its perturbation series,

also at eighth. Right : inferred map λ̄LC(λ̄ET) from imposing µ̄2
LC(λ̄LC)/λ̄LC = µ̄2

ET(λ̄ET)/λ̄ET. In

the left and center plot, errors (barely visible) are calculated as in figure 4.

Using only ET perturbation theory data, combined with the perturbative map between

ET and LC couplings in eq. (2.3), we’ve therefore constructed a numerically resummed

approximation to the nonperturbative LC mass gap µ̄2
gap(λ̄LC). Similarly, we can use this

same technique to Borel resum µ̄2
gap(λ̄ET) (which simply reproduces the results of [19]).

These two results, both at truncation level N = 8, are shown in the center and left of

figure 5, respectively.

We can now use these two intermediate functions to construct the nonperturbative

map λ̄LC(λ̄ET). Specifically, we can identify which points in the two plots correspond to

the same physical theory, parameterized by the ratio µ̄2
gap/λ̄. In other words, for each

value of λ̄ET, we can use the left plot of figure 5 to determine the corresponding value of

µ̄2
gap/λ̄ET. We can then use the middle plot to determine which value of λ̄LC has the same

µ̄2
gap/λ̄LC, thus giving us a map between bare couplings in ET and LC quantization, shown

in the right plot of figure 5. In particular, we find the following different values for the

coupling λ̄∗ at the critical point in the two quantizations:

λ̄ET∗ = 2.81, λ̄LC∗ = 0.97, (3.14)

where the former is just reproducing the calculation in [19]. These values can be compared

with previous results obtained using renormalized Hamiltonian truncation [29, 30], lattice

Monte Carlo methods [38], matrix product states [39], and the tensor network renormaliza-

tion group [40] for the case of ET quantization, and symmetric polynomials [41], discrete

lightcone quantization [42], and lightcone conformal truncation [35] for the case of LC

quantization, listed in table 1.9

3.3 Linear closing of the gap in LC

Before testing our nonperturbative map λ̄LC(λ̄ET) in section 4, let’s first briefly mention

an important subtlety in our two Borel resummed functions µ̄2
gap(λ̄ET) and µ̄2

gap(λ̄LC). As

discussed in [19], the accuracy of this truncated resummation procedure at N = 8 is still

quite sensitive to which power µ̄αgap we choose to Borel resum. In particular, our choice

of α determines how the Borel resummed mass gap vanishes as we approach the critical

9See also [43] for a recent new method for calculating the mass gap and vacuum energy.
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ET Method λ̄ET∗ LC Method λ̄LC∗

Borel [19] 2.807± .034 Borel (this work) 0.97± .01

HT [29, 30] 2.76± .03 LCT [35] 0.96± .02

Lattice MC [38] 2.764± .004 Symm. Poly. [41] 1.10± .03

MPS 1 [39] 2.769± .002 DLCQ [42] 1.4

MPS 2 [39] 2.7625± .0008

TRG [40] 2.728± .014

Table 1. Computed values of the critical coupling λ̄∗ from various methods in both ET (left) and

LC (right) quantization.

point. We can easily understand this by noting in eq. (3.9) that F (N)(g) is analytic in g,

which means that as we approach a critical point, generically the resummed function will

vanish linearly with g. If we choose to Borel resum µ̄αgap(λ̄), we thus expect the inferred

mass gap to vanish as

µ̄gap(λ̄) ∼ |λ̄− λ̄∗|
1
α , λ̄→ λ̄∗ (Truncated Borel). (3.15)

However, we know that the behavior of the exact mass gap function is set by the critical

exponent ν associated with the lowest singlet operator in the IR fixed point,

µ̄gap(λ̄) ∼ |λ̄− λ̄∗|ν , λ̄→ λ̄∗ (Exact). (3.16)

The optimal choice of α for convergence of the truncated resummation is thus α = 1
ν .10

For this particular example of φ4 theory in d = 2, the critical point is in the same

universality class as the 2D Ising model, with the known critical exponent ν = 1. In

constructing the left plot of figure 5, we therefore technically chose to resum the function

µ̄gap(λ̄ET), as was done in [19], then squared the result to obtain µ̄2
gap.

