
 

Skewed Sudakov regime, harmonic numbers, and multiple polylogarithms

Victor T. Kim,1,2 Victor A. Matveev,3,4 and Grigorii B. Pivovarov4
1Petersburg Nuclear Physics Institute NRC KI, Gatchina 188300, Russia
2St. Petersburg Polytechnic University, St. Petersburg 195251, Russia

3Joint Institute for Nuclear Research, Dubna 141980, Russia
4Institute for Nuclear Research RAS, Moscow 117312, Russia

(Received 21 December 2018; published 31 January 2019)

On the example of massless QED we study an asymptotic of the vertex when only one of the two
virtualities of the external fermions is sent to zero. We call this regime the skewed Sudakov regime. First,
we show that the asymptotic is described with a single form factor, for which we derive a linear evolution
equation. The linear operator involved in this equation has a discrete spectrum. Its eigenfunctions and
eigenvalues are found. The spectrum is a shifted sequence of harmonic numbers. With the spectrum found,
we represent the expansion of the asymptotic in the fine structure constant in terms of multiple
polylogarithms. Using this representation, the exponentiation of the doubly logarithmic corrections of
the Sudakov form factor is recovered. It is pointed out that the form factor of the skewed Sudakov regime is
growing with the virtuality of a fermion decreasing at a fixed virtuality of another fermion.

DOI: 10.1103/PhysRevD.99.025016

I. INTRODUCTION

We start with recalling the classical result of Ref. [1]
introducing along the way our notations. Let Γμðp; p0Þ be a
connected three-point amplitude of massless QED renor-
malized with minimal subtractions. Here p and p0 are the
momenta of the incoming and outgoing fermion respec-
tively. We use namely a connected amplitude because it will
be technically important for our consideration to include
self-energy corrections to one of the external fermion legs
of Γμðp; p0Þ. We also exclude the overall factor ie from the
definition of Γμðp; p0Þ. Due to this, the expansion of
Γμðp; p0Þ in the coupling starts with Dirac gamma matrix,
Γμðp; p0Þ ¼ γμ þ � � �.
To avoid infrared problems, one considers Γμðp; p0Þ at

negative virtualities of the external fermions, p2 < 0,
p02 < 0, and of the external photon, ðp0 − pÞ2 < 0. The
results of [1] are for the kinematics when, on top of
the above restrictions, the Minkowski product of the
fermion momenta satisfies the inequality preventing
Wick rotation, ðpp0Þ2 > p2p02. These conditions combined
imply that if jp2j and jp02j are small with respect to
jðp − p0Þ2j, pp0 > 0. We will use two positive variables
to describe this kinematics:

x ¼ −p2

2pp0 > 0; y ¼ −p02

2pp0 > 0: ð1Þ

With the notations introduced, Sudakov result reads

Γμðp; p0Þ ≈ γμ exp

�
−

α

2π
logðxÞ logðyÞ

�
; ð2Þ

where the approximate equality holds when both jp2j and
jp02j are small with respect to jðp0 − pÞ2j, and their ratio is
of order unity. Also, α is the fine structure constant
normalized at any of the small virtualities.
In this paper we derive a generalization of the

approximation (2) valid in a wider region where the
magnitude of only one of the two fermion virtualities is
small with respect to the magnitude of the virtuality of
the photon. Because the symmetry between the two
fermion virtualities present in the Sudakov regime is
lost for this generalization, we call this generalized
regime the skewed Sudakov regime. For definiteness,
we consider the kinematics with jp2j small with respect
to the magnitude of the photon virtuality, and no
restrictions on jp02j are present. All the considerations
can be repeated with the obvious changes for the case
when jp02j is small instead of jp2j.
After the external fermion with small virtuality magni-

tude is specified, we can also specify the external fermion
leg of Γμðp; p0Þwith self-energy corrections included—it is
the leg of small virtuality. Also, as before, the fine structure
constant in the subsequent formulas is normalized at the
small virtuality.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 025016 (2019)

