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1 Introduction

Measurements of properties of the 125 GeV Higgs boson at the Large Hadron Collider

(LHC) so far focus on processes involving one Higgs boson with two other SM particles,

such as gauge bosons or heavy-flavor quarks [1]. The consistency of these measurements

with predictions from the standard model (SM) gives confidence to the “Higgs nature” of

the 125 GeV boson. A much more open question is whether this is the SM Higgs boson,

whose interactions are completely determined by its mass and other SM input parameters.

The best precision in current measurement lies in the HVV couplings, which is of the order

of 10%. Recall that effects of new particles with a mass of 1 TeV or higher are generically of

the order of 5% or less. Therefore, it is perhaps not surprising that no credible deviation has

shown up to date. Nevertheless, the study on HVV couplings is very thorough, and involves

not only the signal strength, but also the predicted tensor structure of the coupling [2–6].

On the other hand, due to the limitation in the center-of-mass energy of the LHC, processes

involving two Higgs bosons such as the Higgs trilinear coupling and HHVV couplings have

very small production rates and remain as untested predictions of the SM.

In spite of the tremendous amount of experimental efforts, there are still outstand-

ing theoretical questions to be answered. In the SM the electroweak symmetry breaking

(EWSB) is triggered by the vacuum expectation value (VEV) of the Higgs doublet H,

whose potential is

V (H) = −µ2H†H + λ|HH†|2 . (1.1)
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The Mexican hat potential is reminiscent of the effective potential for conventional su-

perconductivity proposed by Ginzburg and Landau in 1950 [7]. In both the SM and the

Ginzburg-Landau theory, the crucial “−” sign in front of the quadratic term in the potential

is completely ad hoc, without a microscopic understanding. In 1957, Bardeen, Cooper and

Schrieffer (BCS) gave a microscopic theory of conventional superconductivity [8], which

allows one to compute the coefficients µ2 and λ in the Ginzburg-Landau theory. To the

contrary, we do not yet have a microscopic theory for the Higgs potential, as well as the

crucial minus sign, even to date. It is a somewhat shocking realization that, more than

forty years after the Higgs boson was proposed in ref. [9], our understanding of the EWSB

is still as primitive as the Ginzburg-Landau theory.

Of course, the lack of a BCS level understanding of EWSB is not without trying.

The direct analogy of the BCS theory, where the spontaneous symmetry breaking oc-

curs dynamically, goes by the name of “technicolor” and is now strongly disfavored by

experimental data [10]. The compatibility with data can be improved by proposing addi-

tional spontaneously broken global symmetries above the electroweak scale, under which

the 125 GeV Higgs arises as a pseudo-Nambu-Goldstone boson [11–18]. In this scenario,

the Mexican hat potential is generated radiatively à la the celebrated Coleman-Weinberg

mechanism [19]. This class of models is now referred to as the composite Higgs model

and a survey of the literature reveals a garden variety of possibilities [20], each invoking a

different coset structure G/H. Conventional wisdom, based on the seminal work of Callan,

Coleman, Wess and Zumino (CCWZ) [21, 22], has it that different G/H leads to a different

low-energy effective Lagrangian. As a consequence, comparisons with the data are usually

made on a model-by-model basis, with the minimal coset SO(5)/SO(4) receiving the most

attention [23].

In recent years it was realized that there is an infrared construction of the effective

action of Nambu-Goldstone bosons that does not require prior knowledge of the symmetry

breaking coset G/H [24, 25], by focusing on shift symmetries under which the Nambu-

Goldstone boson transforms non-homogeneously and nonlinearly,

πa(x)→ πa(x) + εa + · · · , (1.2)

where εa are constant and terms neglected are higher order and nonlinear in πa. The IR

construction turned out to be the algebraic realization, at the Lagrangian level [26, 27], of

the “soft bootstrapping” approach pursued by the amplitudes community to reconstruct

effective theories using on-shell quantities [28–30]. In the end, interactions of Nambu-

Goldstone bosons only serve one purpose: producing the correct soft limit, the so-called

Adler’s zero [31], amid the constraint of unbroken, linearly realized symmetry. For exam-

ple, for three Nambu-Goldstone bosons transforming as the adjoint of an unbroken SU(2)

subgroup of a possibly larger linearly realized symmetry group H, their self-interactions

are entirely determined by producing the correct soft limit, subject to the constraints of

the linearly realized SU(2) subgroup, and remain agnostic to the rest of the coset structure

G/H except for the normalization of the decay constant f . For a viable composite Higgs

models, the 125 GeV Higgs always transforms as the fundamental representation (4) of
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an unbroken SO(4) subgroup of H. As a result, their self-interactions, as well as interac-

tions with electroweak gauge bosons, are universal in composite Higgs models, even after

integrating out heavy composite resonances that are typically present in these models [32].

Before we proceed further, it is instructive to address three potential questions that

may arise, especially from non-experts, regarding the universal relations:

1. Must the 125 GeV Higgs transform as the 4 of an SO(4) subgroup of H?

By construction the electroweak SU(2)L × U(1)Y group is broken only by the Higgs

VEV and is unbroken above the weak scale. Thus the linearly realized symmetry H

must contain SU(2)L×U(1)Y as a subgroup. However, it is well-known that the Higgs

sector of the SM model contains an accidental SO(4) ≈ SU(2)L × SU(2)R symmetry,

referred to as the custodial invariance [33], which is responsible for protecting the

precisely measured ρ parameter. As a result, viable composite Higgs models typically

choose an H that contains the larger SO(4) custodial symmetry. The compatibility

with the ρ parameter is much improved when the 125 GeV Higgs transforms as the

4 of SO(4) subgroup.

2. Is the universality implied by the minimal coset SO(5)/SO(4)?

Some might argue that, under the assumption of a single light Higgs boson at

125 GeV, the low-energy effective theory of an arbitrary coset G/H must reduce to

the minimal SO(5)/SO(4) coset, upon integrating out heavy composite resonances.

The universality is therefore a consequence of the uniqueness of the minimal coset

structure. It turns out that IR construction of the Nambu-Goldstone interactions in

refs. [26, 27] does not depend on the existence of other light degrees of freedom. For

example, in models containing two light Higgs bosons,H1 and H2, the low-energy

coset structure will not be SO(5)/SO(4).1 In this case the effective Lagrangian

for self-interactions among Hi, i = 1, 2, will remain identical to the one from the

SO(5)/SO(4) coset, up to the normalization of the decay constant f .2

3. What is the impact of additional light degrees of freedom?

Although the effective Lagrangian involving the self-interactions of the 125 GeV Higgs

in composite Higgs models is universal, other light degrees of freedom, if there, could

contribute to on-shell amplitudes of the Higgs boson as an intermediate propagator.

Again using the two-Higgs-doublet-model as an example, a trilinear coupling like

h1h1h2 could arise after electroweak symmetry breaking, even for a symmetric coset.3

Therefore h2 could contribute to S-matrix elements involving four external h1 bosons.

The existence of such a contribution does not invalidate the universal relations, which

1One example of composite two-Higgs-doublet models is the SO(6)/SO(4) × SO(2) coset studied in

ref. [34].
2Of course in this case there will be additional interactions between H1 and H2. In principle they can

be determined by considering a larger set of shift symmetries.
3For a symmetric coset G/H, one could impose an internal Z2 symmetry which forbids trilinear couplings

of Nambu-Goldstone bosons, although sometimes a slightly different variant of the Z2 symmetry may also

be implemented [35–37].
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relate couplings in the effective Lagrangian, not S-matrix elements. However, their

presence complicates the experimental effort to verify and test the universal relations,

as additional observables and techniques might be necessary to disentangle the H1VV

and H1H1VV couplings from the rest. This is not dissimilar to efforts to measure

different tensor structures of HVV couplings using differential distributions of decay

products and multivariate techniques.

