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1 Introduction

Wormholes are interesting topological spacetime configurations that over the years have in-

spired not only the scientific literature. The original idea is usually traced back to the work

by Einstein and Rosen [1], even if the interest in traversable wormholes as viable speculative

shortcuts connecting different points in spacetime, rekindled only after the work by Morris

and Thorne [2] (a chronological presentation of the early contributions can be found in [3]).

Assuming a spherically symmetric spacetime geometry, they pointed out the need of some

exotic form of matter with a non-standard equation of state to sustain the wormhole config-

uration and keep the wormhole throat open. Indeed, it is well known that at classical level

traversable wormholes are forbidden in General Relativity (GR) if the Null Energy Condi-

tion (NEC) is satisfied. One way to overcome this obstruction is to consider systems where

quantum effects compete with the classical ones in a controlled manner [3–7], e.g. in the case

of charged massless fermions giving rise to a negative Casimir-like energy [8]. Alternatively,

one can consider additional fields with a non-trivial background profile which serves as a

source of violation of the NEC already at classical level. Among the various microscopic

candidates one could consider, arguably the simplest one is a single scalar field. Violations

of the NEC are often associated with problematic instabilities [9, 10]. This is confirmed by

several explicit examples [10–19] that reveal an instability — usually of the ghost-type —

in the even sector for perturbations around the wormhole. These instabilities however are

not unavoidable, as was shown in recent years in the context of FLRW cosmology [20, 21].
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Emboldened by these recent results, in this paper we will reconsider the stability of

wormhole solutions in theories with a single scalar field coupled to gravity. More precisely,

we will discuss the linear stability of such solutions both in the odd and in the even sector,

focusing mostly on the positivity of the kinetic energy. We will also briefly comment on

tachyonic instabilities in the odd sector. To pursue such a program, we will use the Effective

Field Theory (EFT) for static, spherically symmetric spacetimes recently introduced in [22].

This framework has the advantage of being completely model-independent: it does not rely

on any specific assumption regarding the explicit form of the covariant Lagrangian that

defines the microscopic theory. This allows us to capture in general terms the origin of

the ghost instability affecting the wormhole solutions found in the context of Horndeski

theories [17–19]1 and show that such a pathology can be prevented by considering theories

beyond the Horndeski class. Our work is a first step towards a more complete classification

of the scalar-tensor theories that admit fully stable wormhole solutions.

The rest of this paper is organized as follows. In section 2 we briefly review the EFT

for perturbations introduced in [22]. We then discuss the background Einstein equations

for a generic wormhole metric in section 3, and study the stability for both the even and

odd sector in section 4 before concluding in section 5. Additional technical details can be

found in the appendices.

Conventions. Throughout this paper we will work in units such that c = ~ = 1 and

adopt a “mostly plus” metric signature. We will denote the scalar field with Φ, to avoid

any potential confusion with the angular variable φ.

Note added. While this paper was being finalized, we became aware of [25], which

discusses an explicit example in the class of beyond-Horndeski theories that can support

wormhole solutions that are stable, a conclusion that is consistent with our findings. How-

ever, our result indicates that stable wormhole solutions can be generically obtained without

any fine-tuning, unlike in the explicit example discussed in [25].

After the submission of the first version of our paper, ref. [26] appeared, fixing the

error of [25] and the wrong conclusion about the fine tuning. Finally, the results of [26]

fully agree with our findings.

2 Effective theory for wormhole perturbations

In order to address the issue of stability of wormhole solutions in scalar-tensor theories, we

will work within the EFT framework developed in [22]. There, we derived an effective action

for perturbations around static, spherically symmetric backgrounds, which is valid provided

the background configuration of the scalar field has a non-trivial radial profile. When that

is the case, one can choose to work in “unitary gauge”, where the scalar fluctuations vanish.

The effective action can then be expressed solely in terms of metric fluctuations, and up

1These no-go theorems are the counterparts of the ones originally derived in the context of FLRW

cosmologies by [23, 24].
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to second order in derivatives and perturbations it reads2

S =

∫

d4x
√
−g

[

1

2
M2

1 (r)R− Λ(r)− f(r)grr − α(r)K̄µνK
µν

+M4
2 (r)(δg

rr)2 +M3
3 (r)δg

rrδK +M2
4 (r)K̄µνδg

rrδKµν

+M2
5 (r)(∂rδg

rr)2 +M2
6 (r)(∂rδg

rr)δK +M7(r)K̄µν(∂rδg
rr)δKµν +M2

8 (r)(∂aδg
rr)2

+M2
9 (r)(δK)2 +M2

10(r)δKµνδK
µν +M11(r)K̄µνδKδKµν +M12(r)K̄µνδK

µρδKν
ρ

+ λ(r)K̄µρK̄
ρ
ν δKδKµν +M2

13(r)δg
rrδR̂+M14(r)K̄µνδg

rrδR̂µν + . . .

