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Abstract. The final ringdown phase in a coalescence process is a valuable laboratory to test
General Relativity and potentially constrain additional degrees of freedom in the gravita-
tional sector. We introduce here an effective description for perturbations around spherically
symmetric spacetimes in the context of scalar-tensor theories, which we apply to study quasi-
normal modes for black holes with scalar hair. We derive the equations of motion governing
the dynamics of both the polar and the axial modes in terms of the coefficients of the effec-
tive theory. Assuming the deviation of the background from Schwarzschild is small, we use
the WKB method to introduce the notion of “light ring expansion”. This approximation is
analogous to the slow-roll expansion used for inflation, and it allows us to express the quasi-
normal mode spectrum in terms of a small number of parameters. This work is a first step
in describing, in a model independent way, how the scalar hair can affect the ringdown stage
and leave signatures on the emitted gravitational wave signal. Potential signatures include
the shifting of the quasi-normal spectrum, the breaking of isospectrality between polar and
axial modes, and the existence of scalar radiation.
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1 Introduction

The detection of gravitational waves by LIGO and Virgo [1–3] has opened up a new window
into the strong gravity regime. Up until now, observations appear to be very well described
by General Relativity (GR). Nevertheless, as more and more events are observed, it becomes
important to determine quantitatively the extent to which alternative theories of gravity are
ruled out. Effective field theories (EFTs) provide a framework to carry out this program in
a model-independent way. They also provide a general foil against which GR can be tested.
The only inputs required are the number and type of “light” degrees of freedom in the gravity
sector, and the symmetries that constrain their interactions.

If the only relevant degrees of freedom in the gravity sector are the two graviton polariza-
tions, the only modification of GR that can (and should) be considered is the addition of
higher powers of curvature invariants to the Einstein-Hilbert Lagrangian [4]. These higher-
derivative operators modify (among other things) the phase, amplitude and polarization of
gravitational waves. Such corrections are suppressed schematically by powers of ω/Λ, where
ω is the frequency of gravitational waves and Λ is the scale at which “new physics” kicks in.
Observations can then be used to place a lower bound on the magnitude of Λ, providing a
model-independent constraint on new “heavy” physics in the gravitational sector.1 The exact
same strategy is used at the LHC to place model-independent bounds on physics beyond the
Standard Model.

In this paper, we will focus on less minimal modifications of GR, in which the light degrees
of freedom include one additional light scalar besides the graviton—i.e., we will consider
scalar-tensor theories. Many examples of scalar-tensor theories exist of course, but our goal
is to be general: what is the most general dynamics of fluctuations around a black hole
with scalar hair? We are particularly interested in the way in which this extra scalar mode
affects the ringdown that takes place at the end of the merger process. Of course, testing
gravity using the ringdown is not a new idea (see e.g. [6, 7]). However, until now these tests
have been carried out on a model-by-model basis (e.g. [8, 9]). In this paper, we propose
instead a different approach—based on EFT techniques—which can be used to place model-
independent constraints on scalar tensor theories. More precisely, we introduce an EFT
framework to describe quasi-normal modes (QNMs) of static, isolated2 black hole solutions
with a scalar hair.

It is well known that such solutions are hard to come by if we demand asymptotic flatness.3

This fact is encoded in a variety of “no-hair theorems” which, under fairly general assump-
tions, forbid the existence of non-trivial scalar profiles surrounding black hole solutions (see
e.g. [12–14]). These assumptions can nevertheless be violated, and as a result several solu-
tions with non-trivial scalar hair can be found in the literature (see e.g. [15–17]). Depending
on the circumstances, such hairy solutions can even be dynamically preferred over solutions
with a vanishing scalar profile [18, 19]. Indeed, a fairly simple way to endow black holes

1Such constraint can then be mapped onto specific models with a procedure known as matching [5].
2A more realistic program would require to estimate to what extent environmental effects are negligible

or affect instead the QNM spectrum. Disentangling the impact of the astrophysical environment from the
observations is a key ingredient in order to really constrain additional degrees of freedom in the gravitational
sector. For a study in this direction see e.g. [10].

3In the presence of a negative cosmological constant, instead, a non-minimal coupling of the form Φ2R is
sufficient to give rise to a stable scalar hair in a certain range of parameter space [11].
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with hair does not even involve sophisticated dynamics; all one needs is non-trivial boundary
conditions. Take the example of a minimally coupled, free scalar with a standard kinetic
term: Jacobson [20] showed that a black hole has scalar hair if the scalar approaches a pure
function of time at spatial infinity. The amount of hair, quantified by the scalar charge to
mass ratio for instance, is generally small if the time scale of variation (for instance, Hubble
time scale) is long compared to the black hole horizon size [21]. However, if the time variation
is due to close-by objects (e.g. stars which can well have scalar hair), the induced black hole
scalar hair could be non-negligible [22].4 For a fairly exhaustive review of no-hair theorems
as well as asymptotically flat solutions with scalar hair, we refer the reader to [23].

While allowed from a technical viewpoint, one may still worry that hairy black holes could
already be ruled out by existing observations. For instance, it was recently argued [24]
that a non-negligible amount of scalar hair would be incompatible with present cosmological
constraints when combined with current bounds on the speed of propagation of gravitational
waves [25]. Such a claim however is based on the assumption that the scalar field remains
weakly coupled from cosmological scales all the way to the scales relevant for black hole
mergers. This does not necessarily have to be the case, as was pointed out for instance in
the context of Horndeski theories [26]. Moreover, the speed of propagation constraint can be
viewed as putting a lower bound on the cut-off scale associated with certain higher dimension
operators. The bound is significant for cosmological applications, but sufficiently weak to
allow non-trivial effects on the horizon scale of astrophysically interesting black holes.

In fact, one could even argue that a scalar hair is a natural feature to consider if we are
after observable departures from GR. The reason is that, if the scalar field profile around two
well-separated black holes is initially constant, scalar perturbations can be excited at linear
level by the merging process only if the scalar couples to the Riemann tensor. For instance,
one can consider a coupling between Φ and the Gauss-Bonnet invariant GGB = RµνλρR

µνλρ−
4RµνR

µν + R2 of the form f(Φ)GGB, which is known to generate scalar hair [27, 28]. This
argument is admittedly more suggestive than it is rigorous, as it discounts for instance the
possibility that a small hair of cosmological origin [20] could get amplified by non-linearities
during the merger process, and in turn lead to a sizable emission of scalar modes. Regardless,
we are finally in a position where the absence of scalar hair is a feature that can be tested
experimentally rather than ruled out by no-go theorems based on a set of assumptions.
As such, one can also view our formalism as a pragmatic attempt to study the possible
observational consequence of a scalar hair during ringdown.

