
Available on CMS information server CMS CR -2018/390

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
27 November 2018

Presentation layer of CMS Online Monitoring
System

Mantas Stankevicius for the CMS Collaboration

Abstract

The Compact Muon Solenoid (CMS) is one of the experiments at the CERN Large Hadron Col-
lider (LHC). The CMS Online Monitoring system (OMS) is an upgrade and successor to the CMS
Web-Based Monitoring (WBM) system, which is an essential tool for shift crew members, detec-
tor subsystem experts, operations coordinators, and those performing physics analyses.. CMS OMS
is divided into aggregation and presentation layers. Communication between layers uses RESTful
JSON API compliant requests. The aggregation layer is responsible for collecting data from hetero-
geneous sources, storage of transformed and pre-calculated (aggregated) values and exposure of data
via the RESTful API.The presentation layer displays detector information via a modern, user-friendly
and customizable web interface. The CMS OMS user interface is composed of a set of cutting-edge
software frameworks and tools to display non-event data to any authenticated CMS user worldwide.
The web interface tree-like component structure comprises (top-down) workspaces, folders, pages,
controllers and portlets. A clear hierarchy gives the required flexibility and control for content organi-
zation. Each bottom element instantiates a portlet and is a reusable component that displays a single
aspect of data, like a table, a plot, an article, etc. Pages consist of multiple different portlets and can
be customized at run-time by using a drag-and-drop technique. This is how a single page can easily
include information from multiple online sources. Different pages give access to a summary of the
current status of the experiment, as well as convenient access to historical data.This paper describes
the CMS OMS architecture, core concepts and technologies of the presentation layer.

Presented at CHEP 2018 Computing in High-Energy Physics 2018



Presentation layer of CMS Online Monitoring System

Jean-Marc André5, Ulf Behrens1, James Branson4, Philipp Brummer2,12, Sergio Cittolin4,
Diego Da Silva Gomes2, Georgiana-Lavinia Darlea6, Christian Deldicque2, Zeynep
Demiragli6, Marc Dobson2, Nicolas Doualot5, Samim Erhan3, Jonathan Richard Fulcher2,
Dominique Gigi2, Maciej Gładki2, Frank Glege2, Guillelmo Gomez-Ceballos6, Jeroen
Hegeman2, André Holzner4, Mindaugas Janulis9,11, Michael Lettrich2, Audrius Mečionis5,10,
Frans Meijers2, Emilio Meschi2, Remigius K Mommsen5, Srecko Morovic5, Vivian
O’Dell5, Luciano Orsini2, Ioannis Papakrivopoulos7, Christoph Paus6, Petia Petrova2,
Andrea Petrucci8, Marco Pieri4, Dinyar Rabady2, Attila Rácz2, Valdas Rapševičius5,13,
Thomas Reis2, Hannes Sakulin2, Christoph Schwick2, Dainius Šimelevičius2,10, Mantas
Stankevičius5,10∗, Cristina Vazquez Velez2, Christian Wernet2, and Petr Zejdl5,11

1DESY, Hamburg, Germany
2CERN, Geneva, Switzerland
3University of California, Los Angeles, Los Angeles, California, USA
4University of California, San Diego, San Diego, California, USA
5FNAL, Batavia, Illinois, USA
6Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
7Technical University of Athens, Athens, Greece
8Rice University, Houston, Texas, USA
9Vilnius University, Vilnius, Lithuania
10Also at Vilnius University, Vilnius, Lithuania
11Also at CERN, Geneva, Switzerland
12Also at Karlsruhe Institute of Technology, Karlsruhe, Germany
13Also at Vilnius University, Institute of Computer Science, Vilnius, Lithuania

Abstract. The Compact Muon Solenoid (CMS) is one of the experiments at
the CERN Large Hadron Collider (LHC). The CMS Online Monitoring system
(OMS) is an upgrade and successor to the CMS Web-Based Monitoring (WBM)
system, which is an essential tool for shift crew members, detector subsystem
experts, operations coordinators, and those performing physics analyses. CMS
OMS is divided into aggregation and presentation layers. Communication be-
tween layers uses RESTful JSON:API compliant requests. The aggregation
layer is responsible for collecting data from heterogeneous sources, storage of
transformed and pre-calculated (aggregated) values and exposure of data via the
RESTful API.
The presentation layer displays detector information via a modern, user-friendly
and customizable web interface. The CMS OMS user interface is composed of
a set of cutting-edge software frameworks and tools to display non-event data
to any authenticated CMS user worldwide. The web interface tree-like com-
ponent structure comprises (top-down): workspaces, folders, pages, controllers
and portlets. A clear hierarchy gives the required flexibility and control for con-
tent organization. Each bottom element instantiates a portlet and is a reusable
component that displays a single aspect of data, like a table, a plot, an article,

∗Corresponding author: Mantas.Stankevicius@cern.ch



etc. Pages consist of multiple different portlets and can be customized at run-
time by using a drag-and-drop technique. This is how a single page can easily
include information from multiple online sources. Different pages give access
to a summary of the current status of the experiment, as well as convenient
access to historical data.
This paper describes the CMS OMS architecture, core concepts and technolo-
gies of the presentation layer.