This work is organized as follows. In section 2 we begin with a non-technical argument

leading to the infrared construction of Nambu-Goldstone effective actions without reference

to a coset structure G/H. Then we provide a summary of the results in general and then

specialize to the case of the Higgs transforming as the 4 of SO(4). In section 3 we give

the complete list of operators contributing to HVV, HHVV, HVVV and TGC predicted

in the composite Higgs models, up to all orders in 1/f and four-derivative level. Seven

universal relations are presented, in the unitary gauge, relating the various coefficients

which could be extracted experimentally. A preliminary phenomenological study on the

universal relations is given in section 4, followed by the Conclusion. We also include two

appendices: appendix A on our convention of SO(4) group generators and appendix B on

matching the universal nonlinear Lagrangian to linearized dimension-6 operators.

2 The infrared perspective

2.1 An overview

Properties of Nambu-Goldstone bosons were studied intensively in the context of pions in

low-energy QCD. A large body of work on “soft pions” exists in the literature, some of

which turn out to be independent of the pattern of chiral symmetry breaking in QCD.

One example that is especially relevant to our discussion is the Adler’s zero condition [31],

which states that on-shell amplitudes of pion scattering in the exact massless limit must

vanish as one external momentum taken to zero, as a consequence of the spontaneously

broken chiral symmetry.

It turns out that the Adler’s zero condition can be taken as the defining property

of Nambu-Goldstone bosons. By constructing S-matrix elements that always satisfy the

Adler’s zero condition, it is possible to arrive at the complete (tree-level) amplitudes of

pions without referring to the notion of “spontaneous symmetry breaking.” At a practi-

cal level, the construction starts at the 4-point(pt) partial amplitude [38], which are the

“flavor-ordered” amplitudes with flavor factors stripped away, much like the color-ordered

partial amplitudes in QCD. Partial amplitudes are symmetric under cyclic permutations

of external particles. The 4-pt amplitude contains a single Feynman diagram involving

the 4-pt interaction vertex as shown in figure 1 and it is easy to see that the following

amplitude satisfies the Adler’s zero condition:

M4(p1, p2, p3, p4) = c
s24
f2
→ s24

f2
, (2.1)

where we have used the notation sij = (pi+pj)
2 = 2pi ·pj and absorbed the proportionality

constant c into the normalization of f . Upon momentum conservation, M4 vanishes as any
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p1

p2

p3

p4

M4

Figure 1. The 4-pt amplitude involves a single 4-pt interaction vertex, since there is no three-

pt vertex among Nambu-Goldstone bosons for a symmetric coset. Adler’s zero condition requires

M4 = s24/f
2.

one of the external momenta is taken to zero.4 One can then construct the 6-pt amplitudes

by using the 4-pt interaction vertex given in eq. (2.1). There are three contributions shown

in figure 2, whose sum is

1

f2

(
s13s46
P 2
123

+
s24s15
P 2
234

+
s35s26
P 2
345

)
, (2.2)

where P 2
ijk = (pi+pj+pk)

2. Obviously, the sum does not vanish as one external momentum

is taken soft. The resolution is to introduce a 6-pt interaction vertex, shown in figure 3,

whose sole purpose is to satisfy the Adler’s zero condition. If the following 6-pt vertex is

added to eq. (2.2), as shown in figure 3,

− 1

f2
P 2
135 , (2.3)

the resulting 6-pt amplitude

M6 =
1

f2

(
s13s46
P 2
123

+
s24s15
P 2
234

+
s35s26
P 2
345

)
− 1

f2
P 2
135 , (2.4)

vanishes as any one of the external momenta is taken to zero. Notice that eq. (2.3) is totally

symmetric in cyclic permutations of external particles, after imposing the momentum con-

servation. This “soft bootstrapping” was carried out up to 8-pt amplitudes in ref. [39] and

completed to an arbitrary number of external legs in refs. [28, 29]. In this approach, all in-

teraction vertices are completely determined by starting with the 4-pt vertex in eq. (2.1) and

repeatedly requiring the Adler’s zero condition for all higher point amplitudes. The only

free parameter resides in the proportionality constant c in eq. (2.1), which was absorbed

into the normalization of f . The most important lesson from this exercise, for the pur-

pose of our discussion, is that the tree amplitudes and interaction vertices are constructed

without ever referring to a coset G/H, as long as the notion of “flavor ordering” exists.

How does one realize the above diagrammatic argument algebraically at the Lagrangian

level? It turns out that the Adler’s zero condition follows from the Ward identity of the

4An equivalent form commonly seen is M4 = (s12 + s14)/f2.
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p1

p2p3p4

p5 p6 p2

p3p4p5

p6 p1 p3

p4p5p6

p1 p2

Figure 2. Contributions to M6 from the 4-pt vertices: (s13s46/P
2
123+s24s15/P

2
234+s35s26/P

2
345)/f2.

p6p1

p2

p3 p4

p5

Figure 3. The 6-pt interaction vertex required by imposing the Adler’s zero condition on M6:

−P 2
135/f

2.

shift symmetry in eq. (1.2) [40]. This can be understood intuitively as follows: the shift

symmetry forbids non-derivative interactions in the Lagrangian so that interaction vertices

in the Feynman diagrams carry positive powers of external momenta. Therefore, when one

external momentum is taken to zero, the S-matrix element vanishes unless one of the inter-

nal propagator goes on-shell, which requires the presence of a cubic vertex [40]. However,

for symmetric cosets employed in most, if not all, of the composite Higgs models, the inter-

nal Z2 automorphism forbids cubic couplings among three Nambu-Goldstone bosons [41].

As a consequence, the shift symmetry in eq. (1.2) implies the Adler’s zero condition.

For a set of scalars transforming non-trivially under a linearly realized symmetry group

H, eq. (1.2) need to be expanded. More specifically, consider a set of scalars πa furnishing

a linear representation of H, πa → πa + iαi(T i)abπ
b + O(α2), where T i is the generator

of H. It is convenient to choose a basis where T i is purely imaginary and anti-symmetric,

(T i)T = −T i and (T i)∗ = −T i. Then at the next-to-leading order in 1/f2, the shift

symmetry in eq. (1.2) becomes [24, 25],

πa → πa + εa − c

3f2
(T i)ab(T

i)cd π
bπcεd , (2.5)

where c is an arbitrary constant related to the normalization of f . Due to the anti-

symmetricity of T i, eq. (2.5) has the property that the 1/f2 term vanishes if all but one

Goldstone boson is set to zero. This ensures on-shell amplitudes of same-flavor Goldstone

bosons satisfy both the Adler’s zero condition and the Bose symmetry. The two-derivative

Lagrangian satisfying the next-to-leading order shift symmetry is

L =
1

2
∂µπa∂µπ

a +
c

6f2
(T i)ab(T

i)cd ∂
µπa∂µπ

c πbπd . (2.6)

One can check that the 4-pt flavor-ordered amplitudes from eq. (2.6) gives precisely eq. (2.1).

– 6 –
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Going to higher orders, it will be convenient to define the matrix T :

Tab =
2

f2
(T i)ac(T

i)db π
cπd , (2.7)

where we have chosen c = 2 so as to conform with the convention in the literature in

composite Higgs models. Then the nonlinear shift symmetry that enforces the Adler’s zero

condition to all orders in 1/f is [26, 27]

πa ′ = πa + [F1(T )]ab ε
b , F1(T ) =

√
T cot

√
T , (2.8)

and the two-derivative Lagrangian invariant under the nonlinear shift symmetry is

L(2) =
1

2
[F2(T )2]ab ∂µπ

a∂µπb , F2(T ) =
sin
√
T√
T

. (2.9)

The 6-pt vertex in figure 3 arises from the 1/f4 term in L(2), which is introduced so that

the Lagrangian is invariant under the shift symmetry in eq. (2.8) up to the order of 1/f4.

Therefore, one sees how the nonlinear shift symmetry implements the soft bootstrapping

at the Lagrangian level.

The Lagrangian L(2) is written entirely using generators of H, without reference to

any coset G/H, as long as the linear representation furnished by πa satisfies [24, 25]

(T i)ab(T
i)cd + (T i)ac(T

i)db + (T i)ad(T
i)bc = 0 . (2.10)

This is a consistency condition imposed on the class of representations in which the low-

energy effective Lagrangian can be constructed using only IR data. A direct comparison

with the conventional CCWZ approach using a particular coset G/H can be made upon

the identification

(T i)ab = −if iab = Tr(T i[Xa, Xb]) . (2.11)

Then it is clear that eq. (2.10) corresponds to the Jacobi identity of the structure constants

f iab of G/H.