Another important constraint that scalar-tensor theories need to contend with is the lack of
evidence for additional polarizations in the gravitational wave spectra observed so far [29, 30].
This, however, should be mostly viewed as a constraint on the strength of their coupling
to baryons rather than on their actual existence [31, 32]. To illustrate this point, let’s
consider scalar-Gauss-Bonnet gravity [16] without a tree-level coupling between the scalar
and baryons. The couplings with baryons induced by radiative corrections will be suppressed
by derivatives due to the shift invariance of this model, and thus can be easily rendered weak
enough to be undetectable.5 At the same time, one could have a significant departure from

4A spatial gradient in the boundary condition is expected to have a similar effect.
5Strictly speaking this is true only in the asymptotic region close to the detector, where the background

value for the scalar hair vanishes and the metric is nearly Minkowski. Indeed, in general, a non-negligible
mixing with the graviton degrees of freedom induces shift-symmetry breaking corrections suppressed by powers
of MPl and proportional to background quantities, once the non-dynamical metric components are integrated
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the Schwarzschild metric for sufficiently large values of the scalar charge. In this example, the
polarizations of QNMs observed would be the same as in GR, although their spectrum could
be significantly different. As a matter of fact, the QNM spectrum could differ significantly
from the GR one even if the metric remained exactly Schwarzschild, as is the case for the
so-called stealth solutions [35, 36]. This is because metric perturbations can mix with the
scalar perturbation on a spherically symmetric background.

The spectrum of QNMs predicted by GR in the static case is comprised of two isospectral
towers of modes that are respectively even and odd under parity [37]. Setting aside additional
polarizations for a moment, modifications of GR can then be classified into three distinct
groups, depending on whether they (1) modify the spectrum of even and odd modes while
preserving isospectrality; (2) break isospectrality; or (3) mix the even and odd modes, so that
there is no longer a distinction between the two. The latter possibility is realized if the scalar
field that acquires a non-trivial profile is odd under parity. In fact, a spherically symmetric
profile for a pseudo-scalar spontaneously breaks parity, and therefore perturbations around
it are not parity eigenstates. The approach we develop in this paper will make it explicit
that this third option is always a higher derivative effect.

In this paper, we will make a first step towards a systematic exploration of the three possi-
bilities mentioned above by introducing an EFT for perturbations around static black holes
with scalar hair (Sec. 2). Our approach will follow blueprints that were first developed in
the context of inflation [38]. The main idea is that, if the scalar field has a non-trivial radial
profile, one can always choose to work in “unitary gauge” and set to zero the scalar pertur-
bation. This can be achieved by performing an appropriate radial diffeomorphism. When
this is done at the level of the action, one is left with an effective theory that is invariant
under time- and angular-diffeomorphisms, but not under radial ones.

We will show how to appropriately reorganize this action in such a way that only a finite num-
ber of terms contribute to the Lagrangian at any given order in perturbations and derivatives.
As a result, we will see that at quadratic order in perturbations (which is all we need to study
QNMs) and lowest order in derivatives, there are at most three operators that we can add to
the Einstein-Hilbert Lagrangian. Moreover, it turns out that these three operators only affect
the even sector (meaning the odd sector is completely determined by the background metric,
which could still be different from Schwarzschild in general).6 The power of our approach
lies in the fact that these three most relevant operators, whose effect will be studied in detail
in Secs. 5–6.2, could in principle arise from an infinite number of diff-invariant scalar-tensor
theories.

One obvious drawback of working with a theory that is not invariant under radial diffeo-
morphisms is that its action will contain arbitrary functions of the radial coordinate. These
functions will in turn appear in the potential for the QNMs and, because of this, calculating
their spectrum could at first sight seem a hopeless task. In order to make it more tractable,
we can exploit the fact that current gravitational wave observations appear to be consis-
tent with GR. This suggests that, barring (un)fortunate coincidences, we can assume the

out. The non-invariance under shifts of the Hamiltonian constraints, responsible for this fact, is at the core
of the construction of shift-symmetric adiabatic modes on FLRW spacetimes [33, 34].

6In other words, the relevant potential for the odd modes depends exclusively on the background metric
components, with exactly the same functional dependence as in GR. This still leaves open the possibility of
a modification to the odd QNM spectrum if the metric is different from Schwarzschild.
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background to be “quasi-Schwarzschild”. This is certainly a natural assumption to make
from an EFT viewpoint, and when coupled with the WKB approximation [39, 40] it allows
us to express the QNM spectrum (Sec. 3) in terms of a small set of parameters—namely
the values and derivatives of the EFT coefficients and the background metric components
evaluated at the light ring. We call this procedure light ring expansion. This state of affairs
should be reminiscent of what happens in inflation, where a WKB approximation can also
be employed to calculate the spectrum of primordial perturbations [41], and departures from
exact de Sitter is also encoded by a small number of parameters—the first few derivatives of
the inflaton potential. Our light-ring expansion is the analog of the usual slow-roll expansion
in inflation.

We should emphasize however that our EFT remains a useful tool even in situations where
the WKB approximation is not needed. For instance, this is the case if the EFT coefficients
are known functions of the radius. Then, our approach still provides a particularly convenient
way of organizing the calculation of the QNM spectrum in scalar-tensor theories.

This is not the first time that the idea of writing down an EFT for perturbations around
spherically symmetric backgrounds is put forward in the literature. For instance, an approach
very similar to the one we are proposing here was first explored in [42]. The authors of that
paper also focused their attention on static black hole solutions with a scalar hair, and chose
to work in unitary gauge. However, they performed a 2+1+1 ADM decomposition and con-
sidered the most general action that is manifestly invariant under angular diffeomorphisms,
with the additional requirement that its coefficients depend only on the radial coordinate. 7

This construction is however more general than is necessary: it gives rise to an effective action
that is not invariant under time-diffeomorphisms, and involves more free functions. Keep in
mind that a single scalar acquiring a static radial profile can only define a single preferred
radial foliation, defined by the condition Φ = constant. As we discussed earlier, by working
in unitary gauge one should obtain a theory that only breaks radial diffeomorphisms. For
this reason, we expect that the effective action put forward in [42] will generically propagate
two scalar degrees of freedom (besides the graviton, of course) already at lowest order in the
derivative expansion. In other words, tunings are necessary to ensure that the low energy
spectrum contains a single scalar mode in the construction of [42]. In our formalism, these
tunings are already enforced by symmetries.