1 Introduction

Since the inception of CMS the Web-Based Monitoring (WBM) activity was the one that pro-
vided tools for run-time and retrospective monitoring of the detector. During the first decade
of data taking the WBM has accumulated experience and tools that provided efficient detector
monitoring [1]. In order to ensure longterm support of the manpower and technical resources
for the monitoring tools required for CMS, in 2015 it was decided to re-designed the core
functionality of former WBM into the CMS Online Monitoring System (OMS) into two lay-
ers: one for the aggregation layer and another for presentation. Framework and initial content
development took place throughout the 2017 and the first production version announced in
February of 2018. It is planned that OMS will have a full functionality starting Run III (2021,
fully replacing WBM) while active development must converge during 2019.

2 Architecture

Following best practices CMS OMS is designed to have two separate layers: aggregation
layer and presentation layer. This architecture makes a clear separation of GUI and data in
the system and makes it possible to use/query data via other automated means, like CLI,
scripts, other GUI services. Not having this separation was considered a major draw-back in
the former WBM. Layers communicate via RESTful API.

The aggregation layer [2] features multiple specialized endpoints (microservices), each
implementing the specialized SQL query. On request, the appropriate application executes as-
sociated optimized queries on Oracle database, fetches data, serializes data along with meta-
data into JSON format and returns to the client. Aggregation layer is implemented as a
standalone Java application running on Katharsis framework [3]. The application interface
follows the specification of JSON:API [4].

3 Presentation Layer

The presentation layer itself consists of two separate applications: metadata API and web
application.

3.1 Metadata API

Metadata API provides the back-end application service and access to persistent storage for
the portal configuration. Service provides a JSON:API [4] compliant interface to access, store
and update interface objects. It is a python application running on Flask [5] with database
access via SQLAlchemy framework [6]. Data is stored on Oracle relational database. Ap-
plication code follows pep8 coding guidelines [7]. It is a stateless and scalable application.
Content synchronization and integrity is ensured at the database level.



Figure 1. Major persistent objects of presentation layer

3.2 Web Application

The Web Application uses state-of-the-art technologies like ReactJS [8], Redux [9], Materi-
alUI [10], Highcharts [11]. The application is lightweight, responsive, interactive and user
friendly.

4 Content organization

Website content is organized in a hierarchical manner by enclosing the structure into the set of
persistent objects (see Fig. 1). Objects are divided into two groups: portal metadata (dynamic)
objects that can be managed by GUI administrators, and portal assets (static) objects that are
added to the portal with software updates, i.e. code base.

Workspace is a top-level container which contains folders and defines organizational unit,
like experiment project, sub-detector, etc. For example: CMS, DAQ, Pixel, CSC. Each
workspace can contain multiple folders which are the mid-level containers for grouping
pages. Page is a lowest level content container which provides the actual display of con-
tent to the end-users. A page fills a browser window and is composed of a single optional
controller and one or more portlets. For example, Run Summary, Fill Report, RBX (Read-
Out Box) Plots, etc. All above objects, workspace to page, are the dynamic portal metadata
which are stored within the metadata API persistent storage and can be created/edited/deleted
via portal management GUI section.

Controller is a filtering or selection widget which allows the user to apply selection on the
whole page, specifically on portlets within the page. Controller provides selected data object
(selection) to each page portlet and refreshes it. For example, Run selection, Run Range
selection, Fill number, etc. Portlet is a single content presentation object which presents a
single well-defined aspect of information, i.e. a single plot, a table, a set of links, etc., for
example, Main Run information table, Fill Analysis plot, RBX (Read-Out Box) FNAL (Fermi
Laboratory) analysis IV (Current-Voltage) curve. Each portlet can act as controller too where
it provides a selection to other portlets. In this way it is possible to establish the master –
detail relationship from one portlet to the other within a single page. The component is the
last object in the set which represents a reusable GUI element, like simple button, input box or
a more sophisticated - data table, dynamic plot, etc. Controllers, portlets and components are



represented as Javascript/CSS files within the application code base. All the above mentioned
portal objects are described in more details below.