2.2 Effective Lagrangian up to p4 and all orders in 1/f

The effective Lagrangian of Nambu-Goldstone bosons involves the systematic expansion in

two parameters: the decay constant f and the number of derivatives ∂µ. The Lagrangian

in eq. (2.9) contains two derivatives and resums terms to all orders in 1/f . The overall

coefficient of 1/2 is determined by requiring a canonically normalized kinetic term, while

the particular form of the function F2 is fixed by the nonlinear shift symmetry in eq. (2.8),

up to an overall rescaling of f . To go beyond the two-derivative Lagrangian, it is necessary

to introduce two objects with well-defined transformation properties under the nonlinear

shift symmetry,

dµ → U dµ U
−1 , (2.12)

EiµT
i → U(EiµT

i)U−1 − iU ∂µ(U−1) , (2.13)

– 7 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
0

where U ∈ H and its explicit form is irrelevant for our discussion. Note that the Goldstone

covariant derivative daµ transforms in the same representation as πa under H, while the

gauge connection Eiµ sits in the adjoint representation of H. Both of them can be expressed

in terms of IR data only [24, 25],

daµ(π, ∂) =

√
2

f
[F2(T )]ab ∂µπ

b , (2.14)

Eiµ(π, ∂) =
2

f2
∂µπ

a[F4(T )]ab (T iπ)b , (2.15)

where F2(T ) is defined in eq. (2.9) and

F4(T ) = −2i

T sin2

√
T
2

. (2.16)

In this notation the two-derivative Lagrangian is simply

L(2) =
f2

4
d†µd

µ , (2.17)

which is manifestly invariant under the nonlinear shift symmetry.

At O(p4), it is a well-known result from chiral perturbation theory that, without

gauging any subgroup of H, there are three independent operators that can be constructed

out of daµ and Eiµ [42]. First let’s define the field strength tensor

Eiµν = ∂µE
i
ν − ∂νEiµ − f ijkEiµEjν . (2.18)

Then the three operators can be chosen to be

O1 = [Tr(dµd
µ)]2 , O2 = [Tr(dµdν)]2 , O3 = Tr(EµνE

µν) . (2.19)

The effective Lagrangian up to O(p4) and to all orders in 1/f is then

L(4) = L(2) +
∑
i

ciOi , (2.20)

where ci are incalculable coefficients encoding our ignorance of the UV physics. On the

other hand, all coefficients in the 1/f expansion are completely fixed by the IR physics

enforced by the nonlinear shift symmetry. Gauging a subgroup of H will introduce addi-

tional operators. In what follows we will restrict our attention to the case relevant for a

composite Higgs boson, where an SU(2)×U(1) inside the SO(4) subgroup of H is gauged.

2.3 The fundamental representation of SO(4)

As explained in section 1, a viable composite Higgs model must have the 125 GeV Higgs

transforming as the fundamental representation of the SO(4) subgroup of H. Using the

explicit expression of group generators in appendix A, it is easy to see that they satisfy the

following completeness relation:

T iabT
i
cd =

1

2
(δadδbc − δacδbd), (2.21)

– 8 –
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so that eq. (2.7) can be written as

Tab =
1

f2
(δabπcπc − πaπb). (2.22)

Then F1, F2 and F4 simplify to

[F1(T )]ab = δab
|π|
f

cot
|π|
f
− πaπb

f2
f2

|π|2
( |π|
f

cot
|π|
f
− 1

)
, (2.23)

[F2(T )]ab = δab
f

|π| sin
|π|
f
− πaπb

f2
f2

|π|2
[
f

|π| sin
|π|
f
− 1

]
, (2.24)

[F4(T )]ab = −2i

[
δab

f2

|π|2 sin2 |π|
2f
− πaπb

f2
f2

|π|2
(
f2

|π|2 sin2 |π|
2f
− 1

4

)]
, (2.25)

where |π|2 ≡ πaπa. Also notice [F1(0)]ab = [F2(0)]ab = δab, [F4(0)]ab = − i
2δ
ab. After

gauging the SU(2)L × U(1)Y subgroup of SO(4), the two-derivative Lagrangian in the

unitary gauge looks particularly simple,

L(2) =
1

2
∂µh∂

µh+
g2f2

4
sin2(θ + h/f)

(
W+
µ W

−µ +
1

2 cos2 θW
ZµZ

µ

)
, (2.26)

where h is the 125 GeV Higgs. In particular sin θ ≡ v/f , where v = 246 GeV, is the

misalignment angle between the G/H breaking and the electroweak symmetry breaking.

This can be seen from reading off the mass of the electroweak gauge boson in eq. (2.26):

mW =
mZ

cos θW
=

1

2
gv =

1

2
gf sin θ . (2.27)

Sometimes it is convenient to expand the effective Lagrangian in h/v,

L(2) =
1

2
∂µh∂

µh+ bnh

(
h

v

)n(
m2
WW

+
µ W

−µ +
1

2
m2
ZZµZ

µ

)
. (2.28)

For example, the first two coefficients are

bh = 2
√

1− ξ , b2h = 1− 2ξ , (2.29)

where ξ ≡ v2/f2. Moreover, every single coefficient bnh is fixed by the nonlinear shift

symmetry, up to the normalization of f .

One important observation here is that, at the two-derivative level, HVV and HHVV

couplings have the same tensor structure as predicted in the SM. Furthermore, the strength

of both couplings are reduced from the SM, which corresponds to v/f → 0, for a real-

valued f . This is the case for all compact coset G/H. For a non-compact coset, f is purely

imaginary and the strength is enhanced. At the four-derivative level, however, new tensor

structures will appear.

Gauging the electroweak SU(2)L×U(1)Y will introduce additional building blocks for

the effective Lagrangian at O(p4) level. Formally we can choose to gauge the full SO(4).

In eq. (2.14) this amounts to replacing ∂µ → Dµ = ∂µ + iAµ and daµ now becomes

daµ(π,D) =

√
2

f
[F2(T )]ab(Dµπ)b , Dµ = ∂µ + iAiµT

i , (2.30)

– 9 –
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where T i is the generator of SO(4). The gauging of SO(4) breaks the nonlinear shift

symmetry, similar to the gauging of U(1)em in chiral perturbation theory. The effect of

such a breaking can then be captured by treating the SO(4) gauge field as a “spurion”

in the adjoint represention of SO(4). Then one sees that the following object transforms

covariantly in the same way as daµ(π, ∂), as it is the difference between two covariant objects

in eq. (2.30) and eq. (2.14): √
2i

f
[F2(T )]ab(T

iπ)bAiµ , (2.31)

which nonetheless is not invariant under local SO(4) gauge transformations. But this is

easy to fix, by replacing the SO(4) gauge field with the corresponding field strength tensor,

(f−µν)a =

√
2i

f
[F2(T )]ab(T

iπ)b F iµν . (2.32)

On the other hand, since the SO(4) gauge field Aµ transforms under a local H-rotation in

the same way as in eq. (2.13), Eµ is now modified to be

Eiµ(π,D) = Aiµ +
2

f2
Dµπ

a [F4(T )]ab(T
iπ)b . (2.33)

One can identify another spurion in the adjoint representation of SO(4) and construct the

following covariant object:

(f+µν)i = F iµν +
2

f2
F jµν(T jπ)a[F4(T )]ab(T

iπ)b . (2.34)

Both f±µν transforms under local H-transformation as

f±µν → U f±µν U
−1 . (2.35)

Again both operators are constructed using only the infrared data, without recourse to a

coset G/H. Here we follow the notation in ref. [43], which constructed the corresponding

operators in the CCWZ formalism.

Given that SO(4) ∼ SU(2)L × SU(2)R, the adjoint representation of SO(4) transforms

as (1,3)+(3,1) under SU(2)L×SU(2)R. Then each object carrying the SO(4) adjoint index

can be divided into two categories, according to whether it transforms under SU(2)L or

SU(2)R. In addition, recall that an SU(2)×U(1) subgroup is identified with the electroweak

gauge group. Our convention of SO(4) and gauged generators are listed in appendix A.

