

Kruger 2018

Workshop on Discovery Physics at the LHC Hazyview, South Africa, December 3 - 7, 2018

LHCb Upgrades

Olar Steinkamp on behalf of the LHCb collaboration

Physik-Institut der Universität Zürich Winterthurerstrasse 190 CH-8057 Zürich olafs@physik.uzh.ch

Main goal of LHCb: search for physics "Beyond Standard Model"

Main goal of LHCb: search for physics "Beyond Standard Model"

- \rightarrow most BSM physics models predict additional heavy particles
- \rightarrow can cause additional amplitudes in processes with internal loops

6 December 2018

Kruger 2018 – LHCb Upgrades (3/52)

Main goal of LHCb: search for physics "Beyond Standard Model"

- \rightarrow most BSM physics models predict additional heavy particles
- \rightarrow can cause additional amplitudes in processes with internal loops

 \rightarrow can lead to sizeable modifications of observables (rates, angular distributions, *CP* violating phases)

Main goal of LHCb: search for physics "Beyond Standard Model"

- → most BSM physics models predict additional heavy particles
- \rightarrow can cause additional amplitudes in processes with internal loops

 \rightarrow can lead to sizeable modifications of observables (rates, angular distributions, *CP* violating phases)

Uncover deviations from Standard Model expectations by comparing its predictions with <u>precision measurements</u>

6 December 2018

Kruger 2018 – LHCb Upgrades (5/52)

6 December 2018

Kruger 2018 – LHCb Upgrades (6/52)

Most results limited by statistical uncertainty

 \rightarrow will need 4 × statistics to improve by another factor 2

 \rightarrow 15 years of data taking at current conditions

6 December 2018

Scenario

6 December 2018

Kruger 2018 – LHCb Upgrades (8/52)

Scenario

HL-LHC, ATLAS / CMS upgrades

Kruger 2018 – LHCb Upgrades (9/52)

Scenario

6 December 2018

Kruger 2018 – LHCb Upgrades (10/52)

022

Т Ś

201

CERN-LHCC

9 -01

す 01 N

CERN-LHCC

2013-021

[CERN-LHCC

2014-001

[CERN-LHCC

Status

Upgrade I: 2019/2020

→ Technical Design Reports

Upgrade II: 2030

- \rightarrow Eol, Physics Case
- \rightarrow construction underway \rightarrow feasibility studies underway

Technical Design Report

LHCb UPGRADE Opportunities in flavour physics and beyond, in the HL-LHC era Expression of Interest

6 December 2018

Kruger 2018 – LHCb Upgrades (11/52)

6 December 2018

Kruger 2018 – LHCb Upgrades (13/52)

Increase instantaneous luminosity $4 \times 10^{32} \rightarrow 2 \times 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}$

Remember: LHCb operates at lower luminosity than ATLAS/CMS

Achieved by colliding beams with small relative offset in LHCb interaction point

→ Higher luminosity for LHCb does not require any LHC upgrade

(very old plot, but illustrates the point)

Kruger 2018 – LHCb Upgrades (14/52)

Increase instantaneous luminosity $4 \times 10^{32} \rightarrow 2 \times 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}$

Abolish hardware trigger stage to fully exploit higher collision rate

- \rightarrow read out full detector at 40 MHz
 - → operate software trigger at 40 MHz input rate !

Replacement of tracking detectors

 \rightarrow finer granularity to cope with higher particle density \rightarrow new front-end electronics compatible with 40 MHz readout

Complete overhaul of readout for all detectors

LHCb Detector

6 December 2018

Kruger 2018 – LHCb Upgrades (16/52)

LHCb Upgrade I

6 December 2018

Kruger 2018 – LHCb Upgrades (17/52)

Current VELO: 21 layers of silicon micro-strips → 170 k readout channels Inside LHC vacuum chamber → active area at 8.2 mm from beam → separated from beam only by a 300 µm thin aluminium foil

Current VELO: 21 layers of silicon micro-strips → 170 k readout channels Inside LHC vacuum chamber → active area at 8.2 mm from beam → separated from beam only by a 300 µm thin aluminium foil

VELO Upgrade: 26 layers of silicon pixel detectors \rightarrow 41 million readout channels Even closer to beam \rightarrow active area 8.2 \rightarrow 5.1 mm Even less material \rightarrow thinner sensors (300 \rightarrow 200 µm) \rightarrow thinner aluminum foil (300 \rightarrow 250 µm)

Current VELO: 21 layers of silicon micro-strips → 170 k readout channels Inside LHC vacuum chamber → active area at 8.2 mm from beam → separated from beam only by a 300 µm thin aluminium foil