2470-0010=2019=99(2)=025016(6) 025016-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.025016&domain=pdf&date_stamp=2019-01-31
https://doi.org/10.1103/PhysRevD.99.025016
https://doi.org/10.1103/PhysRevD.99.025016
https://doi.org/10.1103/PhysRevD.99.025016
https://doi.org/10.1103/PhysRevD.99.025016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


To write down the generalization of the approximation
(2) we introduce the following variables:

t ¼ −
α logðxÞ

2π
> 0; z ¼ 1

1þ y
: ð3Þ

Notice that 0 < z < 1, and, in the Sudakov regime z → 1
from the left. With these variables the approximation valid
in the skewed Sudakov regime reads

Γμðp; p0Þ ≈ γμFðt; zÞ þ
pμ=p0

pp0 ½et=2 − Fðt; zÞ�; ð4Þ

where the form factor Fðt; zÞ is as follows:

Fðt; zÞ ¼ e3t=2
X∞
n¼0

e−tHnþ1znð1 − zÞ: ð5Þ

Here Hnþ1 are the harmonic numbers,

Hk ¼
Xk
i¼1

1

i
: ð6Þ

We point out that the series in the right-hand side of Eq. (5)
converges at jzj < 1, and to recover the approximation (2)
one has to send z → 1, where the convergence fails.
To overcome this difficulty, we derive from Eq. (5) the

following representation:

Fðt; zÞ ¼ e3t=2
�
1þ 1

z

X
s

ð−tÞjsj
s!

LisðzÞ
�
; ð7Þ

where the sum runs over strings of positive integers of
arbitrary depth d, s ¼ ðs1; s2;…; sdÞ; jsj denotes the weight
of the string,

jsj ¼
Xd
i¼1

si;

and the factorial of the string is the product of the factorials,

s! ¼
Yd
i¼1

si!

The key ingredient of the representation (7) is the so-called
multiple polylogarithm LisðzÞ. See, e.g., Ref. [2] for an
introductory exposition of these functions, and Refs. [3,4]
for their recent applications to Feynman integrals.
Using the properties of multiple polylogarithms dis-

cussed in Ref. [2] one can single out the terms of the sum of
Eq. (7) most singular in the limit z → 1. By “most singular”
we mean that each power of t is compensated by a power of
logð1 − zÞ. These are the terms with the strings s consisting

of units, sd ¼ ð1;…; 1Þ, with the unit repeated d ¼ jsj
times. Explicitly,

LisdðzÞ ¼ ð− logð1 − zÞÞd=d! ≈ ð− logðyÞÞd=d! ð8Þ

Using this and taking into account that =p is small in the
Sudakov regime, one reproduces approximation (2) from
approximation (4).
On the other hand, at fixed z < 1 and large t one picks up

the infinitely growing term in Eq. (5) and obtains the
following approximation valid at x → þ0 and y > 0 fixed:

Γμðp; p0Þ ≈ y

ð1þ yÞxα=ð4πÞ
�
γμ þ 2

pμ=p0

−p02

�
: ð9Þ

We conclude that Eqs. (4) and (5) give a unified
description for qualitatively different asymptotics of the
vertex, one of which coincides with the known Sudakov
asymptotic.
The validity of approximation (4), (5), and the repre-

sentation (7) are the main results of the paper. In the rest of
the paper we sketch the way these results are derived.