]

, (2.1)

where Kµν = K̄µν + δKµν is the extrinsic curvature of surfaces of constant radius (K̄µν

denoting its background value, and δKµν fluctuations around it).

The merit of the effective description (2.1) is that it is completely model independent,

i.e. it does not make any assumption about the explicit form of the background solution or

the covariant action describing the microscopic theory. The structure of the operators that

enter the EFT (2.1) is dictated only by the spontaneous breaking of r-translations due to

the radial profile Φ̄(r) of the scalar field. Any scalar-tensor theory in unitary gauge can be

matched onto our effective action (2.1) with an appropriate choice of the EFT coefficients.

In the absence of a specific model to match onto, though, these coefficient can be treated

as arbitrary functions of the radial coordinate.

Demanding that the background metric is a solution to Einstein equations, one can

derive some constraints among the first few EFT coefficients in the effective action (see

below) [22]. These constraints are equivalent to the requirement that the action contains

no tadpoles. In the absence of additional matter fields, one can also perform a conformal

redefinition of the metric to set M1(r) ≡ MPl. This simplifies considerably the effective

action for perturbations as well as the constraints among the EFT coefficients.

3 Wormhole background

We will now apply the general framework introduced above to the particular case of asymp-

totically flat Lorentzian wormholes. We will choose to work with a radial coordinate such

that the background metric takes the form

ds2 = −a2(r)dt2 + dr2 + c2(r)
(

dθ2 + sin2 θ dφ2
)

, (3.1)

where the functions a(r) and c(r) obey the inequalities

a(r) ≥ amin > 0 , c(r) ≥ cmin > 0 , (3.2)

and satisfy the asymptotic boundary conditions

a → 1 , c → ±r , for r → ±∞ . (3.3)

2To be precise, the action (2.1) contains all the terms with at most two derivatives that contribute at

quadratic order in perturbations. However, it also contains some terms of higher order in perturbations,

which will not play any role in our discussion.
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The quantity cmin can be thought of as the radius of the wormhole throat. These are the

minimal requirements that a wormhole solution should satisfy. Additional criteria must be

satisfied in order for such a solution to be truly traversable.3

Notice that the condition (3.2) necessarily implies a violation of the null energy con-

dition at the background level. This can be easily seen by considering the null vector

kµ = (a, 1, 0, 0) and calculating

Tµνk
µkν = M2

PlGµνk
µkν = −2M2

Pl

a

c

(

c′

a

)′
, (3.4)

where Tµν is the background energy momentum tensor associated with the last three tad-

poles in the first line of eq. (2.1) — see [22] for the explicit expression. From the result (3.4),

one infers that the null energy condition Tµνk
µkν ≥ 0 is violated at least in a neighborhood

of the wormhole throat, where by definition c′ = 0 and c′′ > 0.

Demanding that the metric (3.1) satisfies the background Einstein equations,

M2
PlGµν = Tµν , amounts to imposing the following relations among the EFT coefficients

α(r), f(r) and Λ(r):

a

[(

a′

a
− c′

c

)

α

a

]′
+

(

a′′

a
− c′′

c
+

a′c′

ac
− c′2

c2
+

1

c2

)

M2
Pl = 0 , (3.5)

f(r) =

(

a′c′

ac
− c′′

c

)

M2
Pl −

(

3a′2

2a2
− a′c′

ac
+

c′2

c2
− a′′

2a

)

α+
a′

2a
α′ , (3.6)

Λ(r) = −
(

c′′

c
+

a′c′

ac
+

c′2

c2
− 1

c2

)

M2
Pl −

(

3a′2

2a2
− a′c′

ac
+

c′2

c2
− a′′

2a

)

α+
a′

2a
α′ . (3.7)

Eq. (3.5) is a first order differential equation for α(r) with r-dependent coefficient, while

eqs. (3.6)–(3.7) fix f(r) and Λ(r) in terms of α(r) and the background metric. Notice that,

in the particular class of theories where α ≡ 0, eq. (3.5) reduces to a consistency relation

for a(r) and c(r), which therefore are no longer independent:

a′′

a
− c′′

c
+

a′c′

ac
− c′2

c2
+

1

c2
= 0 . (3.8)

4 Stability of wormhole solutions

In this section, we assume that the underlying scalar-tensor theory admits a wormhole

solution described by the background metric (3.1) satisfying the conditions (3.2) and (3.3),

and we investigate the stability under perturbations. To this end, we expand the effec-

tive theory (2.1) up to quadratic order and study the dispersion relations of the physical

fluctuations. The present discussion does not have the ambition to be a comprehensive

classification of the operators that may or may not allow stable wormhole configurations.