6 December 2018

Kruger 2018 – LHCb Upgrades (21/52)

Current: TT 4 layers of silicon micro-strips \rightarrow 183 µm pitch \rightarrow 40, 30, 20, 10 cm in length \rightarrow 143 k readout channels

Current: TT 4 layers of silicon micro-strips \rightarrow 183 µm pitch \rightarrow 40, 30, 20, 10 cm in length \rightarrow 143 k readout channels

Upgrade: UT 4 layers of silicon micro-strips, but finer granularity → 190 and 95 µm pitch → 10 and 5 cm in length → 537 k readout channels and better radiation hardness New readout chip, compatible with 40 MHz readout scheme

6 December 2018

Current: TT 4 layers of silicon micro-strips \rightarrow 183 µm pitch \rightarrow 40, 30, 20, 10 cm in length \rightarrow 143 k readout channels

Upgrade: UT 4 layers of silicon micro-strips, but finer granularity → 190 and 95 µm pitch → 10 and 5 cm in length → 537 k readout channels and better radiation hardness New readout chip, compatible with 40 MHz readout scheme

6 December 2018

6 December 2018

Kruger 2018 – LHCb Upgrades (25/52)

Current: IT & OT 3 stations with 4 layers each

→ silicon micro-strips in innermost region → straw drift tubes in outer region → 130 k + 54 k readout channels

Current: IT & OT 3 stations with 4 layers each \rightarrow silicon micro-strips in innermost region \rightarrow straw drift tubes in outer region \rightarrow 130 k + 54 k readout channels

Upgrade: SciFi

3 stations of scintillating fibres

ightarrow 2.5 m long, 250 µm diameter ightarrow read out with silicon photomultipliers ightarrow 590 k readout channels

Current: IT & OT 3 stations with 4 layers each \rightarrow silicon micro-strips in innermost region \rightarrow straw drift tubes in outer region \rightarrow 130 k + 54 k readout channels

Upgrade: SciFi

3 stations of scintillating fibres

ightarrow 2.5 m long, 250 µm diameter ightarrow read out with silicon photomultipliers ightarrow 590 k readout channels

Kruger 2018 – LHCb Upgrades (28/52)

Current: IT & OT 3 stations with 4 layers each \rightarrow silicon micro-strips in innermost region \rightarrow straw drift tubes in outer region \rightarrow 130 k + 54 k readout channels

Upgrade: SciFi

3 stations of scintillating fibres

ightarrow 2.5 m long, 250 µm diameter ightarrow read out with silicon photomultipliers ightarrow 590 k readout channels

Physics Reach

Observable	Current LHCb	LHCb 2025	Belle II	ATLAS & CMS
EW Penguins				
$\overline{R_K \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)}$	0.1 [274]	0.025	0.036	_
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ 275$	0.031	0.032	_
$R_{\phi},~R_{pK},~R_{\pi}$	_	$0.08,\ 0.06,\ 0.18$	_	_
CKM tests				
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ 136	4°	_	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.04 609	0.011	0.005	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad 44	$14 \mathrm{\ mrad}$	_	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad 49	$35 \mathrm{\ mrad}$	_	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	$154 \mathrm{\ mrad}$ 94	$39 \mathrm{\ mrad}$	—	Under study [611]
$a_{ m sl}^s$	$33 imes 10^{-4}$ 211	10×10^{-4}	_	_
$\left V_{ub} ight /\left V_{cb} ight $	6% 201	3%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	_	21% [612]
$\tau_{B^0_s \to \mu^+ \mu^-}$	22% 264	8%	_	
$S_{\mu\mu}$	_	_	_	_
$b \to c \ell^- \bar{\nu_l} \operatorname{LUV} \operatorname{studies}$				
$\overline{R(D^*)}$	0.026 215 217	0.0072	0.005	_
$R(J/\psi)$	0.24 220	0.071	_	_
Charm				
$\Delta A_{CP}(KK - \pi\pi)$	$8.5 imes 10^{-4}$ 613	$1.7 imes 10^{-4}$	$5.4 imes10^{-4}$	_
$A_{\Gamma} \ (\approx x \sin \phi)$	$2.8 imes 10^{-4}$ 240	4.3×10^{-5}	$3.5 imes 10^{-4}$	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	3.2×10^{-4}	$4.6 imes 10^{-4}$	_
$x\sin\phi$ from multibody decays	_	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{ m s}^0\pi\pi)~1.2 imes10^{-4}$	

6 December 2018

Kruger 2018 – LHCb Upgrades (32/52)