However, there is a further subtlety in Borel resumming the LC mass gap, which is

that the mass gap does not close as |λ̄− λ̄∗|ν in LC quantization. To understand this, we

can study the mass gap from a Hamiltonian perspective. At linear order around the critical

point, the LC Hamiltonian can be written in the form

P+(λ) = P+∗(λ∗) +
1

2λ̄∗
(λ∗ − λ)

∫
dxφ2(x). (3.17)

Moreover, the Hamiltonian P+ is proportional to µ2,

µ2 = 2P+P−. (3.18)

We therefore can write the LC mass gap squared as

µ2
gap,LC =

1

2λ̄∗
|λ− λ∗|〈1|φ2(0)|1〉. (3.19)

10In principle, we can choose any value of α, and the resulting mass gap will converge to the exact answer

as we take the truncation level N →∞. We are simply noting that, in practice, we can improve the rate of

convergence near the critical point if we include knowledge of the critical exponent ν in the Borel resummed

function.
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Figure 6. Same as figure 4, but for Borel resumming µ̄LC rather than Borel resumming µ̄2
LC in

LC. The right plot just shows the square of the left plot.

In order for the LC mass gap to vanish as |λ̄− λ̄∗|ν , the expectation value of φ2 in the first

excited state would therefore need to vanish as |λ̄ − λ̄∗|2ν−1. However, this expectation

value is necessarily positive at the critical point. One simple way to see this is to expand

the first excited state in terms of free mass eigenstates |m2
i 〉 (i.e. |1〉 =

∑
i ci|m2

i 〉), such

that the expectation value 〈1|φ2|1〉 is clearly a sum of positive terms:

〈1|φ2(0)|1〉 =
∑
i

|ci|2
m2
i

m2
. (3.20)

We therefore see that in φ4 theory µ2
gap,LC must vanish linearly with λ̄, regardless of the

critical exponent ν.11 Based on this observation, we can optimize the convergence of our

truncated sum by Borel resumming the function µ̄2
gap(λ̄LC), which was done to construct

the middle plot of figure 5. For contrast, we have also shown the results in figure 6 if

we instead resum µ̄gap(λ̄LC); as one can see, the convergence rate is clearly worse than in

figure 4.

More generally, in any theory where the coefficient of a relevant UV operator OR can

be tuned to reach a IR fixed point, we can look at the expectation value of that operator in

the first excited state to determine how the LC mass gap behaves near the critical point. If

this expectation value is positive and finite, then µ2
gap,LC will close linearly in the associated

coupling.

One interesting consequence of this observation is that in such theories the map from

ET to LC couplings must account for this differing critical behavior. Specifically, we expect

the scaling relation

|λ̄LC − λ̄LC,∗| ∼ |λ̄ET − λ̄ET,∗|2ν (λ̄→ λ̄∗), (3.21)

as demonstrated in the right plot of figure 5, where our inferred map λ̄LC(λ̄ET) approaches

the critical point quadratically in the ET coupling.

11Technically, µ2
gap,LC could vanish as a smaller than linear power, if the expectation value of φ2 diverged

as λ̄ → λ̄∗. However, based on the Borel resummation results in this work and separate LC Hamiltonian

truncation results [35, 41, 44, 45], this expectation value appears to remain finite in d = 2, such that µ2
gap,LC

vanishes linearly.
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In other words, the map between ET and LC couplings contains information about

critical exponents. In principle, if one could construct this map directly, rather than from

matching ET and LC results, then one would have a method of directly computing the

critical exponent ν. Though we currently have no method for doing so for this particular

model, in appendix B we consider the 3D O(N) model at large N , where we can directly

calculate the map λ̄LC(λ̄ET). In this example, we can explicitly see how the linear critical

behavior in LC quantization is corrected by the map to reproduce the appropriate critical

exponent in ET quantization.