4.1 Workspace

Workspace is the top level content container which is predefined and comes from the metadata
repository. At the time of writing, OMS had one central workspace - CMS. At the level of
workspaces the administration role is being checked: individual CERN users or/and e-groups
can be added into the set of workspace administrators. They are able to manage the lower
level dynamic objects of the presentation layer.

4.2 Folder

Folders are the intermediate grouping objects that contain one or more pages. At the time of
writing OMS had 4 folders: Index, Fills, Runs and Triggers. This sequence follows the actual
data taking workflow of LHC and an experiment: LHC starts a Fill by inserting bunches into
the accelerator then detector starts a Run to record event data each initiated by the Trigger.
Folders can be added, edited, arranged or removed by workspace administrators. Folders are
identified by the unique (within workspace) name or title which directly translates into the
URL path and optional description.

4.3 Page

Page is the final dynamic container which contains an optional controller and one or more
portlets (see the list in Table 1). As well as folders, pages can be added, edited, arranged or
removed by workspace administrators. Pages are identified by the unique within workspace
name or title which directly translates into the URL path and optional description. Optional
controller can be chosen from the list of available controllers while portlets can be added
afterwards. Page controller is not visible by default but can slide-in from the portal header by
clicking on the page title or selection abbreviation. Once the page is created, the workspace
administrator can add/edit/remove portlets by using the drag-and-drop technique from within
the main portal display. Once portlets were added to the page and all the content was ren-
dered, the administrator can re-arrange the page layout by dragging/re-sizing portlets. This
real-time layout editing technique allows administrators to adjust the portlet sizes to the actual
content.

4.4 Controller

Controller is a static portal object which can be edited only in the code base and the update
requires to re-deploy the application. The list of main controllers is presented in Table 2.
Each page can have no more than one controller which, on the other hand, can be used in
many pages. The controller is the special selection widget which maintains the clear defined
interface to provide the selection values to page portlets. The controller has two states - open,
all the selection components, like input boxes, drop-down boxes, buttons, etc. are visible
on the page (see Figure 3), and closed, all the selection components are hidden and only
the selection snippet is visible. This open-closed technique allows to provide sophisticated
widgets for value selection as well as hide it once the selection is done and the focus is on
the data portlets instead. Controllers are based on the re-usable controller components which
are discussed below. Eventually, a controller allows the user to apply a selection on the page,
i.e. Run range, date range, Fill number, boolean operators. All selections in a controller are
translated into a shareable URL with parameters.



Figure 2. Fill Report page. 1 - open controller, 2 - vertical Data table, 3 - horizontal Data table, 4 -
dynamic Chart, 5 - UTC and local time

Table 1. List of OMS pages (as of paper publication time)

Folder T itle Description
Index Index Start page. Features introductory and overview content.
Fills Fill Summary Brief information about LHC Fills.
Fills Fill Report Detailed information about the single LHC Fill (various ta-

bles, plots, etc.) and table with links to Runs.
Runs Run Summary Brief information about CMS Runs.
Runs Run Report Detailed information about the single CMS data taking Run

(tables, plots, etc.), links to other pages.
Runs Lumisections Detailed information about each lumisection.
Runs Prescaling List of prescale sets of each Algorithm Trigger.
Triggers L1 Current Rates Displays Trigger configuration, rate and count, Overall and

Beam Active Deadtimes.
Triggers L1 Trigger Rates Same as L1 Current Rates, but for finished CMS Run.
Triggers L1 Algorithm Report Detailed information about single L1 Algorithm Trigger,

rate and count per lumisection in tabular form and chart.
Triggers Trigger Report Full information about Trigger: menus, keys, etc.

Figure 3. Run Summary controller. Selectors: LHC Fill, CMS Run range, date range, sequence,
included subsystems



Table 2. List of main OMS controllers (13 in total as of paper publication time)

Title Description
Fill Summary Filtering by LHC Fill range, date range, era, runtime type.
Run Summary Filtering by LHC Fill, CMS Run range, date range, sequence, subsystems.
Run Report Filtering by CMS Run number.
Fill Report Filtering by LHC Fill number.
L1 Algo Trigger Filtering by Bit and CMS Run number.

Figure 4. Integrated Luminosity Chart. First bar - start of LHC stable beam, sequent bars - downtimes,
black dashed lines - start of new CMS runs

4.5 Portlet

Portlet, as well as controller, is a static portal object which can be edited only in the code
base and the update requires to re-deploy the application. Each page can have more than one
portlet which can be used in many pages as well. The portlet is the ultimate content container
which displays a single well-defined aspect of the information, like a specific table or plot.
Portlet objects maintain a specific interface which allows a page to propagate selection (con-
troller values), refresh, minimize, maximize, edit and so on. This makes it possible to re-use
portlets in many different pages as well as provide the unified and recognizable functional-
ity for the different content portlets. Portlets are based on the re-usable portlet components
which are discussed below. Every portlet has basic functionality: description tool-tip, col-
lapse(minimize), full-screen and refresh. There are many ways to refresh a portlet: refresh
the whole page, apply new selection in controller, click a button or set a timer. Portlets can
fetch data from multiple sources, combine it and visualize. Data from four endpoints is used
in order to construct Figure 4.