More recently, a different approach to perturbations of spherically symmetric gravitational
solutions was proposed in [43]. The advantage of this approach is that it applies to any
number and type of light degrees of freedom and that, unlike ours, none of these are required
to have a non-trivial background configuration—i.e., there is no need to consider “hairy”
solutions. The downside is that an in principle straightforward but in practice quite lengthy
procedure is needed to ensure invariance under diffeomorphisms. This procedure was car-
ried out explicitly in [43, 44] for a certain class of scalar tensor-theories assuming that the
background metric is exactly Schwarzschild and that the black hole has no scalar hair. This
procedure would need to be redone for more general backgrounds.

Invariance under diffeomorphisms is built into our formalism from the very beginning.8 More-

7Based on invariance under angular diffeomorphisms, these coefficients could in principle also depend on
time. However, the requirement that they are time-independent is technically natural, because it is protected
by invariance under time-translations, which is an isometry of the background we are considering.

8Note, however, that invariance under temporal and angular diffeomorphisms is not maintained on a term
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over, the derivative counting in unitary gauge is such that one is naturally led to consider
“beyond Horndeski” operators [45]. These operators do not lead to additional propagating
degrees of freedom, but would naively appear to be of higher order in the formalism of [43].
Finally, we should point out that our approach could be easily extended to include additional
light degrees of freedom, as was already done for the EFT of inflation in [46].

A road map: let us give a road map of the main results of this paper, especially for readers
who are not interested in the technical details.

• The most general action for perturbations around a spherically symmetric background
at second order in derivatives is given in Eq. (2.4). Note that the background needs
not be that of a black hole in general. The background metric is given by Eq. (2.1)
while the background scalar profile is some general function of radius Φ̄(r).

• The quadratic action for perturbations in Eq. (2.4) does not involve any epsilon tensor.
This means that, at quadratic order in derivatives, there is no way to tell whether the
underlying covariant scalar-tensor theory involves a pseudoscalar or a scalar. This
implies that mixing between even and odd modes cannot occur at this order in the
derivative expansion. In other words, mixing is always a higher derivative effect.

• The EFT for perturbations involves free functions of the radius r. For practical ap-
plications, the freedom can be much reduced by assuming small departures from GR.
In that case, the position of the light ring is slightly displaced from its GR value.
Adopting the WKB approximation, we introduce the light-ring expansion to express
the quasi-normal spectrum in terms of the potential and its derivatives at the GR light
ring. This is discussed in Sec. 4 and a concrete example is provided in 5.2.2.

• The quadratic action simplifies greatly if one restricts to the leading order in deriva-
tives, given in Eq. (5.6) for odd perturbations, and Eq. (6.5) for even perturbations.
There are only 2 free radial functions Λ(r) and f(r) in the odd perturbation action
(3 in the even perturbation action, with the addition M4

2 (r)), assuming a conformal
transformation to the Einstein frame has been performed. Working out the experimen-
tal signatures would require specification of the coupling of matter to both the metric
and scalar perturbations (see discussion in Sec. 7).

• For this lowest-order-in-derivatives action, there is a simple (tadpole) constraint on the
background metric given by Eq. (2.14). In this case, the functions Λ(r) and f(r) are
completely determined by the background metric (Eqs. (2.11) and (2.12), setting α = 0
and M1 = MPl assuming conformal transformation to Einstein frame).

• The general metric perturbations are labeled in a manner following Regge and Wheeler
[47] (Eqs. (3.8) and (3.7), or more explicitly Eqs. (5.1) and (6.1)). We adopt the
Regge-Wheeler-unitary gauge whenever a gauge choice is made. This means the scalar
field fluctuation δΦ = 0, the odd sector metric perturbation h2 = 0 (Eq. (5.1)) and
the even sector metric perturbations H0 = G = 0 (Eq. (6.4)). Note that Regge and
Wheeler also chose H1 = 0 which we can no longer do because of having set δΦ = 0.

• For the lowest-order-in-derivatives action, the odd sector perturbations obey a simple
equation of motion (see Eqs. (5.8) and (5.9)), which takes the same form as in GR i.e. it

by term basis in the action—see discussion around Eq. (2.4). Also, invariance under radial diffeomorphism is
manifest only after introducing the Goldstone π—see discussion in Sec. 6.2.
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has the same dependence on the background metric (2.1) and its derivatives, though the
background metric itself can in general be different from that of GR. The corresponding
action can be read off from Eqs. (5.17) and (5.18) by setting α = M2

10 = M12 = 0.
The dynamics of the even sector is significantly more complicated than that of the odd
sector—the same is true in GR, but we also have an additional scalar mode—-and the
corresponding action is given by Eq. (6.5). Nonetheless, the speeds of propagation of
the even modes are simply expressed by Eq. (6.13).

• Our action is invariant under time and angle diffeomorphisms. Restoring radial diffeo-
morphism invariance can be achieved by introducing a Goldstone mode π. This, and
the decoupling limit, is discussed in Sec. 6.2.

• For readers interesting in going beyond the lowest order in derivatives, for instance
necessary to describe theories such as the galileon or a scalar coupled to the Gauss-
Bonnet term, a discussion can be found in Sec. 5.3.

Conventions: throughout this paper we will work in units such that c = ~ = 1 and adopt a
“mostly plus” metric signature. Unless otherwise specified, we will work in spherical coordi-
nates with Greek indices µ, ν, λ, ... running over the (t, θ, φ, r) components, lowercase Latin
indices a, b, c, ... from the beginning of the alphabet running over the (t, θ, φ) components,
and lowercase Latin indices i, j, k, ... from the middle of the alphabet running over the (θ, φ).
Finally, we will denote the scalar field with Φ, to avoid any potential confusion with the
angular variable φ.

A note regarding our notation on the transformed quantities. By transform we mean spherical
harmonic transform and/or Fourier transform. Take the example of the metric fluctuation
variable h0 (Eq. (3.8) or Eq. (5.1)). We use the same symbol h0 to denote (1) the fluctuation
in configuration space i.e. a function of time and space h0(t, r, θ, φ), or (2) the fluctuation in
spherical harmonic space i.e. h0(t, r, `,m) (where the spherical harmonic Y`m(θ, φ) has been
used), or (3) the fluctuation in Fourier/spherical harmonic space i.e. h0(ω, r, `,m) (where the
spherical harmonic Y`m(θ, φ) and the Fourier wave e−iωt have been used). We often omit the
arguments for h0 altogether and rely on the context to differentiate between these different
meanings. See the discussion around Eqs. (3.9) and (3.10) for more details.