Instead, we are interested in showing that (i) the action (2.1) can be used to understand

in general terms the origin of the pathology affecting many examples in the literature, and

3For instance, requiring that tidal effects on the in-falling object are not too large may result in additional

constraints on the wormhole metric functions and on the maximum speed of the traveller [3].
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(ii) that it can be used to identify at least one of the operators among those listed in (2.1)

that allows to evade the no-go restriction. As we shall see later on, the argument closely

resembles the one for FLRW spacetimes [20, 21, 23, 24]. Motivated by these results, we

will consider a very small subset of the terms appearing in (2.1), and focus our attention

on one particular two-derivative operator in the effective action (2.1), namely δgrrδR̂. To

be more precise, we will work with the following effective action:

S(2)=

∫ √
−g

[

M2
Pl

2
R−Λ(r)−f(r)grr+M4

2 (r)(δg
rr)2+M3

3 (r)δg
rrδK+M2

13(r)δg
rrδR̂

]

.

(4.1)

Two comments are in order at this point. First, we should stress that the choice (4.1)

it is not simply dictated by reasons of simplicity. In fact, some “respectable” covariant the-

ories belonging to the class of quartic beyond-Horndeski theories [27, 28] reduce to (4.1) in

unitary gauge δΦ ≡ 0, as shown explicitly in appendix A. Second, we emphasize that setting

to zero all the other terms in (2.1) can be achieved without fine-tuning. It was in fact proven

in [29, 30] that a weakly broken galileon symmetry protects these couplings against large

quantum corrections. In other words, any other operator in (2.1) is generated at quantum

level at an energy scale that is parametrically larger than the one defining the tree-level

interactions, allowing to set their couplings to zero in any practical application [29, 30]. We

can therefore safely assume that quartic beyond-Horndeski operators — see eq. (A.1) in ap-

pendix A— are the only ones that significantly contribute at the second order in derivatives.

The generalization of our analysis to cases that include operators beyond the ones con-

tained in (4.1) is straightforward and beyond the scope of the present discussion. Instead,

in the following we will use the effective action (4.1) to show that the wormhole background

is always affected by a ghost instability if M2
13 = 0 (in which case describes a theory in

the Horndeski class [31–33]). By contrast, we will see that when M2
13 6= 0 it is possible to

avoid ghost and gradient instabilities alike.

Given the symmetries of the background, the metric perturbations can be decomposed

into tensor harmonics [34] and divided into two sectors, based on whether they are even

or odd under parity. These two sectors are decoupled at linear order and can be studied

separately.4 Although the sector that is typically affected by ghost-like instabilities in

Horndeski theories is the even one [17–19], for the sake of completeness we will start by

briefly reviewing the stability properties of the odd sector.

4.1 Odd sector

In this section, we will consider the odd sector, which in our case contains a single propa-

gating degree of freedom. Following the procedure outlined in [34], one can write the most

4We are assuming here that parity is not broken neither explicitly nor spontaneously at the level of the

fundamental theory.
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general odd-parity metric perturbation as:

δgoddµν =











0 0 −h0 csc θ∂φ h0 sin θ∂θ
0 0 −h1 csc θ∂φ h1 sin θ∂θ

−h0 csc θ∂φ −h1 csc θ∂φ
1
2h2 csc θX −1

2h2 sin θW
h0 sin θ∂θ h1 sin θ∂θ −1

2h2 sin θW −1
2h2 sin θX











Yℓm(θ, φ)e−iωt , (4.2)

where h0, h1, h2 are functions of r, and where we have defined

X = 2(∂θ∂φ − cot θ∂φ) ,

W = (∂θ∂θ − cot θ∂θ − csc2 θ∂φ∂φ) .
(4.3)

Then, by performing an odd gauge transformation one can set h2 = 0. This is commonly

referred to as the Regge-Wheeler gauge (see section 5 of [22] for further details).

As shown in [22], only the first three operators in the effective action (4.1) affect the

odd sector, which is therefore the same as the one studied for instance in [11, 35] by other

methods. This sector is known to be stable, but will briefly review the main results within

our formalism for completeness.

The EFT coefficients f(r) and Λ(r) are unambiguously determined by the Einstein

equations in terms of a(r) and c(r) — see eqs. (3.6) and (3.7). Therefore, the dynamics

of the parity-odd sector is completely fixed once the background metric is specified. As

discussed in [11, 35], odd perturbations with ℓ = 0 do not exist, and with ℓ = 1 are pure

gauge in the non-rotating case. The quadratic action for parity-odd modes with ℓ ≥ 2 can

be easily found by introducing an auxiliary field Ψ and integrating both h0 and h1 [35].