4 Tests of the mapping

In the previous section, we extracted a map between the LC coupling λ̄LC and ET coupling

λ̄ET from the ET perturbative expansion of µ2
gap by assuming that the mass gap was Borel

resummable in both quantization schemes. In this section, we will look at some tests of this

map by using it to compare physical quantities that have been computed by Hamiltonian

truncation methods in both quantizations. The LC data was initially computed in [35],

using the method of LC conformal truncation. For these results, we used a basis of primary

operators in massless scalar field theory up to ∆max = 33 (with 5084 states in the Z2-odd

sector) to then extrapolate ∆max →∞. The ET data was initially computed in [25] using

a basis of free massive energy eigenstates on S1 with radius L = 10 (in units of the bare

mass m) and energy cutoff Emax = 20 (12801 odd sector states).12

4.1 Mass gap

For our first check of the map λ̄ET(λ̄LC), we consider the mass gap µ2
gap computed by Hamil-

tonian truncation in both quantization schemes. Of course, the idea of the previous section

was that one should be able to obtain the gap in either quantization by Borel-resumming

its perturbation series. With Hamiltonian truncation, we can check this proposal directly,

by computing the gap numerically and using the map obtained from Borel resummation

to compare the two quantization schemes.

First, in the left plot of figure 7, we show the Hamiltonian truncation result for µ̄2
gap

computed in both ET (black, solid) and LC (red, dashed). More precisely, in either

quantization we can vary the bare mass-squared m2 and the bare coupling λ, compute

µ̄2
gap ≡ µ2

gap/m
2, and plot the result as a function of λ̄ ≡ λ/m2. At very small couplings

λ̄ . 0.1, the two curves are very similar, but quickly diverge at larger couplings where

it becomes crucial to take into account the fact that the bare parameter λ̄ in the two

quantizations does not match.

In the right plot of figure 7, we have used the map λ̄LC ↔ λ̄ET derived in the previous

section using Borel resummation to correct the mismatch. The ET value of µ̄2
gap as a

function of λ̄ET is the same as in the left plot. The LC result µ̄2
LC(λ̄LC) from the left plot

has been converted to ET by substituting it into the formula

µ̄2
ET(λ̄ET) =

λ̄ET

λ̄LC(λ̄ET)
µ̄2

LC

(
λ̄LC(λ̄ET)

)
. (4.1)

12We thank Lorenzo Vitale for kindly providing us with these ET results.
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Figure 7. Left : comparison of µ̄2 =
µ2
gap

m2 as a function of λ̄ = λ
m2 , for ET (black, solid) and LC (red,

dashed) quantization from numerical conformal truncation analysis. The mismatch is apparent, due

to the fact that the bare parameter m should not be the same in both quantization schemes. Right :

comparison of µ̄2
ET =

µ2
gap

m2
ET

as a function of λ̄ET after applying the map from λET to λLC in figure 5.

The black, solid line is the result from an ET numerical conformal truncation analysis, the same

as in the left plot. The red, dashed line is the result from a LC numerical conformal truncation

analysis, after applying the map. The blue, dotted line is the gap in ET quantization from Borel

resumming the ET perturbation series.

In effect, we have used the gap computed using Borel resummation to “undo” the difference

in the gap computed using conformal truncation, such that the converted LC truncation

results now match those of ET. We also show some spread in this LC result, coming from

the spread in the 8th order result in figure 4. Finally, we also show for comparison the ET

result (blue, dashed) obtained from Borel resumming its perturbation series (from the left

plot in figure 5).

4.2 Residue at single-particle pole

For our second check of the map between bare parameters, we compute the residue Z of

the single-particle pole in the scalar two point function:

G(p) =
iZ

p2 − µ2
gap + iε

+ . . . . (4.2)

Equivalently, Z is defined in terms of the matrix element of the field φ between the ground

state and the first excited state,

Z = |〈Ω|φ(0)|1〉|2. (4.3)

By definition, Z = 1 in the free theory (at λ̄ = 0), but decreases from 1 at finite

coupling. Figure 8 shows the numerically computed deviation of Z from the free value

in both ET and LC quantization, as a function of the dimensionless ratio µ2
gap/λ. In

constructing our nonperturbative map, we identified ET and LC theories with the same

value for this ratio, which means the two schemes should yield the same result for the

physical observable Z.

For the LC results, we have used two different definitions of the mass gap. The first

(in blue), was obtained using the single-particle mass, µ2
gap ≡ µ2

1, while the other (green)
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Figure 8. Comparison of 1 − Z as a function of µ2
gap/λ, in both ET (red) and LC (blue, green).