Physics Reach

Observable	Current LHCb	LHCb 2025	Belle II	ATLAS & CMS
EW Penguins				
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	_
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ 275$	0.031	0.032	_
$R_{\phi},~R_{pK},~R_{\pi}$	_	$0.08,\ 0.06,\ 0.18$	_	_
<u>CKM tests</u>				
γ , with $B_s^0 \rightarrow D_s^+ K^-$	$(^{+17}_{-27})^{\circ}$ 136	10		
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	—
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.04 609	0.011	0.005	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad 44	$14 \mathrm{\ mrad}$	_	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad 49	35 mrad	_	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	$154 \mathrm{\ mrad}$ 94	39 mrad	_	Under study 611
$a_{\rm sl}^s$	33×10^{-4} 211	10×10^{-4}	_	
$ V_{ub} / V_{cb} $	6% 201	3%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$				
$\frac{\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$	90% [264]	34%	_	21% [612]
$ au_{B^0_c o \mu^+ \mu^-}$	22% 264	8%	_	_
$S_{\mu\mu}$	_	-	-	_
$b ightarrow c \ell^- ar{ u_l} { m LUV} { m studies}$				
$\overline{R(D^*)}$	0.026 215 217	0.0072	0.005	_
$R(J/\psi)$	0.24 220	0.071	_	_
Charm				
$\Delta A_{CP}(KK - \pi\pi)$	$8.5 imes 10^{-4}$ [613]	1.7×10^{-4}	$5.4 imes10^{-4}$	_
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} 240	4.3×10^{-5}	$3.5 imes 10^{-4}$	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	3.2×10^{-4}	$4.6 imes 10^{-4}$	_
$x\sin\phi$ from multibody decays		$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{ m s}^0\pi\pi)$ 1.2×10^{-4}	_

6 December 2018

Kruger 2018 – LHCb Upgrades (33/52)

Physics Reach: Example

"Unitarity Triangle": from unitarity condition of CKM matrix

- \rightarrow all angles and sides related to observables
- → over-constrained fits test Standard Model

"Unitarity Triangle": from unitarity condition of CKM matrix

 \rightarrow all angles and sides related to observables

→ over-constrained fits test Standard Model

$$\boldsymbol{\gamma} = \boldsymbol{arg} \left(- \frac{\boldsymbol{V}_{ud} \boldsymbol{V}_{ub}^*}{\boldsymbol{V}_{cd} \boldsymbol{V}_{cb}^*} \right)$$

 \rightarrow theory uncertainty negligible

→ measurement uncertainty still significant and limited by available statistics

6 December 2018

Physics Reach

$$\boldsymbol{\gamma} = \boldsymbol{arg} \left(- \frac{\boldsymbol{V}_{ud} \, \boldsymbol{V}_{ub}^*}{\boldsymbol{V}_{cd} \, \boldsymbol{V}_{cb}^*} \right)$$

 \rightarrow theory uncertainty negligible

→ measurement uncertainty still significant and limited by available statistics

6 December 2018

Kruger 2018 – LHCb Upgrades (36/52)

→ inject small amounts of noble gas into the LHC vacuum (increase pressure from 10^{-9} to 10^{-7} mbar)

 \rightarrow main purpose: measure beam profiles for determination of instantaneous luminosity

 → inject small amounts of noble gas into the LHC vacuum
 (increase pressure from 10⁻⁹ to 10⁻⁷ mbar)

 \rightarrow main purpose: measure beam profiles for determination of instantaneous luminosity

Allows to study fixed-target collisions of proton or ion beam on gas atoms

 $\sqrt{s}_{NN} = 69 - 110 \, \text{GeV}$

6 December 2018

Kruger 2018 – LHCb Upgrades (38/52)

→ inject small amounts of noble gas into the LHC vacuum (increase pressure from 10^{-9} to 10^{-7} mbar)

 \rightarrow main purpose: measure beam profiles for determination of instantaneous luminosity

Allows to study fixed-target collisions of proton or ion beam on gas atoms

6 December 2018

Kruger 2018 – LHCb Upgrades (39/52)

→ inject small amounts of noble gas into the LHC vacuum (increase pressure from 10⁻⁹ to 10⁻⁷ mbar)

 \rightarrow main purpose: measure beam profiles for determination of instantaneous luminosity

Currently under approval: Insert storage cell upstream of VELO

 \rightarrow 10 – 100 times higher instantaneous luminosity per unit length

 \rightarrow also injection of H₂, D₂ as reference

(see also Giacomo's talk on Monday)