In the end the expressions for daµ, E
i
µ, (f

−
µν)a and (f+µν)i for SO(4) in the unitary gauge are

given by

daµ =
√

2

[
δa4 ∂µ

(
h

f

)
+
δar

2
sin(θ + h/f)(W r

µ − δr3Bµ)

]
, (2.36)

(EL/Rµ )r =
1± cos(θ + h/f)

2
W r
µ +

1∓ cos(θ + h/f)

2
Bµδ

r3 , (2.37)

(f−µν)a =
1√
2

sin(θ + h/f)(W r
µν − δr3Bµν)δra,

(f+L/Rµν )r =
1± cos(θ + h/f)

2
W r
µν +

1∓ cos(θ + h/f)

2
δr3Bµν , (2.38)
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where the superscripts L and R refer to the upper and lower signs, respectively, and

r = 1, 2, 3 is the adjoint index in SU(2)L/R.

Using these building blocks, one can construct 11 independent operators at O(p4) [43],

seven of which are even under space inversion ~x→ −~x and not contracted with εµνρσ. We

will focus on these seven CP-even operators in this work, compute them to all orders in

1/f and study their phenomenological consequences. They can be written as

O1 =
(
daµd

µa
)2
, (2.39)

O2 = (daµd
a
ν)2 , (2.40)

O3 =
[(
ELµν

)r]2 − [(ERµν)r]2 , (2.41)

O±4 = −i daµdbν
[
(f+Lµν )r T rL ± (f+Rµν )r T rR

]
ab
, (2.42)

O+
5 =

[
(f−µν)a

]2
, (2.43)

O−5 =
[
(f+Lµν )r

]2 − [(f+Rµν )r
]2
, (2.44)

where T rL/R is the SU(2)L/R generator appendix A.

The power counting of the four-derivative Lagrangian is governed by the naive dimen-

sional analysis (NDA) [44], which states that each Nambu-Goldstone field π is suppressed

by f , while the (gauge covariant) derivative Dµ is suppressed by Λ ∼ 4πf ,

S(4) =

∫
d4xΛ2f2 L(4)

(
π

f
,
D

Λ

)
=

∫
d4x

∑
i

ci
16π2

Oi , (2.45)

where ci are expected to be order unity constants parameterizing the incalculable UV

physics at the scale Λ ∼ 4πf . In some cases operators contributing to couplings of neutral

particles and the on-shell photon are further suppressed by additional loop factors.

In composite Higgs models there are typically additional resonances at the scale mρ =

gρf , where 1 . gρ . 4π characterizes the coupling strength associated with the strong

dynamics. After integrating out these resonances, the nonlinear structure of the effective

Lagrangian remains the same, with the Λ scale suppressing the derivative operator Dµ

replaced by mρ [45]:

S
(4)
SILH =

∫
d4x m2

ρ f
2 L(4)

(
π

f
,
D

mρ

)
=

∫
d4x

∑
i

ci
g2ρ
Oi . (2.46)

Notice that when gρ saturates 4π, the “SILH” power counting reverts to NDA in eq. (2.45).

There are certainly additional effects that break the nonlinear shift symmetry, such as the

Higgs potential and the Higgs coupling to fermions. However, as argued in ref. [32], they

would modify the nonlinearity in eq. (2.46) only at the loop-level.

3 Universal relations

The effective Lagrangian in eq. (2.46) describes the nonlinear interaction of a composite

Higgs boson with the electroweak gauge bosons to all orders in 1/f and up to the four-
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derivative level. It is most convenient to express the Lagrangian in unitary gauge,

LNL =
∑
i

m2
W

m2
ρ

(
Chi Ihi + C2h

i I2hi + C3V
i I3Vi

)
, (3.1)

where Ihi and I2hi are O(p4) operators contributing to HVV and HHVV couplings, respec-

tively, while I3Vi contains triple gauge boson couplings (TGC) up to one Higgs boson. We

use the notation V = W,Z, γ. Note that we have factorized out a normalization factor

m2
W /m

2
ρ in the coupling coefficients Ci, which are linear combinations of the dimensionless

coefficients ci in eq. (2.46). For the anomalous triple gauge boson couplings (aTGC), we

added tilde to the notation used in ref. [46], so as to emphasize our choice of normalization

factor m2
W /m

2
ρ in eq. (3.1). The two conventions are related by

δgZ1 =
m2
W

m2
ρ

δg̃Z1 , δκγ =
m2
W

m2
ρ

δκ̃γ , δκZ =
m2
W

m2
ρ

δκ̃Z . (3.2)

More specifically, operators in Ihi involve the following structures

h

v
V1µDµνV2 ν ,

h

v
V1µνV

µν
2 , (3.3)

where Dµν = ∂µ∂ν − ηµν∂2 and V1/2 ∈ {W,Z, γ}. Those in I2hi are given by

h2

v2
V1µDµνV2 ν ,

h2

v2
V1µνV

µν
2 ,

∂µh∂νh

v2
V µ
1 V

ν
2 . (3.4)

Lastly, operators in the I3Vi class are of the form

V1µV2 νV
µν
3 ,

h

v
V1µV2 νV

µν
3 ,

∂µh

v
V1 νV

µ
2 V

ν
3 . (3.5)

The complete list of operators in each category is listed in tables 1–3, where we have com-

puted the coupling Ci in terms of the ci coefficient in eq. (2.46). There are 6 operators in

Ihi , 10 in I2hi and 9 in I3Vi . These three tables summarize the predictions of universal non-

linearity (NL) from a composite Higgs in Higgs couplings with electroweak gauge bosons.

It is instructive to compare with modifications in HVV and HHVV couplings from the

Standard Model Effective Field Theory (SMEFT) [47], which augments the SM Lagrangian

with higher dimensional operators with arbitrary coefficients. In particular, the dim-6 and

dim-8 operators relevant for our discussion are parameterized as follows:

LSMEFT ⊃
∑

i=W,B,HW,HB

ci
m2
ρ

Oi +
c8i

f2m2
ρ

(H†H)Oi , (3.6)

where OW ,OB,OHW ,OHB are defined explicitly in eq. (B.1). The corresponding contri-

butions to Ih/2h/3Vi from dim-6 operators (D6) in SMEFT are also given in tables 1–3. The

matching of the O(p4) operators in eq. (2.39) to SMEFT at the dimension-6 order is done

explicitly in appendix B.
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Ihi Chi (NL) Chi (D6)

(1) h
vZµDµνZν

4c2w
c2w

(
−2c3 + c−4

)
+ 4
c2w
c+4 cos θ

2(cW + cHW )

+2t2w(cB + cHB)

(2) h
vZµνZ

µν
−2c2w

c2w

(
c−4 + 2c−5

)
− 2
c2w

(
c+4 − 2c+5

)
cos θ

−(cHW + t2wcHB)

(3) h
vZµDµνAν 8

(
−2c3 + c−4

)
tw

2tw(cW + cHW )

−2tw(cB + cHB)

(4) h
vZµνA

µν −4
(
c−4 + 2c−5

)
tw −tw(cHW − cHB)

(5) h
vW

+
µ DµνW−ν + h.c.

4(−2c3 + c−4 )

+4c+4 cos θ
2(cW + cHW )

(6) h
vW

+
µνW

−µν −4(c−4 + 2c−5 )

−4
(
c+4 − 2c+5

)
cos θ

−2cHW

Table 1. Single Higgs coupling coefficients Chi for the non-linearity case (NL) and the purely

dimension-6 contributions (D6) in SMEFT. Here cw, c2w, tw denote cos θW , cos 2θW , tan θW respec-

tively, where θW is the weak mixing angle. Dµν denotes ∂µ∂ν − ηµν∂2.