The kinetic term in the odd sector of (4.1) then coincides with the one in GR, and therefore

neither ghost nor gradient instabilities are present.

Additionally, one can derive an equation of motion for h1 in order to investigate the

absence of tachyonic instabilities. After a change of coordinate of the form dr̃ = dr/a(r)

and the field redefinition

Ψ(r̃(r)) ≡ exp

[∫ r

rc

(

a′(l)

a(l)
− c′(l)

c(l)

)

dl

]

h1(r) , (4.4)

for some fiducial rc, the equations of motion for the physical mode can be conveniently

written in the form of a Schrödinger-like equation [11, 22]:

[

d2

dr̃2
+ ω2

]

Ψ(r̃) = V (r̃)Ψ(r̃) (4.5)

where the potential V (r̃(r)) reads

V (r̃(r)) = −a2
[

c′′(r)

c(r)
− 2

c′2(r)

c2(r)
+

a′(r)c′(r)

a(r)c(r)
− (ℓ+ 2)(ℓ− 1)

c2(r)

]

. (4.6)

After a quick inspection of the expression (4.6), it is not hard to find explicit backgrounds

such that the potential is manifestly positive everywhere, guaranteeing that the odd sector

is also free of tachyonic instabilities at linear order. Indeed, let us consider for instance the

– 6 –
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case of a wormhole profile with a ≡ 1 and c2(r) = r2 + c2min [2], which trivially fulfils the

condition (3.8). Then, the potential (4.6) takes on the form

V (r̃(r)) = ℓ(ℓ+ 1)− 3
c2min

(r2 + c2min)
, (4.7)

which is positive definite since ℓ ≥ 2.

4.2 Even sector

Let us now turn our attention to the even sector. To this end, we parametrize the metric

perturbations in the unitary gauge δΦ ≡ 0 as follows [22]:

δgevenµν =











a2H0 H1 H0∂θ H0∂φ
H1 H2 H1∂θ H1∂φ
H0∂θ H1∂θ c2 (K +G∇θ∇θ) c2G∇θ∇φ

H0∂φ H1∂φ c2G∇φ∇θ c2
(

sin2 θK +G∇φ∇φ

)











Yℓm(θ, φ) , (4.8)

where H0, H1, H2, H1, H2 K and G are functions of (t, r, ℓ,m), and ∇θ,φ are covariant

derivatives on the 2-sphere of radius one given by the following explicit expressions:

∇θ∇θ = ∂2
θ , ∇φ∇φ = ∂2

φ + sin θ cos θ ∂θ , ∇θ∇φ = ∇φ∇θ = ∂θ∂φ − cos θ

sin θ
∂φ . (4.9)

The spherical symmetry of the background guarantees that modes with different ℓ, m and

parity are decoupled at linear order. Notice that the gauge fixing in the cases ℓ = 1

and ℓ = 0 deserve a separate discussion. For this reason, since the argument on the

stability/instability of the wormhole solution does not depend on ℓ, we decide to focus in

the present section only on modes with ℓ ≥ 2, collecting in appendix C all the expressions

for ℓ = 1 and ℓ = 0 for the sake of completeness.

In the ℓ ≥ 2 case, the remaining gauge freedom in (4.8) can be removed by fixing the

residual temporal and angular diffeomorphisms in such a way that (see section 6 of [22])

H0 = G = 0 , (4.10)

which we will refer to as the Regge-Wheeler-unitary gauge. Thus, upon substituting into

the action (4.1) and expanding up to quadratic order in δgµν , the Lagrangian for the

physical modes can be found by following the steps outlined below (see also [36]).

After straightforward integrations by parts, it becomes manifest that the perturbation

H0 is a Lagrange multiplier. Equating its coefficient to zero yields the following condition:

H2

[

ca′c′

2a
+

cc′′

2
+

c′2

2
+

ℓ(ℓ+ 1)

4
+

M3
3

(

c2a′ + 2acc′
)

2M2
Pla

+
c2(M3

3 )
′

2M2
Pl

− ℓ(ℓ+ 1)M2
13

M2
Pl

]

+H ′
2

(

cc′

2
+

c2M3
3

2M2
Pl

)

+
1

4

(

ℓ2 + ℓ− 2
)

K − 3

2
cc′K′ − 1

2
c2K′′ (4.11)

−H1
ℓ(ℓ+ 1)c′

2c
− 1

2
ℓ(ℓ+ 1)H′

1 = 0 .

– 7 –
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Then, using the field redefinition

H2 ≡
(

cc′

2
+

c2M3
3

2M2
Pl

)−1 [

ψ +
1

2
c2K′ +

1

2
ℓ(ℓ+ 1)H1

]

, (4.12)

eq. (4.11) becomes an algebraic equation for H1, which can be solved in terms of K, ψ and

their derivatives.