SMOG Physics Reach

	Current SMOG result SMOG largest sa		SMOG2 example
	pHe@86 GeV	pNe@68 GeV	pAr@115 GeV
Int. Lumi.	7.6/nb	\sim 100/nb	$\sim 10/{ m pb}$
syst. error on J/ψ x-sec.	7%	6 - 7%	3 - 4 %
J/ψ yield	400	15k	3.5M
D^0 yield	2000	100k	35M
Λ_c yield	20	1k	350k
ψ' yield	negl.	150	35k
$\Upsilon(1S)$ yield	negl.	10	3k
DY $\mu^+\mu^-$ yield	negl.	10	3k
(5 < M < 9 GeV)			

→ list of topics far from exhaustive
 → extrapolations based on crude estimates
 → expect significant reduction in systematics from better luminosity determination

Increase instantaneous luminosity from 2×10^{33} to $1.5 - 2 \times 10^{34}$ cm⁻² s⁻¹

- \rightarrow 55 pp interactions /crossing
- \rightarrow 1500–3000 charged particles

Detectors with even finer granularity and with excellent timing resolution

- \rightarrow assign objects to the correct pp collision
- \rightarrow in particular, assign *b* decay vertex to its correct production vertex

Radiation hardness !

Examples of detector developments VELO: silicon pixels with timing resolution \rightarrow LGAD (Limited Gain Avalanche Detectors) Tracking: central region with silicon \rightarrow HV-MAPS (Monolithic Pixels) Muon detectors: finer granularity $\rightarrow \mu$ -RWELL

6 December 2018

Kruger 2018 – LHCb Upgrades (45/52)

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II
EW Penguins				10
$\overline{R_K (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007
R_{K^*} $(1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ 275$	0.031	0.032	0.008
$\hat{R_{\phi}}, \hat{R_{pK}}, \hat{R_{\pi}}$		$0.08,\ 0.06,\ 0.18$	_	0.02,0.02,0.05
<u>CKM tests</u>				
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	0.35°
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.04 609	0.011	0.005	0.003
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad 44	$14 \mathrm{\ mrad}$	—	$4 \mathrm{mrad}$
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	$170 \mathrm{\ mrad} 49$	$35 \mathrm{mrad}$	—	$9 \mathrm{mrad}$
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	39 mrad	—	$11 \mathrm{\ mrad}$
$a_{ m sl}^s$	33×10^{-4} 211	10×10^{-4}	—	$3 imes 10^{-4}$
$ ec{V}_{ub} / V_{cb} $	6% 201	3%	1%	1%
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% 264	34%	_	10%
$ au_{B_s^0 o \mu^+ \mu^-}$	22% 264	8%	-	2%
$S_{\mu\mu}$		_	—	0.2
$b ightarrow c \ell^- ar{ u_l} { m LUV} { m studies}$				
$\overline{R(D^*)}$	0.026 $[215, 217]$	0.0072	0.005	0.002
$R(J/\psi)$	0.24 220	0.071	—	0.02
Charm				
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	1.7×10^{-4}	$5.4 imes10^{-4}$	$3.0 imes 10^{-5}$
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} 240	4.3×10^{-5}	$3.5 imes 10^{-4}$	$1.0 imes 10^{-5}$
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	3.2×10^{-4}	$4.6 imes 10^{-4}$	$8.0 imes 10^{-5}$
$x\sin\phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi) \ 1.2 \times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$

6 December 2018

Kruger 2018 – LHCb Upgrades (46/52)

Summary

LHCb tests Standard Model by performing precision measurements of observables with good sensitivity to BSM physics

 \rightarrow sensitivity to higher mass scales than direct searches

Interesting hints (see Katharina's talk on Monday) but need more statistics to consolidate

\rightarrow UPGRADES:

Upgrade 1 in LS3 (starting now):

- \rightarrow factor 5 in luminosity
- \rightarrow full software trigger
- \rightarrow detectors with finer granularity
- \rightarrow electronics with 40 MHz readout

Upgrade 2 in LS5 (around 2030):

 \rightarrow another factor 10 in luminosity \rightarrow detectors with 4D resolution (space and timing) \rightarrow radiation hardness This is the end

But we'll be back (even) stronger

Upgrade Trigger

6 December 2018

Kruger 2018 – LHCb Upgrades (50/52)

Upgrade Ib: Magnet Tracking

6 December 2018

LHCh

Kruger 2018 – LHCb Upgrades (51/52)

Upgrade Ib: Magnet Tracking

6 December 2018

Kruger 2018 – LHCb Upgrades (52/52)

Upgrade Ib: Downstream Tracking

Upgrade Ib: TORCH

"Time Of interally Reflected CHerenkov light"
→ 250 cm long, 1 cm thin slabs of quartz glass
→ PID below 10 GeV/c
→ time resolution of ≈ 15 ns per track

Kruger 2018 – LHCb Upgrades (54/52)

6 December 2018

Kruger 2018 – LHCb Upgrades (55/52)