2 Effective theory in unitary gauge

In this Section we construct an effective theory for perturbations around static and spherically
symmetric backgrounds. We highlight here the main steps, mostly focusing on the results,
and refer to App. A for all the details. The procedure closely follows the logic underlying
the construction of the EFT of inflation [38, 48], but with respect to the case of Friedmann-
Lemâıtre-Robertson-Walker (FLRW) spacetimes some important differences arise at the level
of perturbations, as we shall discuss in details.

We assume that the theory consists of the metric gµν and a single scalar degree of freedom Φ,
which takes on an r-dependent profile Φ̄(r) that sources the background metric ḡµν , defined
by

ds2 = −a2(r)dt2 +
dr2

b2(r)
+ c2(r)

(
dθ2 + sin2 θdφ2

)
. (2.1)
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Notice that, without loss of generality, one is always free to rescale the radial coordinate in
such a way to get rid of one of the three functions in (2.1). Nevertheless, in this Section, we
will keep the metric in the redundant form (2.1): this will make the comparison with known
models in the current literature more transparent.

A convenient way of describing the low energy physics for the tensor and scalar excitations
is to work in the unitary gauge, defined by δΦ ≡ 0. This condition is equivalent to using
the radial diffeomorphism invariance to fix a specific hypersurface in the radial foliation
of the spacetime manifold.9 After gauge fixing, the residual symmetries of the action are
the temporal and angular diffeomorphisms. Therefore, besides the Riemann tensor, the full
metric gµν , covariant derivatives ∇µ and the epsilon-tensor εµνλρ, the most general unitary
gauge action contains as additional ingredients the contravariant component grr, the extrinsic
curvature Kµν associated with equal-r hypersurfaces and arbitrary functions of r. Explicitly,
it takes on the form

S =

∫
d4x
√
−gL

(
gµν , ε

µνλρ, Rµναβ , g
rr,Kµν ,∇µ, r

)
. (2.2)

Now, any bona fide effective theory for perturbations around the time-independent, spheri-
cally symmetric background metric (2.1) can be obtained by expanding each operator in the
action (2.2) in fluctuations up to some order in the number of fields and derivatives. In this
respect, it turns out that the symmetries of the background play a crucial role in dictating
the structure of the building blocks entering the final action for perturbations. In order to
make this fact manifest, it is worth reviewing briefly how the construction is implemented
in the context of FLRW backgrounds [38, 48]. This will also help clarifying the differences
arising in systems with spherical symmetry. Let us denote with O = {Rµναβ , g00,Kµν} the
building blocks of the EFT on time-foliated FLRW spacetimes [38]. Here Kµν is now the
extrinsic curvature associated with the constant-time hypersurface, not to be confused with
the analogue in (2.2). Since the hypersurface is maximally symmetric, a generic background
quantity Ō can always be written just in terms of the background metric, the unit normal
vector nµ and functions of time [38]. For instance, K̄µν = H(t)h̄µν , where hµν is the induced
metric and H(t) is the Hubble function. This remarkable fact allows to define the pertur-
bation δO associated with a generic operator O as follows: O = O(0) + δO, where (i) O(0)

contains the background value, i.e. O(0) ≡ Ō (where “¯” denotes setting the perturbations
to zero), while δO starts linearly in perturbations, and (ii) both O(0) and δO transform

covariantly. For instance, one can split Kµν = H(t)hµν + δKµν , where both K
(0)
µν ≡ H(t)hµν

and δKµν are covariant quantities [38]. As a result, all the operators in the Lagrangian for
perturbations of [38] are separately invariant under residual (spatial) diffeomorphisms, and
counting powers of δKµν is the same as counting the order of perturbations. In the class of
theories that non-linearly realize time translation invariance, this turns out to be a distinc-
tive feature of the FLRW subclass and crucially relies on the high degree of symmetry of the
background (i.e. homogeneity and isotropy) [38]. By contrast, in the case of non-maximally
symmetric backgrounds of the type in (2.1), one cannot define for all the operators in (2.2)
perturbations that transform covariantly under residual (temporal and angular) diffeomor-
phisms. As an example, consider the extrinsic curvature Kµν in (2.2). On the background,
K̄ab = 1

2∂rh̄ab (see App. A) and it is clear from (2.1) that K̄ab��∝ h̄ab. As a byproduct, there

is no way to define a K
(0)
µν in terms of the metric only in such a way that it transforms

9Notice that this requires a nontrivial background scalar profile, i.e. Φ̄′(r) 6= 0.
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covariantly.10 Thus, we define δKµν by Kµν − K̄µν , and it is not a covariant tensor. The two
main consequences of this fact are: i) new independent operators are in principle allowed
at any order in perturbations, including as we will see one additional tadpole; ii) invariance
under residual (temporal and angular) diffeomorphisms in general will not be manifest in the
Lagrangian at a given order in perturbations i.e. an object like δKµνδK

µν is not invariant
because δKµν is not a covariant tensor.

In the case of spherically symmetric backgrounds, the perturbation of a given operator Oi
that belongs to the building blocks {Rµναβ , grr,Kµν} or their derivatives can be defined by
subtracting the background value of the operator, δOi ≡ Oi−Ōi. Even if the δOi so defined
does not transform covariantly, at a given order n in the number of perturbations, the most
general action will be of the form:

S(n) =

∫
d4x
√
−g

∑
i1,...,in

C
(n)
i1,...,in

(r)δOi1 . . . δOin , (2.3)

where the indices im run on the operators up a to given order in derivatives. Now, for every

choice of the functions of the radial coordinate C
(n)
i1,...,in

(r) there is clearly a gauge invariant
Lagrangian (with respect to temporal and angular diffs.) of the form (2.2) such that its
expansion in perturbations up to order n gives the desired coefficients. On the other hand, in
general, at fixed order n a specific Lagrangian (2.2) in two different gauges will give rise to an

action for perturbations with different values for the coefficients C
(n)
i1,...,in

(r), so a Lagrangian
of the form (2.3) is well defined only once the gauge choice for perturbations is made. This
aspect, as we will see in the next sections, does not turn out to be a limitation in any practical
application of the EFT for perturbations that we are constructing.