Furthermore, one can integrate out H1 upon using its equation of motion, which reads

1

2
ℓ(ℓ+ 1)H1 + Ḣ2

(

cc′ +
c2M3

3

M2
Pl

)

+ K̇
(

c2a′

a
− cc′

)

− c2K̇′ − 1

2
ℓ(ℓ+ 1)Ḣ1 = 0 , (4.13)

which can be solved algebraically for H1. Plugging the field redefinition (4.12) together

with the solutions for H1 and H1 into the effective theory (4.1) and eliminating higher

derivative terms that may be present through suitable integrations by parts, one finds that

the quadratic action for the physical even parity modes takes the form

S
(2)
even,m=0 =

M2
Pl

2

∑

ℓ≥2

∫

dtdr
(

Aijχ̇iχ̇j − Bijχ′
iχ

′
j − Cijχiχ

′
j −Dijχiχj

)

, (4.14)

where χ ≡ (ψ,K) and where we have restricted our attention to the modes with m = 0, in

such a way that the fields’ perturbations are real. This is possible in general because the

spherical symmetry of the background guarantees that modes with different values of m

will satisfy the same equations of motion. The explicit expressions for A and B are:

Aψψ = −8a

[

M2
Plc

′2
((

−ℓ2−ℓ+2
)

M2
Pl+4ℓ(ℓ+1)M2

13

)

+M2
Plc
(

4M3
3 c

′+ℓ(ℓ+1)
(

c′′
(

M2
Pl−4M2

13

)

+4c′(M2
13)

′
))

+c2
(

4ℓ(ℓ+1)M3
3 (M

2
13)

′+ℓ(ℓ+1)
(

M2
Pl−4M2

13

)

(M3
3 )

′+2(M3
3 )

2
)

− ca′

a
ℓ(ℓ+1)

(

M2
Pl−4M2

13

)(

M2
Plc

′+cM3
3

)

]

×
[

ℓ(ℓ+1)
(

2ca′
(

M2
Plc

′+cM3
3

)

+a
(

M2
Pl

(

−2c′2+ℓ2+ℓ
)

−2cM3
3 c

′−4ℓ(ℓ+1)M2
13

))2
]−1

, (4.15a)

AψK =AKψ = −
2c
(

ℓ2+ℓ−2
)(

M2
Plc

′+cM3
3

)

ℓ(ℓ+1)
(

2ca′
(

M2
Plc

′+cM3
3

)

+a
(

M2
Pl (−2c′2+ℓ2+ℓ)−2cM3

3 c
′−4ℓ(ℓ+1)M2

13

)) , (4.15b)

AKK = c2
ℓ2+ℓ−2

2aℓ(ℓ+1)
, (4.15c)

Bψψ = −8a3
[

ca′c′

a
ℓ(ℓ+ 1)M4

Pl +
(

ℓ2 + ℓ− 2
)

M4
Plc

′2 − c
(

ℓ(ℓ+ 1)M4
Plc

′′ − 2
(

ℓ2 + ℓ− 2
)

M2
PlM

3
3 c

′
)

−2c2
((

−2ℓ2 − 2ℓ+ 1
)

(M3
3 )

2 + 2ℓ(ℓ+ 1)M2
PlM

4
2

)

]

×
[

ℓ(ℓ+ 1)
(

2ca′
(

M2
Plc

′ + cM3
3

)

+ a
(

M2
Pl

(

−2c′2 + ℓ2 + ℓ
)

− 2cM3
3 c

′ − 4ℓ(ℓ+ 1)M2
13

))2
]−1

, (4.16a)

BψK = BKψ = a2AψK , (4.16b)

BKK = a2AKK . (4.16c)

Diagonalizing the matrix c2r = 1
a2
A−1B with A and B given in (4.15) and (4.16), one can

easily compute the speeds of propagation along the radial direction:

c2r,1 = a
M2

Pl

(

a′c′

ac
− c′′

c

)

− 4M4
2 + 3

(M3
3 )

2

M2
Pl

(

M3
3 +M2

Pl
c′

c

)2
[

∂
∂r

(

ac(M2
Pl−4M2

13)
M3

3 c+M2
Plc

′

)

− a

] , c2r,2 = 1 . (4.17)
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We do not report here the expressions for C and D, since they are quite involved and

irrelevant for the purposes of discussing ghost/gradient instabilities. Instead, in order to

discuss the absence of ghost and gradient instabilities along the radial direction, we focus

on the kinetic matrices A and B, and demand that they are positive definite. Looking

more closely at the expressions (4.15) and (4.16), one infers immediately that, since ℓ ≥ 2,