The most important observation for our purpose is that there are only 7 unknown

ci’s in eq. (2.46), which parameterize effects of the incalculable ultraviolet physics. These

6 coefficients enter into tables 1–3, which contain a total of 25 operators entering HVV,

HHVV, HVVV and TGC couplings. In principle, these operators can all be measured

experimentally through angular distributions of decay products, with varying degrees of

precision. “Universal relations” are precisely relations among the coefficients of the 25

operators listed in tables 1–3 that are independent of the unknown ci coefficients. They

depend on only one parameter sin θ = v/f , or equivalently the normalization of the decay

constant f , and are insensitive to the coset structure G/H invoked in the UV.

From tables 1–3 one can see that, for SMEFT at the dimension-6 level, Chi and C2h
i

are related

C2h
i =

1

2
Chi i = 1, · · · , 6 . (3.7)

This is because at this order the operators involve to the combination H†H ∼ (h+ v)2 =

h2 + 2vh+ v2, which gives the relation above. It will not hold anymore at the dimension-8

or higher, which involves a higher power in H†H. In addition, the term involving v2 does

not give rise to any new relations among the Wilson coefficients because this term usually

goes into re-defining the SM couplings that are used as input parameter experimentally.

We demonstrate this subtlety explicitly in the case of the HVVV couplings in appendix B.

Furthermore, it is interesting to observe in tables 1 and 2 the following relations involving
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I2hi C2h
i (NL) C2h

i (D6)

(1) h2

v2
ZµDµνZν

2c2w
c2w

(
−2c3 + c−4

)
cos θ

+ 2
c2w
c+4 cos 2θ

1
2C

h
1

(2) h2

v2
ZµνZ

µν
− c2w

c2w

(
c−4 + 2c−5

)
cos θ

− 1
c2w

(
c+4 − 2c+5

)
cos 2θ

1
2C

h
2

(3) h2

v2
ZµDµνAν 4tw

(
−2c3 + c−4

)
cos θ 1

2C
h
3

(4) h2

v2
ZµνA

µν −2tw
(
c−4 + 2c−5

)
cos θ 1

2C
h
4

(5) h2

v2
W+
µ DµνW−ν + h.c.

2(−2c3 + c−4 ) cos θ

+2c+4 cos 2θ

1
2C

h
5

(6) h2

v2
W+
µνW

−µν
−2
(
c−4 + 2c−5

)
cos θ

−2
(
c+4 − 2c+5

)
cos 2θ

1
2C

h
6

(7) (∂νh)2

v2
ZµZ

µ 8
c2w
c1 sin2 θ ×

(8)
∂µh∂νh
v2

ZµZν 8
c2w
c2 sin2 θ ×

(9) (∂νh)2

v2
W+
µ W

−µ 16c1 sin2 θ ×
(10) ∂µh∂νh

v2
W+
µ W

−
ν 16c2 sin2 θ ×

Table 2. The coupling coefficients C2h
i involve two Higgs bosons for universal nonlinearity case

(NL) and the dimension-six case in SMEFT (D6). A cross (×) means there is no contribution at

the order we considered. Notice C2h
i = Chi /2 for SMEFT at the dimension-6 level.

HZZ and HHZZ couplings,

C2h
1 =

1

2
Ch1 +

2c2w
c2w

(
−2c3 + c−4

)
(cos θ − 1) +

2

c2w
c+4 (cos 2θ − cos θ) , (3.8)

C2h
2 =

1

2
Ch2 −

c2w
c2w

(
c−4 + 2c−5

)
(cos θ − 1) +

1

c2w
(c+4 − 2c−5 ) (cos 2θ − cos θ) , (3.9)

which involve non-calculable ci coefficients in eq. (2.46). Phenomenologically this has an

important implication: the deviation in HZZ coupling could be accidentally small, while

the HHZZ correction could still be sizeable. Similar considerations apply to HWW and

HHWW couplings as well. On the other hand, the HZγ coupling is strongly correlated

with HHZγ coupling.

Below we present some examples of universal relations in composite Higgs models. In

this regard, note that the couplings only involving the photons (such as hAµνA
µν) are

not modified by the misalignment angle θ, which are not listed in the tables. This is

because that the gauging of the unbroken U(1)em alone is not breaking the non-linear shift

symmetry acting on the physical Higgs, which is neutral under the U(1)em (see also [45]).

We also notice that the three particle interactions involving the photon and the massive

W,Z bosons are modified by θ. Therefore their coefficients can be related directly to the
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I3Vi C3V
i (NL) C3V

i (D6)

(δg̃Z1 )
igcwW

+µνW−µ Zν

+h.c.
− 2
c2w

[(
−2c3 + c−4

)
cos θ + c+4

]
− cW+cHW

c2w

(δκ̃γ)ieW+
µ W

−
ν A

µν −4
(
c+4 − 2c+5

)
− (cHW + cHB)

(δκ̃Z)igcwW
+
µ W

−
ν Z

µν
− 2
c2w

(
−2c3 + c−4

)
cos θ

− 2
c2w

(c+4 c2w + 4c+5 s
2
w)

− cW
c2w
− cHW + t2wcHB

(1)
igcw

h
vW

+µνW−µ Zν

+h.c.

− 4
c2w

[
(−2c3 + c−4 )(1− 3

2 sin2 θ)

+c+4 cos θ
]

+16(c3 + c−5 − c+5 cos θ)

− 2
c2w

(cW + cHW )− 4cW

(2)
iehvW

+µνW−µ Aν

+h.c.
16(c3 + c−5 − c+5 cos θ) −4cW

(3) igcw
h
vW

+
µ W

−
ν Z

µν

− 4
c2w

(
1− 3

2 sin2 θ
)

(−2c3 + c−4 )

+16(c3 + c−5 )

− 4
c2w

(c+4 c2w + 4c+5 ) cos θ

−2(1+2c2w)
c2w

cW − 2cHW

+2t2wcHB

(4) iehvW
+
µ W

−
ν A

µν 16(c3 + c−5 )− 8c+4 cos θ −4cW − 2cHW − 2cHB

(5) ieW+
[µW

−
ν]A

µ ∂νh
v

(6) − ig′swW+
[µW

−
ν]Z

µ ∂νh
v

−8
[
(−2c3 + c−4 ) + cos θc+4

− sin2 θc3
] −4 (cW + cHW )

Table 3. Triple gauge boson couplings involving one or no Higgs.

Wilson coefficients ci in eq. (2.46) without prior knowledge of sin θ = v/f ,

Ch3 = 8tw(−2c3 + c−4 ), Ch4 = 4tw(c−4 + 2c−5 ), δκ̃γ = −4(c+4 − 2c+5 ) . (3.10)

Using these relations, it is straightforward to derive the following three universal rations

involving only the HVV and aTGC couplings:

UR1 :
Ch6 − Ch4 /tw

δκ̃γ
=

2c2w C
h
2 − c2w Ch4 /tw
δκ̃γ

= cos θ ≈ 1− 1

2
ξ, (3.11)

UR2 :
c2w
tw

Ch3 − 2c2w C
h
1 = 4c2w δg̃

Z
1 cos θ +

1

tw
Ch3 cos2 θ , (3.12)

UR3 : Ch5 = −2c2w δg̃
Z
1 cos θ +

1

2tw
Ch3 sin2 θ , (3.13)

where ξ = v2/f2 = sin2 θ.
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The second class of universal relations involve HVV and HHVV couplings. These rela-

tions come about naturally in composite Higgs models because of the nonlinear symmetry

(or broken symmetry in the CCWZ formalism) relating one to the other. In this case we

found the following useful relations as signs of universal nonlinearity,

UR4 :
C2h
3

Ch3
=
C2h
4

Ch4
=

1

2
cos θ , (3.14)

UR5 :
C2h
5 − C2h

3 /2tw

Ch5 − Ch3 /2tw
=
C2h
6 − C2h

4 /tw

Ch6 − Ch4 /tw
=

cos 2θ

2 cos θ
≈ 1

2

(
1− 3

2
ξ

)
, (3.15)

UR6 :
s2w C

2h
1 − c2w C2h

3

s2w Ch1 − c2w Ch3
=
s2w C

2h
2 − c2w C2h

4

s2w Ch2 − c2w Ch4
=

cos 2θ

2 cos θ
≈ 1

2

(
1− 3

2
ξ

)
. (3.16)

In addition there is one universal relation involving HVV and HVVV couplings:

UR7 :
(Ch3 − 2twC

h
5 )− s2w(C3V

1 − C3V
2 )

Ch3
= 1− 3

2
sin2 θ . (3.17)

As emphasized already, these relations are all determined by the one single input parameter

sin θ and free from the incalculable coefficients in eq. (2.46).