II. SCHWINGER-DYSON EQUATION AND THE
INCLINATION VARIABLE

The vertex Γμðp; p0Þ coincides with its bare counterpart
because its renormalization constant ZΓ ¼ 1 due to Ward
identities between the renormalization constants of QED.
With this observation one can derive the following
Schwinger-Dyson equation for the vertex:

Γμðp; p0Þ ¼ γμ − α

Z
2d4k
ð2πÞ3 Γμλðk; p0;p − kÞ=kγρ

k2

× ðiDλρðp − kÞÞ: ð10Þ

Here Γμνðk; p0;p − kÞ is a renormalized connected four
point amplitude with k and p0 denoting the momenta of
incoming and outgoing fermion, and p − k is the incoming
momentum of a photon with Lorentz index ν. Self-energy
corrections are included in its k-leg, and the amplitude is
divided by ðieÞ2. Its expansion in the coupling starts as
follows:

Γμνðk; p0; lÞ ¼ γν
i

=p0 − =l
γμ þ γμ

i
=kþ =l

γν þ…: ð11Þ

Another ingredient in Eq. (10) is the full photon
propagatorDνρðp − kÞ. We use an arbitrary covariant gauge
to define it.
Notice that the integration in the right-hand side of

Eq. (10) is ultraviolet (UV) finite. This is because the UV
divergences originating from various contributions to the
four point amplitude under the integral cancel against each
other due to gauge invariance. For example, in the one loop
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approximation, the first term in the right-hand side of
Eq. (11) produces an 1PI contribution to the vertex, while
the second, the self-energy correction to the p-leg, and their
sum is UV finite. We conclude that there is no need to
regularize the integration in any way.
Next we change the integration variables. A first step in

this direction is to decompose k into transverse and
longitudinal parts, the longitudinal part is a linear combi-
nation of the external momenta p and p0, and the transverse
part has zero Minkowski products with them:

k ¼ k⊥ þ kk;

kk ¼ αpþ βp0; pk⊥ ¼ 0; p0k⊥ ¼ 0: ð12Þ

Because of the above condition ðpp0Þ2 > p2p02, k⊥ is
necessarily Euclidean, and we represent the measure of
integration from Eq. (10) in the polar coordinates:

2d4k → d2kkðθðϕÞθð2π − ϕÞdϕÞdk2⊥θð−k2⊥Þ; ð13Þ

where the transverse components are

k1 ¼ cosðϕÞ
ffiffiffiffiffiffiffiffiffi
−k2⊥

q
; k2 ¼ sinðϕÞ

ffiffiffiffiffiffiffiffiffi
−k2⊥

q
: ð14Þ

Next we observe that if there were no restriction on the
sign of k2⊥ in the last factor of Eq. (13), the integral in
Eq. (10) would vanish. This happens because of the
analytic properties of the integrand. In the one loop
approximation this is evident from the explicit form of
Eq. (11), and is less evident but true in any order of the
perturbation theory. One can check it using Feynman
parameters, and general properties of Symanzik polyno-
mials [5]. Taking this observation into account, we replace
the last factor in Eq. (13) as follows:

θð−k2⊥Þ → θð−k2⊥Þ − θðk2kÞ: ð15Þ

We stress that this substitution of the measure does not
change the right-hand side of Eq. (10). Furthermore, the
difference of theta functions can be represented as follows:

θð−k2⊥Þ − θðk2kÞ ¼ −
k2k
jk2kj

θðνÞθð1 − νÞ; ð16Þ

where we introduced a new variable ν, which we will call
the inclination of the fermion with momentum k:

ν≡ k2k
k2

: ð17Þ

This variable is in one-to-one correspondence with k2⊥:

k2⊥ ¼ k2kð1=ν − 1Þ: ð18Þ

Notice that when k2k > 0, and 0 < ν < 1, the components
of k⊥ are purely imaginary. We say that using inclination
leads one to consider doubly virtual particles, by which we
mean particles not only away from the mass shell, but also
with imaginary momentum components.
The last step in the transformation of the integration

measure which we need is to replace the variable k2⊥ with
the inclination variable:

dk2⊥ ¼ jk2kjdν=ν2: ð19Þ

We conclude that Schwinger-Dyson equation (10) can be
rewritten as follows:

Γμðp; p0Þ ¼ γμ þ
α

2π

Z
2π

0

dϕ
2π

Z
1

0

dν
Z

d2kk
2π

Γμλðk; p0;p − kÞ
ðkk − νpÞ2 þ p2νð1 − νÞ þ iϵ

ðiðp − kÞ2Dλρðp − kÞÞ=kγρ: ð20Þ

It is tacitly assumed in this formula that the transverse
components of k are expressed in terms of the integration
variables, for which one uses Eqs. (14) and (18). As
mentioned above, integration over the inclination implies
integration over the momentum of the doubly virtual
particle.
The form of Eq. (20) explains the origin of the name

“inclination” for the variable ν: at p2 → 0 a vicinity of the
point kk ¼ νp gives a dominant contribution to the integral.
So, one can say that ν is a fraction of the original
momentum which the fermion is inclined to keep after
emitting a photon.
In the next section we expound on this, and see how

restricting the integration to a vicinity of the point kk ¼ νp

allows one to truncate the Schwinger-Dyson equation (20)
to a closed equation for the vertex.

III. TRUNCATION OF THE
SCHWINGER-DYSON EQUATION

First we point out that if kk ¼ νp, Eq. (18) implies that
k⊥ → 0 when p2 → 0. Therefore, in the leading approxi-
mation k⊥ can be set to zero in the right-hand side of
Eq. (20) and the integration in the angle ϕ removed.
Second, the factor =kγρ can be replaced as follows:

=kγρ → 2νðp − kÞρ=ð1 − νÞ; ð21Þ
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because =kγρ ¼ 2νpρ − γρp at k ¼ νp, and p ≈ 0 in the
rightmost position.
Next simplification which one can make near the point

kk ¼ νp is available if the dimensional regularization unit
of mass μ2 normalizing the renormalized fine structure
constant is taken to be equal to−p2. In this case the vacuum
polarization involved in the photon propagator may be set
to zero, because it depends on logð−p2=μ2Þ ¼ 0. This

means that photon propagator in Eq. (20) can be replaced
with the free one.
The last simplification which we make is removing the

longitudinal part of the free photon propagator. We can do it
in the leading approximation, because the longitudinal part
does not give a contribution logarithmic in −p2.
After these replacements, Schwinger-Dyson equa-

tion (20) takes the following form:

Γμðp; p0Þ ≈ γμ þ
α

2π

Z
1

0

νdν
1 − ν

Z
V

d2kk
π

ðp − kkÞρΓμρðkk; p0;p − kkÞ
ðkk − νpÞ2 þ p2νð1 − νÞ þ iϵ

: ð22Þ

Notice that the integration in kk is now restricted to a vicinity V of the point kk ¼ νp. The approximate equality means that
only the leading contribution at p2 → 0 is kept in the right-hand side.
Now we can use Ward-Takahashi identity for the four-point amplitude featuring Eq. (22). For this particular connected

amplitude it reads

ðp − kkÞρΓμρðkk; p0;p − kkÞ ¼ −i
�
Γμðp; p0Þ =p=kk

p2
− S−1ðp0ÞSðp0 − ðp − kkÞÞΓμðk; p0 − ðp − kkÞÞ

�
; ð23Þ

where SðlÞ denotes the full fermion propagator depending on momentum l. In the leading approximation, the full
propagators can be replaced with the free propagators, because the dependence on the normalization point cancels in the
ratio of the propagators. Finally, setting kk ¼ νp and neglecting p2 where possible, we obtain after a simple rearrangement
of the terms the form of the Ward-Takahashi identity we will use:

ðp − kkÞρΓμρðkk; p0;p − kkÞ ≈ −i
�
Γμðp; p0Þν − Γμðkk; p0 − pð1 − νÞÞ þ ð1 − νÞ=pp 0

ð2pp0Þðyþ 1 − νÞΓμðkk; p0 − pð1 − νÞÞ
�
: ð24Þ

We recall that y ¼ −p02=ð2pp0Þ. Notice that kk is not replaced with νp in the first argument of Γμ. This is because at p2 ¼ 0

such a replacement would give infinity.
Substituting Eq. (24) into Eq. (22) gives the truncation of Schwinger-Dyson equation we aimed at:

Γμðp; p0Þ ≈ γμ −
α

2π

Z
1

0

νdν
1 − ν

Z
V

id2kk=π
ðkk − νpÞ2 þ p2νð1 − νÞ þ iϵ

×

�
Γμðp; p0Þν − Γμðkk; p0 − pð1 − νÞÞ þ ð1 − νÞ=pp0

ð2pp0Þðyþ 1 − νÞΓμðkk; p0 − pð1 − νÞÞ
�

ð25Þ

This equation can be used to generate iteratively the
expansion in α of the vertex Γμ starting from the initial
term γμ. This is the subject of the next section.

IV. THE FORM FACTOR OF THE SKEWED
SUDAKOV REGIME

To compute the first correction in the perturbative
expansion of the vertex, one takes the second term in
the right-hand side of Eq. (25) and makes in it the
substitution Γμ → γμ regardless of the arguments of Γμ.
One keeps in the integrals only the leading terms at p2 → 0.
The outcome of this exercise is as follows:

Γð1Þ
μ ðp; p0Þ ≈ γμ

�
t
Z

1

0

dν

�
ν −

νz
1 − νz

��

þ pμp0

pp0

�
t
Z

1

0

dν
νz

1 − νz

�
; ð26Þ

where the first correction is in the left-hand side, and the
variables t, z were defined in Eq. (3). A relation useful in
checking this reads

α

2π

Z
V

id2kk=π
ðkk − νpÞ2 þ p2νð1 − νÞ þ iϵ

≈ t: ð27Þ
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With the first correction known, one can use it to obtain
the second one, and so on. A minor complication is that the
integration in kk requires the knowledge of Γμðkk; p0 −
pð1 − νÞÞ at small k2k of any sign, and Eq. (26) gives it only
for k2k < 0. As follows from the derivation of Eq. (26), it can
be extended to positive small virtuality of the incoming
fermion by making the replacement logðxÞ → logðjxjÞ in
Eq. (3). Apart from this clarification, one also needs in this
computation the following generalization of Eq. (27):

αðnþ1Þ

ð2πÞðnþ1Þn!

Z
V

lognðj2pp0=k2kjÞid2kk=π
ðkk − νpÞ2 þ p2νð1 − νÞ þ iϵ

≈
tðnþ1Þ

ðnþ 1Þ! ;

ð28Þ

where n is any integer.
The outcome of the approximate computation of the

perturbative corrections outlined above can be summarized
as follows. First, no new tensor structures appear in the
vertex apart of the ones already present in the leading
correction of Eq. (26):

Γμðp; p0Þ ≈ γμFðt; zÞ þ
pμp0

pp0 Φðt; zÞ: ð29Þ

Second, the form factors satisfy the following evolution
equations:

∂Fðt; zÞ
∂t ¼ 1

2
Fðt; zÞ

−
Z

1

0

dν

�
νðFðt; zÞ − Fðt; νzÞÞ

1 − ν
þ νzFðt; νzÞ

1 − νz

�
;

Fð0; zÞ ¼ 1: ð30Þ
∂Φðt; zÞ

∂t ¼ 1

2
Φðt; zÞ

−
Z

1

0

dν

�
νðΦðt; zÞ −Φðt; νzÞÞ

1 − ν
−
νzFðt; νzÞ
1 − νz

�
;

Φð0; zÞ ¼ 0: ð31Þ
Next we notice that the sum of these equations yields a

simpler equation, which can be solved:

Fðt; zÞ þΦðt; zÞ ¼ et=2:

We conclude that the vertex is approximated with a single
form factor, Eq. (4), which satisfies the evolution
equation (30).