AKK > 0 and BKK > 0. Thus, given that A and B are symmetric, the positive definiteness

simply follows from the positivity of their determinants, which read5

det(A)= (4.18)

=
4c2

a

(ℓ2+ℓ−2)
ℓ(ℓ+1)

(

M2
Plc

′+cM3
3

)2

[

2ca′
(

M2
Plc

′+cM3
3

)

+a
(

M2
Pl (ℓ

2+ℓ−2c′2)−2cM3
3 c

′−4ℓ(ℓ+1)M2
13

)]2

[

∂

∂r

(

ac
(

M2
Pl−4M2

13

)

M3
3 c+M2

Plc
′

)

−a

]

> 0 ,

det(B)=
4a4c4

(ℓ2+ℓ−2)
ℓ(ℓ+1)

[

M4
Pl

(

a
′
c
′

ac
− c

′′

c

)

−4M2
PlM

4
2 +3(M3

3 )
2
]

[

2ca′
(

M2
Plc

′+cM3
3

)

+a
(

M2
Pl (ℓ

2+ℓ−2c′2)−2cM3
3 c

′−4ℓ(ℓ+1)M2
13

)]2
> 0 . (4.19)

As already known in the context of Horndeski theories, there is no particular obstruction

in fulfilling the second condition (4.19): one can choose for instance M4
2 (r) in such a way

that eq. (4.19) is satisfied for all r, preventing the occurrence of gradient instabilities along

the radial direction.

Let us now focus on the positivity condition (4.18) for the kinetic matrix. In par-

allel with the considerations outlined in [20, 21] in the context of geodesically complete

cosmologies, it is convenient to introduce the variable

Y ≡
ac

(

M2
Pl − 4M2

13

)

M3
3 c+M2

Plc
′ , (4.20)

in such a way that eq. (4.18) now reads

Y ′(r) > a(r) > 0 . (4.21)

From eq. (4.21) one infers, first of all, that Y has to be a monotonically growing function

of r. Furthermore, integrating in r,

Y (r+)− Y (r−) >

∫ r+

r−

dr a(r) . (4.22)

The asymptotic conditions (3.3) make the integral on the r.h.s. of (4.22) divergent on both

ends when r± → ±∞. Thus, the inequality (4.22) forces Y (r± → ±∞) → ±∞. Together

with the monotonicity (4.21), this implies that, barring discontinuities, the function Y

must vanish at a single point r0, corresponding to

M2
13(r0) =

M2
Pl

4
. (4.23)

It should be clear now that, without the operator δgrrδR̂ (i.e. if M2
13 = 0), the function

Y (r) would be nonzero for all r (see eq. (4.20)), invalidating the inequality (4.22) at least

5As a check, one can notice that the ratio det(B)

a2 det(A)
coincides with the product of the two eigenvalues

in (4.17).
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in a certain interval and resulting in an unavoidable ghost-like instability in agreement

with [17, 18].6 Thus, in order to find stable wormhole solutions one needs to go beyond

the standard Horndeski class and consider e.g. theories of the type (4.1).

5 Conclusions and outlook

Taking advantage of the effective description introduced in [22] for perturbations around

spherically symmetric backgrounds, we have reconsidered the no-go theorems [17–19] that

prevent the existence of stable wormhole solutions in the case of Horndeski theories, cap-

turing in general terms the origin of the pathology. Moreover, we have identified at least

one operator in the unitary gauge that is necessary to overcome the issue, emphasizing

that it belongs to the class of the so-called beyond-Horndeski theories [27, 28].

The analysis has worked in parallel with the one presented in [20, 21] for geodesically

complete FLRW backgrounds. In both cases a linearly stable NEC-violating geometry can

be obtained only in a theory with higher derivative equations of motion which, in spite

of that, does not propagate any additional pathological degree of freedom. The crucial

question is whether such a peculiar dynamics, that seems well-defined and healthy from an

EFT point of view, can be UV completed in a Lorentz invariant theory with an S-matrix

that satisfies the standard analyticity conditions.

More prosaically, it would be interesting to find an explicit example of covariant La-

grangian that allows for a wormhole solution of the form we are considering and, at the

same time, generates the quadratic operator in the EFT for perturbations that is needed

for stability. This will be presented in a forthcoming paper.
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A Quartic beyond-Horndeski in unitary gauge

In this section we expand in perturbations the unitary gauge quartic beyond-Horndeski

Lagrangian [27, 28] and make use of the conformal and disformal transformations [37] briefly

reviewed in appendix B below to simplify the final expression. In particular, we shall see

that a disformal transformation is enough to remove both the combination δK2 − (δKµν)
2

and the operator δNδKµν , while a conformal transformation can be used to recover the

Einstein frame. The starting point is an action in the form

S =

∫

d4x
√
−g

[

A(r,N)R̂+B(r,N)
(

K2 −KµνK
µν
)

]

, (A.1)

6It is worth noticing that the inclusion of additional matter fields would not change this result. See the

discussion in [20] about this point.
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where A and B are arbitrary functions of the radial coordinate r and the lapse N = 1√
grr

.