As we prove in App. A, the most general action for perturbations in unitary gauge up to
quadratic order and with no more than two derivatives can be written as

S =

∫
d4x
√
−g
[

1

2
M2

1 (r)R− Λ(r)− f(r)grr − α(r)K̄µνK
µν

+M4
2 (r)(δgrr)2 +M3

3 (r)δgrrδK +M2
4 (r)K̄µνδg

rrδKµν

+M2
5 (r)(∂rδg

rr)2 +M2
6 (r)(∂rδg

rr)δK +M7(r)K̄µν(∂rδg
rr)δKµν +M2

8 (r)(∂aδg
rr)2

+M2
9 (r)(δK)2 +M2

10(r)δKµνδK
µν +M11(r)K̄µνδKδK

µν +M12(r)K̄µνδK
µρδKν

ρ

+ λ(r)K̄µρK̄
ρ
νδKδK

µν +M2
13(r)δgrrδR̂+M14(r)K̄µνδg

rrδR̂µν + . . .

]
,

(2.4)

where R̂µν is the Ricci tensor built out of the induced metric hµν .

A few comments are in order at this point. As anticipated above, one has formally a larger
number of operators for perturbations with respect to [38]. In particular, there is in principle
an additional tadpole parametrized by the function α(r), which, together with Λ(r) and f(r),
will be determined by the Einstein equations.11

10For instance, one might be tempted to define K
(0)
µν = 1

2
∂rhµν , but this is not a good tensor under r

dependent (t, θ, φ) diffeomorphisms.
11The analog of the additional tadpole term in the case of the EFT for inflation would be K

(0)
µν K

µν , and this
can be shown to be rewritable in terms of the other tadpole terms, for an FLRW background (see Appendix
of [38]).
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Furthermore, notice that in general the r-dependence of the coefficient M2
1 (r) can be re-

absorbed by a conformal transformation that brings us back to the Einstein frame. This will
generically affect the coupling to additional matter fields, which have been left unexpressed
in (2.4). We will have more to say about this in Sec. 7.

A remarkable feature of the quadratic action above is that it does not depend on the epsilon
tensor. In the covariant action for the underlying scalar-tensor theory, epsilon tensors will
appear if either (1) the action is not invariant under parity, or (2) the scalar field is odd
under parity, i.e. it is a pseudo-scalar. In the first case parity is explicitly broken, in the
second case it is spontaneously broken by the scalar hair. Both types of breaking would lead
to a mixing between even and odd perturbations. However, the fact that an epsilon tensor
cannot appear at second order in derivatives in perturbations means that mixing is always a
higher derivative effect. In other words, at lowest order parity is an accidental symmetry of
our action for perturbations.12

It is worth also commenting on the fact that some of the combinations among the operators
in (2.4) may secretly propagate an extra unwanted ghost-like degree of freedom.13 The
absence of this kind of pathology can be guaranteed by enforcing degeneracy conditions,
which determine specific relations among some of the coefficients in (2.4) therefore reducing
the number of independent operators in the EFT. This study requires in general a detailed
classification of the Hamiltonian constraints associated with (2.4). However, since in the rest
of the paper we will mainly focus on the leading order terms in the derivative expansion,
these complications will never affect our discussion and hence can be safely disregarded in
the following.

Finally, we conclude this section stressing again that the form of the unitary gauge action
(2.4) is dictated only by the spontaneous breaking pattern of the Poincaré group down to
spatial rotation and time translation invariance. In other words, there is no input from
additional internal or spacetime symmetries, which would further constrain the couplings
in the effective action (2.4). We will not discuss this possibility here, leaving it for future
work.14

2.1 Tadpole conditions

In this Section we focus on the tadpole operators in the EFT (2.4),

Stadpole =

∫
d4x
√
−g
[

1

2
M2

1 (r)R− f(r)grr − Λ(r)− α(r)K̄µνK
µν

]
. (2.5)

12A concrete example is provided by Chern-Simons gravity [49, 50]. In this case, the non-minimal coupling
ΦRµνλρR̃

µνλρ requires Φ to be a pseudoscalar. The expansion of this term up to quadratic order in per-
turbations contains several terms. Some of these terms contain two derivatives acting on perturbations and
therefore yield a contribution to the action in Eq. (2.4). However, the only term in which derivatives and
metric perturbations are actually contracted with each other through an epsilon tensor is Φ̄δRµνλρδR̃

µνλρ.
This term contains two derivatives acting on each metric perturbation, and thus it is a higher derivative
correction to the action (2.4).

13This well-known fact has already been discussed in the unitary gauge language in the context of the EFT
for FLRW spacetimes in [51].

14For a discussion on how to impose additional internal symmetries, e.g. a shift symmetry of the type
Φ→ Φ+c, in the unitary gauge action, we refer the interested reader to [34], where this is explained in details
in the context of FLRW cosmologies.
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In particular, we shall see that the Einstein equations can be used to fix Λ and f in terms of
the background metric (2.1), M2

1 and α. In addition, they provide a first order differential
equation which can be used to relate M2

1 and α. In this respect, we start writing the
most general energy momentum tensor compatible with the symmetries of the system as
Tµν = diag(−ρ, pr, pΩ, pΩ), being pΩ and pr the tangential and radial pressures respectively.
Plugging into the Einstein equations(

Rµν −
1

2
Rgµν −∇ν∇µ + gµν�

)
M2

1 − Tµν = 0 , (2.6)

one can solve for the fluid variables and find

T 0
0 = −ρ = b2

(
2c′′

c
+
c′2

c2
+

2b′c′

bc
− 1

b2c2

)
M2

1 + b2
(
b′

b
+

2c′

c

)
(M2

1 )′ + b2(M2
1 )′′ , (2.7)

T rr = pr = b2
(

2a′c′

ac
+
c′2

c2
− 1

b2c2

)
M2

1 + b2
(
a′

a
+

2c′

c

)
(M2

1 )′ , (2.8)

T ij = δij pΩ = δij b
2

[(
a′′

a
+
c′′

c
+
a′b′

ab
+
a′c′

ac
+
b′c′

bc

)
M2

1 +

(
a′

a
+
b′

b
+
c′

c

)
(M2

1 )′ + (M2
1 )′′
]
.