By definition a portlet is an isolated component, however it is possible to assign a group
number to a portlet. Multiple portlets with the same group number can communicate with
each other within the group scope, that works like "master-details" pattern (see Figure 5). The
table on the left displays several quantities of last lumisection (sub-section of a run during
which time the instantaneous luminosity is unchanging). A user can select multiple check-
boxes on the table and these quantities are plotted at the right chart over time or lumisections
(optional).

4.6 Selector

A selector is a simple portal object which is used for synchronization between controller and
portlets as well as master and detail portlets. It is identified by the name which must be unique
within the portal. If selector is attached to a certain controller than we can state that controller



Figure 5. Master-details

Figure 6. Portlet/component configuration

"speaks this language". While if the same selector is attached to the portlet than it can be said
that portlet "understands this language". Thus a selector acts as common denominator for the
controller and multiple portlets to co-exist in the same page.

4.7 Components

Main page objects - controllers and pages are driven by reusable components and custom
configuration (see list in Table 3). Components are included into the code base and imple-
mented by using Javascript/CSS. Components can define specific configuration requirements
i.e. data URL endpoint, page size, image URL, image size, etc. Some endpoints allow the
content to be added as in the frame of configuration, i.e. portlet which displays links (URLs)
to other resources reads a list of links from the configuration. Example configuration is in
Figure 6. First block dynamically generates a link using pattern, second block converts du-
ration in seconds into human readable format (hh:mm:ss), third block formats received value
and sets no more than 3 digits of precision.

5 Conclusions

This paper described the architecture and implementation of the Online Monitoring System
(OMS). It provides a clear separation between data retrieval (querying and formatting, aggre-
gation API) and presentation (formatting and display, presentation) layers. This separation
allows the two layers to be developed and deployed independently as long as the specified
interface is maintained.

Hierarchical content organization and the metadata API of the Presentation Layer pro-
vides flexibility in content display organization by rapid display re-factoring without code
changes. In addition, the presentation layer object schema makes it possible to reuse con-
trollers, portlets and components on any level of organization thus providing a consistent
look-and-feel and functionality throughout the application by reducing the need for devel-
opment. Administration access control on workspace level is well leveraged for the CMS



Table 3. List of main generic OMS components (around 20 in total as of paper publication time)

Title Description
Datatable Data table is most advanced and most used component in OMS. Data table can

be configured to display vertically (key:value) or horizontally (multiple rows vs
columns). Horizontal data table provides extensive functionality to manipulate
dataset: sort by column, add/remove columns, filter on column, paginate and change
page size. Numerical values within a page can be aggregated by one of the func-
tions: avg/sum/min/max. Units are displayed in a header row of a data table in
KaTeX [12] format. Under certain conditions column might have different units
within a page, in this case data table displays both value and units in the same cell.

Image Displays one or more images. Only one image is displayed at a time, carousel
allows iterate over multiple images.

Links Displays both static and dynamic links.

experiment needs as most of the performance and control management is done on the group
or project level.

References

[1] J.A. Lopez-Perez, K. Maeshima, W. Badgett, U. Behrens, I. Chakaberia, Y. Jo,
S. Maruyama, J. Patrick, V. Rapsevicius, A. Soha et al., J. Phys. : Conf. Ser. 898,
092040. 8 p (2017)

[2] C. Wernet, C. Zirpins, A. Petrucci, Unifying access to data from heterogeneous sources
through a RESTful API using an efficient and dynamic SQL-query builder (2017), http:
//cds.cern.ch/record/2644673

[3] Katharsis-framework, https://github.com/katharsis-project/
katharsis-framework

[4] jsonapi.org, https://jsonapi.org/
[5] Flask web development, http://flask.pocoo.org/
[6] The python sql toolkit and object relational mapper, https://www.sqlalchemy.org/
[7] Pep 8 - style guide for python code, https://www.python.org/dev/peps/
pep-0008/

[8] React - a javascript library for building user interfaces, https://reactjs.org/
[9] Redux - predictable state container for javascript apps, https://redux.js.org/

[10] Material-ui - react components that implement google’s material design, https://
material-ui.com/

[11] Highcharts - make your data come alive, https://www.highcharts.com/
[12] Katex. the fastest math typesetting library for the web, https://katex.org/