Let us consider a field redefinition of the type (B.1) in appendix B where Ω is taken to be

a function of r only. The transformation laws (B.3)–(B.4) take on the form

Ka
b 7→ K̃a

b =
N

Ñ

(

Ka
b +

Ω′

NΩ
δab

)

, R̂ 7→ ˜̂
R = Ω−2R̂ , (A.2)

where the latin indices a, b, . . . run over the (t, θ, φ)-components. Then the full action (A.1)

transforms as

S =

∫

d4x
√
−gΩ2

√

1 +
Γ

Ω2

[

Ã(r,N)R̂ (A.3)

+
1

1 + Γ
Ω2

B̃(r,N)

(

K2 −KµνK
µν +

4Ω′

NΩ
K +

6Ω′2

N2Ω2

)]

.

Expanding now in perturbations up to quadratic order, we find

S(2) =

∫

d4x
√
−gΩ2

[
√

1 +
Γ

Ω2
Ã(r, N̄)R̂+

B̃(r, N̄)
√

1 + Γ
Ω2

(

K2 −KµνK
µν
)

(A.4)

+

(
√

1 +
Γ

Ω2
Ã

)

,N

δNδR̂− 2





B̃
√

1 + Γ
Ω2





,N

K̄µνδNδKµν + . . .

]

,

where in the dots we are dropping terms that contribute to the operators δN , δN2, δNδK

and the tadpole Λ(r), which are not interesting for the purpose of this section. Notice that

in (A.4) every coefficient should be read of as being computed on the background.

Now it is clear from (A.4) that one is free to choose Ω(r), Γ(r, N̄) and Γ,N (r, N̄) in

such a way that

Ω2(r)Ã(r, N̄)

√

B̃(r, N̄)

Ã(r, N̄)
=

M2
Pl

2
, (A.5)

Γ(r, N̄) = Ω2(r)

[

B̃(r, N̄)

Ã(r, N̄)
− 1

]

, Γ,N (r, N̄) =
2Ω2(r)

Ã(r, N̄)
B̃,N , (A.6)

so that the coefficients of both δK2− (δKµν)
2 and δNδKµν are set to zero, while restoring

the Einstein frame. Therefore, the final result has the form (4.1).

We conclude this section commenting on the fact that, by contrast, one can not remove

in full generality the operator δNδR̂.7 To illustrate the argument we start from the action in

the form (4.1) and consider a pure disformal transformation (Ω ≡ 1) such that Γ(r, N̄) ≡ 0.

This time we shall try to fix Γ,N (r, N̄) in such a way to set to zero the coefficient of δNδR̂

instead of δNδKµν . After a straightforward calculation, one finds that

M2
13(r) 7→ M̃2

13(r) =
M2

13(r) +
M2

Pl
8 N̄3Γ,N (r, N̄)

1 + 1
2N̄

3Γ,N (r, N̄)
. (A.7)

7That this has to be the case can be also inferred from the analysis of section 4, which revealed that

the stability of the wormhole solution, which is a frame-independent property, crucially depends on the

presence of the operator δNδR̂.

– 11 –



J
H
E
P
0
1
(
2
0
1
9
)
2
2
1

Setting M̃2
13 ≡ 0 in the new frame is equivalent to choosing

1

2
N̄3Γ,N (r, N̄) = −M2

13(r)

M2
Pl/4

. (A.8)

Now, according to the discussion of section 4, a necessary condition to avoid ghost in-

stabilities in the class of theories (4.1) is that the coefficient of δgrrδR̂ equals M2
Pl/4 at

a certain distance — see eq. (4.23). In other words, there must exist a point r0 where

the r.h.s. of eq. (A.8) is −1, which in turn makes the transformation itself ill defined, as

clear from eq. (A.7). As a result, in agreement with the findings of section 4, one can

not remove δgrrδR̂ everywhere along the trajectory of the wormhole background solution.

Notice that there exists an analogous argument in the context of geodesically complete

FLRW spacetimes [20].