One can compare the prediction of universal nonlinearity with that from SMEFT with

arbitrary Wilson coefficients. For the purpose of demonstration, we consider UR4 and

UR6. Using the parameterization in eq. (3.6), they become at the leading order in ξ,

C2h
3

Ch3
≈ 1

2

(
1 +

c8HW − c8HB
cHW − cHB

ξ

)
, (3.18)

C2h
4

Ch4
≈ 1

2

(
1 +

c8W − c8B + c8HW − c8HB
cW − cB + cHW − cHB

ξ

)
, (3.19)

s2wC
2h
1 − c2wC2h

3

s2wCh1 − c2wCh3
≈ 1

2

(
1 +

c8W + c8B + c8HW + c8HB
cW + cB + cHW + cHB

ξ

)
, (3.20)

s2wC
2h
2 − c2wC2h

4

s2wCh2 − c2wCh4
≈ 1

2

(
1 +

c8HW + c8HB
cHW + cHB

ξ

)
. (3.21)

These relations make it clear that predictions of universal nonlinearity start appearing at

the level of dimension-8 operators. More specifically, the nonlinear shift symmetry of a

composite Higgs boson relates Wilson coefficients of certain dimension-8 operators with

those of dimension-6 operators so that their ratios are fixed. In fact, at the two-derivative

level, all Wilson coefficients in the 1/f expansion are uniquely determined, up to the

normalization of f . This implies effects from purely dim-6 operators can be absorbed into

a re-scaling of f . To make a statement on the universal nonlinearity it is necessary to

include effects from dimension-8 operators.
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Operator Tensor Structure

hZµDµνZν
hW+

µ DµνW−ν + h.c.
i
[
(p21 + p22)g

µν − pµ1pν1 − pµ2pν2
]

hZµDµνAν i(p22g
µν − pµ2pν2)

1
2hZµνZ

µν

hZµνA
µν

hW+
µνW

−µν
2i(pµ2p

ν
1 − gµνp1 · p2)

Table 4. The tensor structure of h(p3)V1(p1, µ)V2(p2, ν) operators. All the momenta are taken to

be ingoing.

4 Testing the universal relations: a preliminary study

In order to test the universal relations experimentally, it is necessary to connect the O(p4)

operators in tables 1–3 with observables. There are four classes of couplings that participate

in the universal relations: HVV, TGC, HHVV and HVVV, and we need to measure them

up to O(p4) with great precision, as the effect of nonlinearity only shows up at the level

of dim-8 operators. (For recent studies on effects of some class of dim-8 operators, see

refs. [48, 49].) The necessity of high precision makes it desirable to introduce new analysis

techniques [50, 51], which is beyond the scope of the present work.

The first class, HVV couplings, received much of the attention and was the top pri-

ority at the LHC Run 1. The different operators can be probed by studying kinematic

distributions in the decay product of single Higgs production [2–6]. Not surprisingly, most

projections on extracting Higgs couplings in future colliders also focus on this class [52–54].

The second class, the TGC couplings, has also been studied extensively [46, 55, 56]. The

HHVV and HVVV couplings, to the contrary, seems to have escaped much of the atten-

tion. In particular, the HHVV coupling sits among the least tested sectors of the SM

Higgs boson. A number of theoretical studies exist in the literature [57–61], although none

specifically addresses the issue of measuring the tensor structures, which requires including

the complete list of operators up to O(p4). Therefore, it is clear that testing the universal

relation is a long-term program and should be among the priorities of the future exper-

imental program on the Higgs boson. In the remainder of this work, we will be content

with a very preliminary phenomenological study on universal relations in composite Higgs.

As a first step toward studying phenomenological consequences of universal relations,

in tables 4–6 we give the Feynman rules for the interaction vertices listed in tables 1–3. In

the tables, we have taken all the momenta ingoing to the vertices. The Lorentz structures

of the operators have already been spelled out in eqs. (3.3)–(3.5). For HVV couplings,

the structure V µ
1 DµνV ν

2 reduces to m2
V2
hV µ

1 V2µ for an on-shell V2 boson. This can be seen

either by applying the equation of motion for V2 or simply dotting the Feynman vertex

with the V2 polarization vector. Therefore, if V2 = γ, the corresponding operator will

not contribute to processes involving an on-shell photon. However, it was pointed out in

ref. [62], HZγ and Hγγ couplings contribute non-negligibly to H → ZZ∗/Zγ∗/γ∗γ∗ → 4`
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Operator Tensor Structure

iW+µνW−µ Zν + h.c.

iW+µνW−µ Aν + h.c.
gµν(p1 − p2)ρ − gµρpν1 + gνρpµ2

iW+µW−νZµν

iW+µW−νAµν
pµ3g

ρν − pν3gµρ

ihW+µνW−µ Zν + h.c.

ihW+µνW−µ Aν + h.c.
gµν(p1 − p2)ρ − gµρpν1 + gνρpµ2

ihW+µW−νZµν

ihW+µW−νAµν
pµ3g

ρν − pν3gµρ

iW+
µ W

−
ν Z

µ∂νh+ h.c.

iW+
µ W

−
ν A

µ∂νh+ h.c.
pν4g

µρ − pµ4gνρ

Table 5. The tensor structure of W+(p1, µ)W−(p2, ν)V (p3, ρ) operators. The tensor structure of

h(p4)W+(p1, µ)W−(p2, ν)V (p3, ρ) operators.

Operator Tensor Structure

h2ZµDµνZν
h2W+

µ DµνW−ν + h.c.
2i[gµν(p21 + p22)− pµ1pν1 − pµ2pν2 ]

h2ZµDµνAν 2i[gµνp22 − pµ2pν2 ]

h2W+
µνW

−µν

1
2h

2ZµνZ
µν

h2ZµνA
µν

4i(pµ2p
ν
1 − gµνp1 · p2)

1
2(∂νh)2ZµZ

µ

(∂νh)2W+
µ W

−µ −2igµνp3 · p4

1
2∂µh∂νhZ

µZν

∂µh∂νhW
+µW−ν

−i(pµ3pν4 + pν3p
µ
4 )

Table 6. The tensor structure of h(p3)h(p4)V1(p1, µ)V2(p2, ν) operators.

channels, which could be leveraged to extract these couplings [63]. Such analyses have been

performed at the LHC [64] and the resulting constraints on anomalous HVV couplings are

still rather weak. For example, at the 1σ level various anomalous HVV couplings could

still contribute up to O(50%) of the observed HWW and HZZ signal strengths.5

Given that all the universal relations are controlled by one input parameter: the Gold-

stone decay constant f , it is important to have a precise measurement of f . Conventionally

5Note that by naive power-counting, Ci is ofO(1) and the effects of the O(p4) operators are suppressed by

g2/g2ρ and for moderately large coupling gρ, they are subdominant. But from the viewpoint of experimental

measurements, as shown in ref. [65], there are still room for large effects of these operators.
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(a) ∆χ2 fit on ξ using combined κW and κZ
from the LHC.
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(b) 1σ and 2σ contours of κW vs κZ on ξ.

Figure 4. Present model-independent bound on ξ from HVV signal strength measurements at the

LHC. From the low-energy perspective, ξ could be either positive (for a compact coset G/H) or

negative (for a non-compact coset G/H).

f is extracted from the signal strengths, κW and κZ , in h → WW and h → ZZ channels

using eqs. (2.28) and (2.29).6 For a precise determination of f this is unsatisfactory be-

cause O(p4) operators listed in table 4 enter into κW and κZ as well. A careful analysis

including these effects is beyond the scope of the present work. Instead, in figure 4 we

will be content with an experimental constraint on f without including effects of O(p4)

operators, by using currently available data at the LHC [1, 66, 67]. One can see that the

bound on ξ is still rather weak,

ξ = −0.041+0.090
−0.094 [−0.23, 0.13] , (4.1)

where we show both the allowed 68% CL (central values with uncertainties) and 95% CL

(in square brackets) intervals. There is a slight preference for a negative ξ. It has been

pointed out that a positive ξ signals a compact coset G/H, while a negative ξ requires a

non-compact coset [24, 25].