The two LC results were extrapolated from ∆max = 33 data using both the 1-particle (blue) and

3-particle (green) thresholds to define the mass gap. Their disagreement near the critical point

indicates that the LC truncation data has not fully converged for µ2
gap/λ . 0.3.

was obtained by using the three-particle threshold, µ2
gap ≡ 1

9µ
2
3. In principle, these two

definitions should be equivalent, but at any finite truncation µ3 > 3µ1. The comparison

between these two extrapolated plots thus provides us with an indication of the error, along

with the estimated error bars obtained by varying the slope of the extrapolation. As we can

see, the two LC results are in good agreement until µ2
gap/λ . 0.3, which indicates that the

results at ∆max = 33 have not fully converged near the critical point. This disagreement

near µgap = 0 is largely due to the fact that the single-particle eigenvalue necessarily reaches

zero before the three-particle threshold for any truncation.

We can then compare these two LC results to the ET data (red), which was calculated

using the single-particle mass to define the gap. As we can see, all three results are

consistent until close to the critical point. This agreement in the observable Z indicates

that at a fixed value of µ2
gap/λ both ET and LC truncation are describing the same theory,

confirming our procedure for matching bare parameters.13

5 Future directions

The main goal of this paper has been to obtain a deeper understanding of the relation

between ET and LC quantization, focusing on the special case of λφ4 theory in 2d. In

13In this case, we have not literally used our mapping of bare parameters, but rather went directly to Z as

a function of µ2
gap/λ in both quantizations. We have already seen that our map matches µ2

gap/λ in terms of

the bare parameters to reasonably high accuracy, so in principle there is not much difference between first

writing Z in terms of λ̄ET and λ̄LC and then mapping, versus directly expressing Z in terms of µ2
gap/λ in

each quantization. In practice, we have found that extrapolating to infinite ∆max typically is more accurate

when physical quantities are expressed in terms of other physical quantities, rather than in terms of bare

parameters.
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principle, the same analysis we have applied here could be done for λφ4 in 3d. The main

challenges in 3d compared to 2d are due to the fact that the calculations all become

computationally more expensive. The perturbative analysis of [19] in 3d would require

doing loop integrals with a larger phase space and additional UV divergences, making

it more challenging to go to O(λ̄8). The tests from comparing to conformal truncation

results also become more difficult mainly due to the larger number of states at each level

in higher dimensions. Nevertheless, perhaps with available resources these obstacles could

be overcome.

More generally, it is important to understand when the effect of LC zero modes is to just

shift the bare parameters of the theory. While obtaining a detailed map between the bare

parameters is likely an impractically difficult task in most cases, one could hope to prove

that such a map exists provided that certain simple criteria are satisfied. For most practical

purposes, such a proof would be as good as the map itself, since usually one is interested in

the relation between different physical quantities in the theory rather then their (usually

scheme-dependent) dependence on the bare parameters. A natural conjecture in the spirit

of the analysis of this paper is that any time the perturbative effect of zero modes can be

absorbed into a shift in the bare parameters, their nonperturbative effect can be as well. A

closely related question is whether or not Borel resummability of a physical quantity in ET

perturbation theory implies its Borel resummability in LC. We have essentially assumed

that this is true of 2d λφ4 theory in this paper, and have attempted to test this assumption

numerically, but a proof would of course be more desirable.

There have been many previous studies of 2d λφ4 theory using lattice MC meth-

ods [38, 46, 47], tensor networks [39, 40], and the density matrix renormalization group [48].

However, those studies have largely focused on the critical point, in order to extract the

critical coupling λ̄∗, as well as critical exponents. It would be very useful if such methods

could be used to extract the λ̄-dependence of observables such as the mass gap, vacuum

energy, and vev 〈φ2〉 away from the critical point. Such data would provide a useful ad-

ditional check of the map between ET and LC quantization, as well as insight into the

nonperturbative structure of λφ4 theory, more generally.