B Conformal and disformal transformations

Let us consider now the following field redefinition [37]:

gµν 7→ g̃µν = Ω2(r,N)gµν + Γ(r,N)nµnν , (B.1)

where Ω and Γ are functions of the coordinate r and the lapse N = 1√
grr

. Denoting with

latin indices a, b, . . . the (t, θ, φ)-components, the relevant geometric quantities transform

accordingly as follows:8

Na 7→ Ña = Ω2Na , Na 7→ Ña = Na , N2 7→ Ñ2 = (Ω2 + Γ)N2 , (B.2)

Ka
b 7→ K̃a

b =
N

Ñ
(Ka

b + δabNgrµ∂µ lnΩ)

=
N

Ñ

[

Ka
b +

δab
NΩ

(

Ω,r +Ω,N

(

N ′ −Na∂aN
))

]

, (B.3)

R̂ 7→ ˜̂
R = Ω−2

(

R̂− 4DaD
a lnΩ− 2∂a lnΩ ∂a lnΩ

)

, (B.4)

√
−g 7→

√

−g̃ =
√
−gΩ3

√

Ω2 + Γ , (B.5)

while any generic scalar function transforms as f(r,N) 7→ f̃(r,N) ≡ f(r, Ñ(r,N)). A rapid

inspection of the previous expressions reveals that the transformation (B.1) is ill defined

on the domain where Γ = −Ω2, which corresponds to a singularity in the metric tensor.

Thus, we will assume in the following that Γ 6= −Ω2 everywhere.

C More on stability conditions

In this appendix we complete the study of the wormhole’s stability by considering pertur-

bations with ℓ = 1 and ℓ = 0, which have been disregarded in the main text. As we shall

see, one recovers the same condition (4.22) for the absence of ghost instabilities.

8For FLRW backgrounds see, for instance, section 3.4 of [38].
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Stability conditions for modes with ℓ = 1. Plugging the explicit expressions for

the spherical harmonics Y1m (with m = 0,±1) into eq. (4.8) one finds that the dipole

perturbations K and G appear only through the combination K−G. This means that one

is free to set either K or G to zero from the outset. On top of that, one can use the residual

gauge freedom to get rid of other two components in δgevenµν . Ultimately, we can work in

the following gauge

K = G = H0 = 0 . (C.1)

The computation of the quadratic action for the physical mode closely follows the steps

outlined in section 4.2 for the case ℓ ≥ 2.

The constraint equation obtained from the variation with respect to the Lagrange

multiplier H0 can be read off from eq. (4.11) upon setting ℓ = 1 and K = 0. Then, the

analogous field redefinition

H2 ≡
(

cc′

2
+

c2M3
3

2M2
Pl

)−1

(ψ +H1) , (C.2)

can be used to get rid of H′
1 and make the equation algebraic in H1. Similarly, the equation

of motion for the non-dynamical component H1 is given in eq. (4.13) with ℓ = 1 and K = 0.

This provides an expression for H1 in terms of Ḣ2 and Ḣ1. Plugging the expressions for

H1 and H1 into the effective theory (4.1) yields the following quadratic action for the

propagating scalar mode:

S
(2)
even,ℓ=1,m=0 =

M2
Pl

2

∫

dtdr
(

A1ψ̇
2 −B1ψ

′2 − C1ψ
2
)

, (C.3)

where

A1 =
2
(

M2
Plc

′ + cM3
3

)2

[

ca′
(

M2
Plc

′ + cM3
3

)

+ a
(

M2
Pl (1− c′2)− cc′M3

3 − 4M2
13

)]2

[

∂

∂r

(

ac
(

M2
Pl − 4M2

13

)

M3
3 c+M2

Plc
′

)

− a

]

, (C.4)

while B1 = a2A1c
2
r,1, where c2r,1 is given in eq. (4.17). Thus, it is clear from the previous

expressions that the analysis of stability goes unaltered with respect to the case ℓ ≥ 2.

Stability conditions for modes with ℓ = 0. Since Y00 is a constant, the monopole

perturbationsH0, H1 and G automatically disappear from the metric tensor (4.8). Further-

more, in the unitary gauge δΦ ≡ 0 one is still free to fix the residual time diffeomorphisms

in such a way that e.g. H0 = 0. Then, straightforward integrations by parts lead to the

cancellation of the quadratic term for H1, which becomes therefore a Lagrange multiplier

enforcing a differential equation for ψ and K whose solution reads

K =
2

c (ca′ − ac′)
ψ , (C.5)

where we have set to zero an inconsequential integration constant.9 Plugging back into the

action (4.1), one finds the quadratic Lagrangian for the scalar mode to be

S
(2)
even,ℓ=0,m=0 =

M2
Pl

2

∫

dtdr
(

A0ψ̇
2 −B0ψ

′2 − C0ψ
2
)

, (C.6)

9Had we chosen to set to zero H1 instead of H0, we would have found a non-independent constraint

equation with the same solution (C.5).
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where

A0 =
2

(ca′ − ac′)2

[

∂

∂r

(

ac
(

M2
Pl − 4M2

13

)

M3
3 c+M2

Plc
′

)

− a

]

, (C.7)

while B0 = a2A0c
2
r,1.
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