(2.9)

For our purpose, Tµν comes from the terms in Eq. (2.5) beyond the Einstein Hilbert term.
Using Eq. (B.9) for the variation of the extrinsic curvature, the background energy momen-
tum tensor Tµν associated with the tadpole action (2.5) reads

Tµν = −(fgrr + Λ + αKαβK
αβ)gµν + 2fδrµδ

r
ν

− αKαβK
αβnµnν −∇λ(αKλ

µnν)−∇λ(αKλ
ν nµ) +∇λ(αKµνn

λ) , (2.10)

where we dropped the bar everywhere for simplicity. Substituting in (2.7)-(2.8), one can
solve for Λ(r) and f(r):

f(r) =

(
a′c′

ac
− b′c′

bc
− c′′

c

)
M2

1 +
1

2

(
a′

a
− b′

b

)
(M2

1 )′ − 1

2
(M2

1 )′′

−
(

3a′2

2a2
− a′b′

2ab
− a′c′

ac
+
c′2

c2
− a′′

2a

)
α+

a′

2a
α′ , (2.11)

Λ(r) = −b2
(
c′′

c
+
a′c′

ac
+
b′c′

bc
+
c′2

c2
− 1

b2c2

)
M2

1 − b2
(
a′

2a
+
b′

2b
+

2c′

c

)
(M2

1 )′ − b2

2
(M2

1 )′′

− b2
(

3a′2

2a2
− a′b′

2ab
− a′c′

ac
+
c′2

c2
− a′′

2a

)
α+

b2a′

2a
α′ . (2.12)

Eq. (2.9) provides a differential equation for the combination M2
1 + α:(

a′

a
− c′

c

)
(M2

1 + α)′ +

(
a′′

a
− c′′

c
+
a′b′

ab
+
a′c′

ac
− b′c′

bc
− c′2

c2
+

1

b2c2

)
(M2

1 + α)

+ 2α

(
c′2

c2
− a′2

a2
− 1

2b2c2

)
= 0 . (2.13)
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After introducing M̃2
1 ≡ M2

1 + α, one can solve this equation algebraically for α and then
plug the solution back into Eqs. (2.11) and (2.12), thus obtaining three expressions for f,Λ
and α in terms M̃2

1 and its derivatives. In other words, of the 4 free functions of radius in
the tadpole action (2.5), only one combination (i.e. M̃2

1 ) is truly free, the others are fixed
once M̃2

1 and the background metric are specified.

It is worth noticing that, while the first three terms in (2.5) are generically expected in
every genuine theory describing the dynamics of a scalar degree of freedom coupled to the
two graviton helicities, the tadpole α(r)K̄µνK

µν is present only in higher derivative theories
involving powers of the extrinsic curvature Kµν ∼ ∇µ∇νΦ. For instance, in the context of
theories with second order equations of motion, this is the case of the quartic and quintic
Horndeski operators [52–54]. Otherwise, in theories involving at most the cubic Horndeski
[52–54], i.e. with a Lagrangian of the form P (X,Φ) +G(X,Φ)�Φ where X ≡ ∇µΦ∇µΦ, the
α-tadpole is not generated. Then, the background equations are given by (2.11)-(2.13) with
α = 0. Forgetting for a moment possible couplings to additional matter fields and setting
M1 ≡ MPl, it is clear that for theories belonging to the second case (i.e. with α = 0) Eq.
(2.13) reduces to a consistency equation for the scale factors of the background metric:

a′′

a
− c′′

c
+
a′b′

ab
+
a′c′

ac
− b′c′

bc
− c′2

c2
+

1

b2c2
= 0 , (2.14)

corresponding to pΩ + ρ = 0 in the fluid language.

Having discussed so far the tadpole Lagrangian (2.5) and the conditions induced by the
background Einstein equations, the next step is to consider operators that are quadratic in
perturbations. The goal is to derive the linearized equations governing the dynamics of the
2 + 1 physical degrees of freedom, which carry the information about the spectrum of the
QNMs. To this end, one should first choose a parametrization for the metric perturbations
δgµν . Given the symmetries of the background, it turns out to be convenient to decompose
them into tensor harmonics [47] and distinguish between “even” and “odd” (sometimes called
respectively “polar” and “axial”, e.g. [37]) perturbations, depending on how they transform
under parity. Indeed, the spherically symmetric geometry of the background guarantees that
the corresponding linearized equations of motion do not couple. However, before deriving
them explicitly for a theory in the form (2.4), we find it useful to present some general
properties of QNMs.

3 Quasi-normal modes: general considerations

We are interested in a metric of the form gµν = ḡµν + δgµν , where ḡµν is the static and
spherically symmetric given by Eq. (2.1), and δgµν represents the metric perturbations. In
addition, we have a scalar degree of freedom Φ = Φ̄(r) + δΦ, where the background scalar
profile Φ̄ is also static and spherically symmetric. The unitary gauge refers to the special
choice of equal-r surfaces such that δΦ = 0.

Under (θ, φ) diffeomorphisms or rotations, δgµν can be provisionally classified into scalar
(δgtt, δgrr, δgtr) , vector (δgti, δgri) and and tensor (δgij) parts, where i, j = θ, φ.15 Following

15 Note that we are abusing the terms scalar, vector and tensor slightly. What really transform as scalar,
vector and tensor are the full metric components gtt, grr, etc. The non-vanishing background ḡµν means the
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Regge and Wheeler [47], the scalars are called:

δgtt = a2H0 , δgtr = H1 , δgrr = H2/b
2 . (3.1)

Each vector can be further decomposed into a scalar and a pseudo-scalar:

δgti = ∇iH0 + εj i∇jh0 , δgri = ∇iH1 + εj i∇jh1 , (3.2)

where H0 and H1 are scalars, and h0 and h1 are pseudo-scalars. A pseudo-scalar flips sign
under a parity transformation (θ, φ)→ (π − θ, φ+ π), whereas a scalar does not.16 Here, ∇i
is the covariant derivative defined with respect to the two-dimensional metric:

ds2
2−sphere = γijdx

idxj = dθ2 + sin2 θ dφ2 , (3.3)

and εji, ε
j
i, εj

i, εji are the corresponding Levi-Civita tensors:(
εθθ εθφ
εφθ εφφ

)
= sin θ

(
0 1
−1 0

)
,

(
εθθ ε

θ
φ

εφθ ε
φ
φ

)
=

(
0 sin θ

−1/sin θ 0

)
(
εθ
θ εθ

φ

εφ
θ εφ

φ

)
=

(
0 1/sin θ

−sin θ 0

)
,

(
εθθ εθφ

εφθ εφφ

)
=

1

sin θ

(
0 1
−1 0

)
. (3.4)

Just as in the case of the vectors, the tensor δgij can be further decomposed: into a trace
and a traceless part, which in turn can be decomposed into a scalar and a pseudo-scalar:

δgij = c2(K +
1

2
G)γij + c2(∇i∇j −

1

2
γij)G+

1

2
(εi

k∇k∇j + εj
k∇k∇i)h2 , (3.5)

where c2(K+G/2) is the trace, and c2G and h2 represent the analogs of the E and B modes
on the 2-sphere (our notation follows that of Regge and Wheeler [47]). Here c2 is part of the
background metric as defined in Eq. (2.1), not to be confused with the speed of light squared
which is always set to unity. It is also useful to note that the second covariant derivatives
(in the 2-sphere sense) on a scalar function act as follows:

∇θ∇θ = ∂2
θ , ∇φ∇φ = ∂2

φ + sinθ cosθ∂θ ,

∇2 = ∂2
θ +

1

sin2θ
∂2
φ +

cosθ

sinθ
∂θ , ∇θ∇φ = ∇φ∇θ = ∂θ∂φ −

cosθ

sinθ
∂φ .

(3.6)

To summarize, before gauge fixing, the parity even fluctuations, expressible in terms of 7
scalars, are17

δgeven
µν =

 a2H0 H1 ∇jH0

H1 H2/b
2 ∇jH1

∇iH0 ∇iH1 c2Kγij + c2∇i∇jG

 (3.7)

fluctuations δgµν would transform nonlinearly (or more accurately, sublinearly i.e. variation of δgµν under a
small diffeomorphism would have terms independent of the metric fluctuations, in addition to the expected
terms linear in the metric fluctuations).

16For instance, δgtθ should flip sign under parity, and ∇θH0 indeed flips sign as desired provided H0 is a
scalar, whereas εφθ∇θh0 also flips sign under parity provided h0 is a pseudoscalar.

17Notice that we are departing slightly from the notation of Regge and Wheeler [47] by denoting some of
the perturbations with H0,H1 and K rather than h0, h1 and K respectively. This is done in order to avoid any
potential confusion with the induced metric, the perturbations in the odd sector, and the extrinsic curvature
of surfaces of constant r.
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The parity odd fluctuations, expressible in terms of 3 pseudo-scalars, are:

δgodd
µν =

 0 0 εkj∇kh0

0 0 εkj∇kh1

εki∇kh0 εki∇kh1
1
2(εi

k∇k∇j + εj
k∇k∇i)h2

 (3.8)

In addition to the metric fluctuations, we have in a general gauge the scalar fluctuation δΦ
as well.

The background (metric and scalar) enjoys invariance under time translations and spatial
rotations. Therefore, if we expand δgµν and δΦ in terms of the plane wave e−iωt and the
spherical harmonics Y`m(θ, φ), modes with different ω, `,m will not mix at linear level (in the
equations of motion). This is similar to what happens around backgrounds invariant under
spatial translations, where a Fourier expansion in the spatial coordinates proves to be useful
because different Fourier modes do not mix at linear level.

In order to avoid introducing too many symbols, we will henceforth abuse the notation a bit
by occasionally doing the following replacements for each scalar or pseudoscalar, e.g.:

H0(t, r, θ, φ)→ H0(t, r, `,m)Y`m(θ, φ) , (3.9)

or

H0(t, r, θ, φ)→ H0(ω, r, `,m)e−iωtY`m(θ, φ) . (3.10)

To compound the possible confusion, we will often leave out the arguments of H0 altogether!
However, in most cases, the context should be sufficient to tell apart the different meanings—
of H0 in different spaces. In cases where confusion could arise, we will make the meaning
explicit. At the level of the spherical harmonic transformed quantities, because Y`m(π−θ, φ+
π) = (−1)`Y`m(θ, φ), we see that a scalar such as H0(t, r, `,m) picks up a factor of (−1)` under
parity while a pseudo-scalar such as h0(t, r, `,m) picks up a factor of (−1)`+1 under parity.
As discussed around Eq. (2.4), the quadratic action with at most two derivatives respects
parity. Thus, the parity even and odd modes do not mix.

Without loss of generality, it is customary to set m = 0. In a spherically symmetric back-
ground, the radial and time dependence of the perturbations is sensitive to ` but not m.
This is because there is no preferred z-axis around which azimuthal rotations are defined,
and m 6= 0 modes can be obtained from an m = 0 mode by simply rotating the z-axis.

For m = 0 (i.e. ∂φ = 0), and a gravitational wave that propagates in the radial direction,
one can see that

δgGW
ij =

1

2

(
(∂2
θ −

cosθ
sinθ ∂θ)c

2G ( cosθ∂θ − sinθ∂2
θ ) h2

( cosθ∂θ − sinθ∂2
θ ) h2 − sin2θ(∂2

θ −
cosθ
sinθ ∂θ)c

2G

)
. (3.11)

Thus, G and h2 play the roles of the two planar polarizations of the graviton (in the large
r limit such that a spherical wave is locally well approximated by a plane wave). Note that
in the even sector, the angular components of the metric take the form c2Kγij + ∇i∇jc2G
which is better rewritten as c2(K+∇2G/2)γij +(∇i∇j− [γij/2]∇2)c2G, and we have ignored
the trace part when focusing on gravitational waves.
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Summarizing the discussion above, we have the metric fluctuations δgµν labeled according to
Eqs. (3.7) and (3.8), and the scalar fluctuation δΦ, in a general gauge. The next step is to
choose a gauge. As will be detailed below, the gauge we adopt is the Regge-Wheeler-unitary
gauge, meaning:

δΦ = h2 = H0 = G = 0 . (3.12)

Regge and Wheeler [47] also set H1 to zero, but our unitary gauge choice of δΦ = 0 makes
that impossible in general.

Once this is done, a Schrödinger-like equation can typically be obtained (after quite a bit of
algebra!) separately for the odd and the even sectors:

∂2
r̃Q+WQ = 0 , (3.13)

where r̃ is some redefined radial coordinate chosen in such a way that the speed of propagation
equals one (see App. E for more details); the variable Q may have one or more components,
obtained by combining perturbations and their derivatives; W is a function of r̃ as well as
ω and ` (or a matrix of functions, if Q has more than one component). An example is the
Regge-Wheeler equation given in Eq. (G.8) for odd perturbations in GR.

The spectrum of QNMs is usually calculated by solving equation (3.13) numerically, impos-
ing the appropriate boundary conditions at the horizon and at spatial infinity. However,
very useful insights can be obtained by combining the EFT we introduced in Sec. 2 with
approximate analytic methods.