In the following we will focus on UR1 in eq. (3.11), which involves only the TGC and

HVV couplings, and study its potential observability at future lepton colliders. Here we

adopt the viewpoint that the universal relations can be thought of as different ways to

measure the parameter ξ. If the ξ extracted from various universal relations all converge

on a common value within the experimental precision, that would serve as a smoking gun

signal of the “nonlinear shift symmetry” enforcing the universal relations. Conversely, if

6There are constraints on f from considering the fermion sector of a particular composite Higgs model.

But these are model-dependent. On the other hand, constraints derived from HVV couplings are indepen-

dent of G/H and the embedding of the fermion sector at the tree-level [32].
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Ihi
m2
W
m2
ρ
Chi (ILC)

(1) hZµDµνZν/v 5.83× 10−4

(2) hZµνZ
µν/v 3.93× 10−4

(3) hZµDµνAν/v
(4) hZµνA

µν/v 3.88× 10−4

I3Vi
m2
W
m2
ρ
C3V
i (ILC)

(δgZ1 )i g cwW
+µνW−µ Zν + h.c. 6.1× 10−4

(δκγ)i eW+
µ W

−
ν A

µν 6.4× 10−4

Table 7. Prospective 1σ uncertainty at the future lepton colliders, taken from ref. [53].

the ξ obtained from different universal relations are inconsistent with each other, then the

composite Higgs model is falsified.

Our analysis is based on the projection in ref. [53], as well as similar studies in refs. [52,

54, 68, 69]. The normalization of Wilson coefficients in table 1 is different from that defined

in eq. (A.2) of ref. [53]. They are related as follows:

m2
W

m2
ρ

Ch1 = g2cZ� ∼ 0.42cZ� ,
m2
W

m2
ρ

Ch2 =
g2 + g′2

4
cZZ ∼ 0.14cZZ ,

m2
W

m2
ρ

Ch3 = gg′cγ� ∼ 0.23cγ� ,
m2
W

m2
ρ

Ch4 =
e
√
g2 + g′2

2
cZγ ∼ 0.12cZγ .

(4.2)

One can then obtain the projected precision of various Wilson coefficients in future lepton

colliders, which we give in table 7. The expected 1σ uncertainty on the coefficients entering

UR1 is

NUR1 ≡
m2
W

m2
ρ

(
2c2wC

h
2 − c2wCh4 /tw

)
: 7.20× 10−4 , δκγ : 6.4× 10−4 . (4.3)

Then UR1 in eq. (3.11) can be written as7

UR1 :
NUR1

δκγ
=
√

1− ξ . (4.4)

Both NUR1 and δκγ can be extracted experimentally. In figure 5a, we show the measured

ξ and its uncertainty as a function of δκγ , using a benchmark NUR1 as the input, while in

figure 5b we reverse the roles of δκγ and NUR1. The gray area is excluded by current HVV

signal strength measurements at the LHC, and the allowed region is still quite large today.

In figure 6, we also plotted the measurement on the UR1 in the δκγ −NUR1 plane by using

the benchmark point δκγ = 0.03, ξ = −0.2. In a future lepton collider the precision on

7Since we are taking the ratio of Wilson coefficients, the particular normalization chosen in eq. (3.1)

becomes irrelevant.
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(a) Measured ξ as a function of δκγ , using NUR1

as an input.

δκγ = 0.03 ± 6.4 ×10-4

Gray region excluded by LHC

HVV Signal Strength
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(b) Measured ξ as a function of NUR1, using δκγ
as an input.

Figure 5. Using UR1 to measure ξ, where the blue and red bands correspond to the 1σ and 2σ

region on the measurement.

HVV signal strength is expected to be at the sub-percent level [53],8 which would allow

for a precise determination of ξ that is independent of UR1. If the ξ extracted from two

separate channels turn out to agree with each other within experimental uncertainty, it

would constitute a striking confirmation of the underlying shift symmetry acting on the

125 GeV Higgs boson. Otherwise, a generic composite Higgs boson would be strongly

disfavored.

5 Conclusion and outlook

In this work we presented a number of universal relations in models where the Higgs arises

as a pseudo-Nambu-Goldstone boson. These relations are dictated by the underlying non-

linearly realized symmetry acting on the 125 GeV Higgs boson, which is embodied in the

nonlinear shift symmetry in eq. (2.8). From the infrared perspective, the shift symme-

try simply enforces the correct single soft limit in the S-matrix elements of the Nambu-

Goldstone boson and turned out to be insensitive to the nature of the broken group G

in the UV. Under the well-motivated assumption of the Higgs transforming as the 4 of

an SO(4) subgroup of the unbroken group H, the shift symmetry allows one to construct

a universal effective Lagrangian for the composite Higgs boson, without reference to a

particular symmetry breaking pattern G/H. In particular, interactions of the 125 GeV

Higgs with the electroweak gauge bosons: the HVV, HHVV, HVVV and TGC couplings

remain universal even after integrating out other heavy composite resonances [32]. Univer-

sal relations are ratios among the HVV, HHVV, HVVV and TGC couplings that depend

8At that level of precision, one should perform a global fit of ξ by including O(p4) operators in the HVV

coupling measurements.
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Figure 6. The expected 1,2,3 σ measurement on the UR1 by using δκγ = 0.03, ξ = −0.2 as a

benchmark point (the star point). The dashed lines correspond to the constant values of ξ inferred

from UR1.

on only one input parameter: the Goldstone decay constant f . Experimental verification

of the universal relation would constitute a coset-independent smoking gun signal of the

pseudo-Nambu-Goldstone nature of the Higgs boson.

We presented the complete list of predictions from a composite Higgs boson in HVV,

HHVV, HVVV and TGC couplings to all orders in 1/f and up to O(p4) in tables 1–3, as

well as a number of universal relations, which are expressed in terms of coefficients that

can be measured experimentally. These coefficients involve different tensor structures in

HVV, HHVV, HVVV and TGC couplings. To facilitate future phenomenological analyses,

we provided the Feynman rules in tables 4–6.

Because the universal relations all involve one single input parameter f , they can be

viewed as different ways to extract f experimentally. A composite Higgs boson would

then manifest itself in the consistent measurement of f from different universal relations.

Conversely, if different measurements arrive at incompatible values of f , it would invalidate

the nonlinear symmetry acting on the composite Higgs boson.

As a preliminary study, we provided an updated bound on f using the signal

strength measurement on HVV couplings, without including O(p4) effects in the effec-

tive Lagrangian, as is conventionally done in the literature. In the future it would be

desirable to include these effects for a precise determination of f . Then we proceeded to

study UR1 in eq. (3.11), which involves only the HVV and TGC couplings at future lepton

colliders. We presented the expected precision on the extraction of ξ using UR1 in figure 5.

Last but not least, we comment on the prospect of testing universal relations involving

HHVV and HVVV couplings. In particular, the HHVV coupling is predicted in the SM but

among the least studied experimentally. For this reason alone, studying HHVV coupling

should be among the top priority in future experimental programs on the Higgs boson. We
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q q

V ∗

V ∗

h

h

q q

(a) Double Higgs production through vec-

tor boson fusion at a hadron collider.

e+ ν̄e

W ∗

W ∗

h

h

e− νe

(b) Double Higgs production through vec-

tor boson fusion at a lepton collider.

f

V ∗

V

h

h

f̄

(c) Double Higgs production in association

with a vector boson.

h∗

V

h∗

V ∗

(d) Off-shell Single Higgs decay.

Figure 7. Production and decay topology of venues to test the HHVV couplings. A black dot

represents contributions from various Feynman diagrams. To measure the HVVV coupling, replace

one of the external Higgs particle by an electroweak gauge boson.

see the following venues to test the HHVV coupling, which are shown in figure 7:

(a) Double Higgs production through vector boson fusion (VBF) in a hadron collider:

qq → 2h+ 2j.