V. SOLVING EVOLUTION EQUATION
FOR THE FORM FACTOR

Equation (30) is a linear evolution equation of the
form _F ¼ OF, where the linear operator O acts on a
function of z:

ðOχÞðzÞ ¼ χðzÞ
2

−
Z

1

0

dν

�
νðχðzÞ − χðνzÞÞ

1 − ν
þ νzχðνzÞ

1 − νz

�
:

ð32Þ

One explicitly checks that χnðzÞ ¼ znð1 − zÞ are eigen-
functions of the operator O:

Oχn ¼
�
3

2
−Hnþ1

�
χn; ð33Þ

and the initial condition for the form factor can be expanded
in terms of these eigenfunctions:

Fð0; zÞ ¼
X∞
n¼0

χnðzÞ: ð34Þ

This implies Eq. (5).
Next we derive the representation (7) starting from

Eq. (5). According to it, expansion of ðe−3t=2Fðt; zÞ −
1Þz≡ F̄ðt; zÞ in powers of t is as follows:

SkðzÞ ¼
1

k!

X∞
n¼1

Hk
nznð1 − zÞ; F̄ðt; zÞ ¼

X∞
k¼1

ð−tÞkSkðzÞ:

ð35Þ

Our task is to express SkðzÞ in terms of multiple
polylogarithms.
To complete the formulation of the task we give a

definition of the multiple polylogarithms in terms of linear
operators acting on a function of a single variable, which is
equivalent to the standard definition in terms of the iterated
integrals [2]. First we define two operators used in the
definition:

ðAϕÞðzÞ ¼
Z

z

0

dz0

z0
ϕðz0Þ;

ðEϕÞðzÞ ¼
Z

z

0

dz0

1 − z0
ϕðz0Þ: ð36Þ

Here ϕðzÞ is a function on which the operators A and E act.
Next we define an operator labeled with a string of

integers s ¼ ðs1;…; sdÞ, si > 0:

Ls ¼ As1−1EAs2−1E…Asd−1E; ð37Þ

where d is the depth of the string s.
With these notations a multiple polylogarithm is defined

as follows:

LisðzÞ ¼ ðLsuÞðzÞ; ð38Þ

where the operator Ls acts on the function uðzÞ ¼ 1.
We now return to transforming SkðzÞ. Expansion of

SkðzÞ in powers of z reads
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SkðzÞ ¼
z
k!

þ
X∞
n¼2

zn
Hk

n −Hk
n−1

k!
: ð39Þ

Since Hn ¼ Hn−1 þ 1=n, one can expand its power in
Eq. (39), and cancel the term Hk

n−1 in the numerator. A
straightforward regrouping of terms transforms thus
Eq. (39) as follows:

SkðzÞ ¼
1

k!

X∞
n¼1

zn

nk
þ
X∞
n¼2

zn
Xk−1
l¼1

Hl
n−1

nk−ll!ðk − lÞ! ; ð40Þ

where the second sum vanishes for k ¼ 1.
Next we notice that Axn ¼ xn=n, and one can write the

above expansion using the operators A and E:

SkðzÞ ¼
1

k!
ðAðk−1ÞEuÞðzÞ þ

Xk−1
l¼1

1

l!
AlESk−lðzÞ: ð41Þ

This gives a recursive definition of SkðzÞ in terms of the
operatorsA,E and function u starting with S1ðzÞ¼ðEuÞðzÞ.
At last, one proves by induction that this recursion yields

the following expression for SkðzÞ:

SkðzÞ ¼
X
jsj¼k

1

s!
ðLsuÞðzÞ; ð42Þ

which implies Eq. (7).

VI. CONCLUSIONS

In this paper we have given a generalization (4) of the
Sudakov approximation (2) valid in a wider kinematic
range. Considering the abundant literature (see, e.g.,
[6,7,8]) derived in various ways from [1] one may envisage
a scientific program trying to give a skewed version to any
result descending from Ref. [1].
Our subjective choice for the sequence of these possible

generalizations is as follows: First, one may try to study the
skewed asymptotic for non-Abelian gauge theories [6],
second, the subleading corrections [7], third, the phenom-
enology [8].
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