Finally, we have focused our analysis on the symmetry preserving phase, 〈φ〉 = 0, but

it would be very interesting to understand the symmetry-broken phase of the theory as

well. In this case, because of the apparent triviality of the vacuum in LC quantization, we

expect that one has to start with the Lagrangian expanded around the true vacuum. As a

result, the Lagrangian would have a φ3 term in addition to the quadratic and quartic. A

puzzle in this approach is that the coefficient of the φ3 interaction should not really be an

independent parameter of the theory, which is fully determined in the original manifestly

Z2-symmetric Lagrangian by only two parameters. An additional constraint is provided

by the fact that for the correct value of the φ3 coefficient as a function of the φ2 and φ4

coefficients, the spectrum of the theory must be invariant under φ3 → −φ3. In the case of

the O(N) 2d model, or more generally for theories with spontaneous breaking of continuous

symmetries, one could also constrain the parameters of the theory by demanding that the

spectrum contain massless Goldstone bosons. Potentially, such constraints could be used

to fix the coefficient of φ3. We leave these questions to future work.
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A 0d example

In this paper, we have mostly focused on the prescription in λφ4 theory that assigns

an effective value of λ̄LC(λ̄ET) in LC quantization corresponding to an ET computation

according to

m2
LC = m2

ET + 12λET〈φ2〉ET. (A.1)

The theory is determined by the dimensionless combination λ̄ = λ
m2 . A problem with (A.1)

is that applying it literally assigns the same lightcone λ̄LC to two different values of λ̄ET. In

this appendix, we will analyze the analogous phenomenon in a lower dimensional example.

We will find it somewhat conceptually simpler to work in units with λ = 1 in both

quantizations. The first point we want to make here is that we can state the puzzle of

why (A.1) fails without referring to LC quantization. Because the plant diagrams have

no momentum dependence, their contributions can be exactly absorbed into a mass coun-

terterm. This is essentially the same argument that one uses when one normal-orders the

action: one can simply drop the one-loop contribution to the two-point function since it

can be absorbed into a (log divergent) shift in the mass term. The next plant diagram

occurs at three loops,

∼=
(
m2 → m2 +

1

m4

63ζ(3)

2π3

)
. (A.2)

This diagram can also be removed precisely with a counterterm. We can continue in this

way to any order in perturbation theory, without ever having to mention LC quantization

or making any conjectures about what LC does. In other words, in perturbation theory,

we really can just remove all plant diagrams by defining a new mass term.

In this language, we can reinterpret the lower left plot in figure 2 as a statement of

what new mass m2
LC we get as a function of the original mass m2

ET. At large m2
ET, the shift

from 〈φ2〉 is small compared to m2
ET, and so everything looks fine. However, as we decrease

mET, the new mass m2
LC(m2

ET) in the new effective ET description (where we have deleted

all the plant diagrams) receives larger and larger contributions from the plant diagrams,
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Figure 9. Left : plot of m2
LC ≡ m2 + 6〈x2〉 for the integral (A.3). The important feature is that

m2
LC is not an invertible function of m2. Right : plot of 〈x2〉 as a function of m2. If the perturbative

procedure of absorbing plant diagrams into counter-terms were well-defined nonperturbatively, then

〈x2〉 would be the same for any two values of m2 that corresponded to the same m2
LC in the left plot.

and eventually these more than compensate for the decreasing “bare” mass. Even without

doing any additional computations, we see that this procedure naively makes a prediction

for the results in ET quantization, namely that two different values of m2
ET should give the

same physical results. The problem is that this prediction is wrong. Stated this way, the

failure of the prediction may seem surprising. The plant diagrams really are present in the

original ET computation, and they really do give a contribution to the mass, so it seems

like they really should push the effective mass back up.

We can get more intuition about what is going wrong by asking this question in the

following simpler toy “model”:

Z(m2) ≡
∫ ∞
−∞

dxe−m
2x2−x4

=
1

2
e
m4

8 mK 1
4

(
m4

8

)
, (A.3)

where Kν is a Bessel function. A “diagrammatic” evaluation of this integral is just its

series expansion in 1/m2:

Z(m2) =

√
π

m

(
1− 3

4m4
+

105

32m8
+ . . .

)
=

√
π

m

∞∑
n=0

1

(−4m4)n
(4n− 1)!!

(n)!
. (A.4)

One can easily compute the “vev” exactly

〈x2〉 =
1

4
m2

K 3
4

(
m4

8

)
K 1

4

(
m4

8

) − 1

 . (A.5)

As we did in the 2d theory, we can plot an effective “LC” mass-squared as a function of

the “ET” mass-squared:

m2
LC = m2 + 6〈x2〉, (A.6)

shown in figure 9.