(b) Double Higgs production through vector boson fusion (VBF) in a lepton collider:

e+e− → 2h+ νeν̄e.

(c) Double Higgs production in association with a vector boson: ff̄ → V ∗ → 2h + V .

In a hadron collider the initial states are quarks and in an e+e− collider they are

electrons.

(d) Off-shell single Higgs decay: h∗ → h∗V ∗V .

The VBF channel has been studied previously [57–61] and the prospect at a future lepton

collider has also been considered [70–74]. On the other hand, we are not aware of any

studies in the associated production channel or the off-shell single Higgs decay channel.

More importantly, as have been emphasized repeatedly, the ultimate goal is to not only

measure the signal strength in these channels, but also test the specific tensor structures

predicted in the SM, in much the same way we verify the HVV coupling at the Run 1 of
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the LHC. This aspect of testing the HHVV structure has received very little attention in

current literature. It is also clear that the same production and decay topology can be

used to measure HVVV couplings, by replacing one of the external Higgs bosons by an

electroweak gauge boson. Obviously, these are very challenging experimental tasks and

it is desirable to introduce advanced tools to facilitate the analysis. Much remains to be

done, and we hope to return to some of these topics in the future.
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A Generators of SO(4)

The expression for the fundamental representation of SO(4) generators is reported as

follows:

T
rL/R
ab = − i

2

[
1

2
εrst(δsaδtb − δsbδta)± (δraδ4b − δrbδ4a)

]
. (A.1)

where a = 1, 2, 3, 4 and r, s, t = 1, 2, 3. The generators are normalized as Tr[T iT j ] = δij .

T rL/R are the generators satisfying SU(2) Lie-algebra:

[T rL, T sL] = iεrstT tL, [T rR, T sR] = iεrstT tR, [T rL, T sR] = 0, (A.2)

B Matching to dimension-6 operators in SMEFT

In this appendix, we present the matching of the universal nonlinear Lagrangian to the

SMEFT at the dimension-6 order. We will use the SILH basis defined in ref. [45] and the

operators relevant for this calculation are as follows:

OH =
1

2
∂µ(H†H)∂µ(H†H), OT =

1

2
(H†
←→
D µH)(H†

←→
D µH)

O6 = λ(H†H)3, Oy = yfH
†Hf̄LHfR

OW =
ig

2

(
H†σa

←→
D µH

)
DνW a

µν , OB =
ig′

2

(
H†
←→
D µH

)
∂νBµν

OHW = ig(DµH)†σa(DνH)W a
µν , OHB = ig′(DµH)†(DνH)Bµν .

(B.1)

The effective Lagrangian for the dimension-six operators is parameterized as:

L(D6) =
∑

i=H,T,y,6

ci
f2
O(6)
i +

∑
i=W,B,HW,HB

ci
m2
ρ

O(6)
i , (B.2)
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f2O3 f2O+
4 f2O−

4

−4(OW −OB) 2(OHW +OHB) 2(OHW −OHB)

f2O+
5 f2O−

5

4 [OW +OB − (OHW +OHB)] −4 [OW −OB − (OHW −OHB)]

Table 8. Matching of the O(p4) opeartors in eq. (2.39) to the dimension-6 operators defined in

eq. (B.1).

where we have used slightly different normalization from SILH for the OHW,HB .9 The

leading order O(p2) Lagrangian in eq. (2.9) gives a contribution to OH ,Oy and O6 whose

Wilson coefficients are completely fixed by the universal nonlinearity

cH = 1, cy = −1

3
, c6 = −4

3
. (B.3)

One may wonder about the appearance of non-derivatively coupled operators in Oy and

O6 from matching to the two-derivative Lagrangian. This is because, in the SILH operator

basis the operator Or = H†HDµH
†DµH, which is present in eq. (2.9), is eliminated by a

field redefinition, thereby giving rise to the following operator identity,

H†HDµH
†DµH =

1

2
(Oyu +Oyd +Oye)−OH + 2O6 . (B.4)

Eq. (B.3) follows from this identity.

For the O(p4) operators in eq. (2.39), we list their matching to the dimension-6 op-

erators in table 8. Note that for the four-derivative operators O1 and O2, the leading

contribution to the matching appears at the dimension-8, which is why they do not appear

in table 8. This is also the case for one linear combination of the remaining five opera-

tors O3, O±4 and O±5 . As a result, these five operators give rise to only four operators in

SMEFT: OW,B,HW,HB .

In the unitary gauge, the four operators OW,B,HW,HB become

OW = 2m2
W

(
h

v
+

h2

2v2

)[
W−µ DµνW+

ν +W+
µ DµνW−ν + ZµDµνZν + twZµDµνAν

]
− tw

2
m2
WW

(3)
µν B

µν − igm2
W

cw

[
(W+

µνW
−µ −W−µνW+µ)Zν + ZµνW+

µ W
−
ν

]
− 2im2

W

(
h

v
+

h2

2v2

)[(
g

cw
(1 + 2c2w)Zν + 2eAν

)(
W+
µνW

µ− −W−µνWµ+
)

+

(
g

cw
(1 + 2c2w)Zµν + 2eAµν

)
W+
µ W

−
ν

]
− 2ig′m2

W

(
1 +

h

v

)
∂νh

v
Bµ
[
W+
µ W

−
ν −W−µ W+

ν

]
− g2

2
m2
W (W+

µ W
−
ν −W−µ W+

ν )2

+ 2g2m2
W

(
h

v
+

h2

2v2

)(
W a
µ − twδa3Bµ

) (
Wµa(W b

ν )2 −WµbW a
νW

νb
)

+
2m2

W g
2

cw
ZνW

ν3W+
µ W

µ− − m2
W g

2

cw
ZνWµ3

(
W+
µ W

−
ν +W−µ W

+
ν

)
, (B.5)

9The SILH assumes minimal coupling for gauge fields and inserts a one-loop factor for OHW,HB .
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OB = − tw
2
m2
WW

(3)
µν B

µν − 2tw
cw

m2
W

(
h

v
+

h2

2v2

)
(−swZµDµνZν + cwZµDµνAν) , (B.6)

OHW = 2m2
W

(
h

v
+

h2

2v2

)[
W−µ DµνW+

ν +W+
µ DµνW−ν + ZµDµνZν + twZµDµνAν

−W+µνW−µν −
1

2
Z2
µν −

tw
2
ZµνAµν

]
− 2igm2

W

cw

(
1

2
+
h

v
+

h2

2v2

)[
(W+

µνW
−µ −W−µνW+µ)Zν

+(c2wZ
µν + swcwA

µν)W+
µ W

−
ν

]
+ 4g2m2

W

(
1

2
+
h

v
+

h2

2v2

)(
W−µ W

+
ν W

+
[µW

−
ν] +

1

cw
W−µ ZνW

+
[µW

3
ν]

+
1

cw
W+
µ ZνW

−
[µW

3
ν]

)
− 2ig′m2

W

(
1 +

h

v

)
∂νh

v
Bµ
(
W+
µ W

−
ν −W−µ W+

ν

)
, (B.7)

OHB = 2m2
W

(
h

v
+

h2

2v2

)[
t2wZµDµνZν − twZµDµνAν −

t2w
2

(Zµν)2 +
tw
2
ZµνAµν

]
− 2igtwm

2
W

(
1

2
+
h

v
+

h2

2v2

)
(−swZµν + cwA

µν)W+
µ W

−
ν . (B.8)

Note that OW,B will contribute to the propagators of W,B gauge bosons and one should

canonically normalize the gauge boson kinetic terms in order to obtain the physical cou-

plings. To be more specific, in the unitary gauge, OW can be written as:

OW =
g2

4
(h+ v)2

(
W aµ − twδa3Bµ

)
DνW a

µν . (B.9)

Upon integration-by-parts, one can obtain a term proportional to W a
µνW

aµν , which should

be absorbed into the definition of the gauge couplings by canonically normalizing gauge

kinetic term. Similar reasoning applies to OB as well. In eq. (B.5) and eq. (B.7), we have

performed such redefinitions of the gauge couplings.
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