– 21 –



J
H
E
P
1
0
(
2
0
2
0
)
0
9
2

As before, at large m2 the function is monotonic (and in this case it is monotonic

for all positive m2). However, at negative14 m2, we see that the function turns back up,

predicting that the integral should give the same result for multiple values of m2. From

the plot of 〈x2〉 in figure 9, we see that this prediction is false.

Essentially what the “effective” integral with plant diagrams subtracted out is doing

is defining, as a function of the mass and the counterterm,

Zδ(m
2
LC) ≡

∫ ∞
−∞

dxe−m
2
LCx

2−(−δx2+x4) (A.7)

such that δ removes all plant diagrams. Manifestly, Zδ is related to the original integral by

Zδ(m
2 + δ) = Z(m2). (A.8)

The perturbation series of Zδ differs from that of Z, since the former is expanded in inverse

powers of mLC:

Zδ(m
2
LC) =

√
π

mLC

(
1 +

δ

2m2
LC

+
3(−2 + δ2)

8m2
LC

+ . . .

)
(A.9)

Continuing with the analogy, we are interested in choosing δ to eliminate all of the plant

diagrams. To do this, we take δ = δ(m) = 6〈x2〉m2 . In perturbation theory, this is just

δ(m) =
3

m2

(
1− 3

m4
+

24

m8
− 297

m12
+ . . .

)
. (A.10)

However, defining Zδ(m)(mLC) at the nonperturbative level requires determining δ(m) as a

function of mLC, which in turn requires inverting m as a function of mLC. This inversion

m2(m2
LC) is double-valued, and physical predictions depend on which of the two solutions

one chooses. Such double-valuedness is perhaps not necessarily an insurmountable problem

— one might for instance wonder if the two different predictions simply reflect two different

phases of the theory? But hopefully this example gives some intuition for potential sub-

tleties involved in removing an infinite class of Feynman diagrams in perturbation theory

and then trying to define this procedure nonperturbatively.

B Linear closing of gap in O(N) model

In this appendix we will determine the map between ET and LC parameters in the 3D

O(N) model at large-N . This is possible to do because one can resum perturbation theory

at large-N . Parametrizing the large-N theory in the presence of a mass deformation in

following way,

L = =
1

2
(∂φi)

2 − 1

2

m2
ET

λ
σ − 1

2
σ(φi)

2 +
σ2

4λ
, (B.1)

14Unlike in higher dimensions, there is no phase transition here at m2 = 0, and the integral and its

moments (like 〈x2〉) are well-defined, smooth functions of m2 even across the point m2 = 0.

– 22 –



J
H
E
P
1
0
(
2
0
2
0
)
0
9
2

Figure 10. Diagrams contributing to m2
LC. Solid and dashed lines denote φi and σ propagators

respectively.

we proceed to calculate the contribution to Heff which corresponds to m2
LC. This involves

resuming the diagrams of figure 10. The diagrams yield the following standard resummation

equation, valid to leading order in N for 〈σ〉 = m2
LC:

m2
LC = m2

ET + λN

∫
d3p

(2π)3

[
1

p2 +m2
LC

− 1

p2

]
. (B.2)

Here, we have rotated the integral to Euclidean momentum, and have included the effect of

normal ordering. When m2
ET > 0 and in the limit λ→∞ (i.e. focusing on the regime near

the interacting fixed point) the relation between the parameters is approximately given by

mLC =
4π

λN
m2

ET. (B.3)

Let us now recall that in the LC quantization of the O(N) model, the gap closes linearly

with mLC. For instance, the spectral density of the φ2 operator along the flow is given by:

πρφ2(q) =

1
2q(

1 + λN
8qπ log

(
q+2mLC
q−2mLC

))2
+
(
λ
8q

)2 . (B.4)

Thus, as in the case of our 2D scalar example, the LC O(N) model gap closes in a manner

which is inconsistent with the power expected from the large-N critical exponent of ν = 1.

However, again, as in the 2D case, it is the map between ET and LC parameters which

resolves this tension. Indeed, near the critical point the map knows about the ν exponent:

µgap ∼ mLC ∼ m2
ET. (B.5)

Open Access. This article is distributed under the terms of the Creative Commons
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