4 WKB approximation and light ring expansion

There are in principle three possible ways in which Eq. (3.13) could differ from the standard
GR result: (1) the coordinate r̃ could differ from the tortoise coordinate defined in GR—see
Eq. (G.7); (2) the variable Q could be modified (for instance, in the even sector of scalar
tensor theories Q would have two components, in which case W would be a matrix); (3)
the QNM potential −W could have a different shape. Ultimately, the spectrum of QNM is
completely determined by the shape of W (r̃). In the following, we will focus on the simplest
case where W is just a single function rather than a matrix of functions.

Schutz and Will [39] showed that the quasi-normal spectrum associated with the equation
(3.13) can be approximated analytically using the WKB method. Their main result is the
relation

W

(2∂2
r̃W )1/2

∣∣∣
r̃=r̃∗

= −i
(
n+

1

2

)
, (4.1)

where n = 0, 1, 2, ... and r̃∗ is the position of the maximum of −W .18 Since W depends on the
frequency ω, this expression defines implicitly the complex quasi-normal frequencies. This is
the lowest order WKB result (accurate at the few percent level), and can be improved upon

18With a certain abuse of terminology, we shall use sometimes the notion of “light ring” to refer to r̃∗. Even
if, strictly speaking, the two positions tend to coincide only in the eikonal limit `→∞, for a generic ` ∼ few
they differ by an amount that is within the WKB accuracy. This makes the abuse consistent for practical
purposes and justifies the definition “light ring expansion” to denote the procedure outlined below.
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if desired [40] (see discussion below). A side remark on conventions: the sign on the RHS
of eq. (4.1) is consistent with the fact that the time dependence of our solution is of the
form e−iωt—see e.g. Eq. (3.10). Thus, we are following the convention used in [40], and our
equation differs by a sign compared to the one in [39], where the solutions were proportional
to eiωt.

The WKB result (4.1) shows that the quasi-normal frequencies are actually sensitive to a
small region of the potential around the light ring.19 Thus, in principle one only needs to
know the values of the EFT coefficients and their derivatives at the light ring. The catch
however is that r̃∗ is the light ring of W , whose calculation would in principle require full
knowledge of the EFT coefficients. This problem can be bypassed by assuming that our
background is “quasi-Schwarzschild”—an assumption that is certainly well supported by
present observations.

To make this statement more precise, it is convenient to work with a radial coordinate such
that c(r) = r, i.e. such that 4πr2 is the surface area of a sphere with radius r. Notice that
the coordinate r usually differs from the coordinate r̃ introduced above. The position of the
light ring is unique, but will be denoted with r∗ or r̃∗ depending on which coordinate system
we are using. Then, our quasi-Schwarzschild approximation amounts to assuming that the
location of the light ring r∗ doesn’t differ much from the GR value, i.e. r∗ = r∗,GR + δr∗
with δr∗/r∗,GR � 1. Under this assumption, we can approximate the RHS of Eq. (4.1) by
turning the derivatives with respect to r̃ into derivatives with respect to r and expanding up
to first order in δr∗ to get

(1 + δr∗∂r)

{
W

[
∂r

∂r̃

∂

∂r

(
∂r

∂r̃

∂W

∂r

)]−1/2
}
r=r∗,GR

= −i
(
n+

1

2

)
. (4.2)

The shift δr∗ can also be calculated at the GR light ring by expanding its defining property
∂rW |r=r∗,GR+δr∗ = 0 up to first order in δr∗ to obtain

δr∗ = −∂rW
∂2
rW

∣∣∣
r=r∗,GR

. (4.3)

There is one further subtlety that we need to address, and that is the fact that the position
of the light ring depends on the angular momentum number `. Thus, at this stage we still
need to know the values of the EFT coefficients, the background metric components, and
their derivatives at different points for different values of `. Fortunately, the position of the
light ring in GR depends only mildly on `. We can therefore choose a fiducial value of `—for
instance, ` = 3—and expand Eq. (4.2) up to first order in ∆`,3 ≡ r∗,GR(`)− r∗,GR(3) and δr∗
to find

[1 + (δr∗ + ∆`,3)∂r]

{
W

[
∂r

∂r̃

∂

∂r

(
∂r

∂r̃

∂W

∂r

)]−1/2
}
r=r∗,GR(`=3)

= −i
(
n+

1

2

)
. (4.4)

Figure 1 shows that the accuracy of this approximation is comparable if not better than the
accuracy of the lowest order WKB expansion, to be discussed in a moment.

19This is true under the assumption that the asymptotic behavior of W allows us to impose standard
boundary conditions. Notice that such an approach is supported by explicit examples [55, 56] where the
QNM spectrum is studied perturbatively in the coupling constant between the scalar field and the Gauss-
Bonnet term. Conversely, we refer e.g. to [57, 58] for a discussion about non-perturbative effects like echoes
and resonances.
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Figure 1: Plot of the fractional change in position of the GR light ring r∗,GR(`) corresponding
to a change in angular momentum `. We are considering the change with respect to the
fiducial value r∗,GR(3), i.e. we have defined ∆`,3 = r∗,GR(`)− r∗,GR(3). This shows that the
location r∗,GR of the light ring in GR depends weakly on the angular momentum number `.

The LHS of Eq. (4.4) now depends on EFT coefficients, the metric components, and their
derivatives evaluated at the same point for all values of `. This allows us to express the QNM
spectrum in terms of a finite number of free parameters (whose precise number depends on
the number of operators included in the effective action). In going from the lowest order
WKB result (4.1) to the Eq. (4.4) we have assumed that background is quasi-Schwarzschild
(meaning that the position of the light ring is close to its Schwarzschild value) and we have
performed an expansion analogous to the slow-roll expansion in inflation. We will call this
expansion the light ring expansion.

Our discussion so far was based on the lowest order WKB approximation, but can be easily
extended to higher order. The next-to-leading order WKB corrections were calculated by
Iyer and Will [40], and contribute the following term to the righthand side of Eq. (4.1):

i

(2∂2
r̃W )1/2

{
1 + 4α2

32

∂4
r̃W

∂2
r̃W
− 7 + 60α2

288

[
∂3
r̃W

∂2
r̃W

]2
}
r̃=r̃∗

, (4.5)

with α ≡ n+1/2. We can estimate the size of these corrections using the fact that the lowest
order WKB result implies Wr̃2

∗ ∼ O(1). For the lowest overtone number, n = 0, the terms
in (4.5) provide a correction ∼ 5%. Hence, the lowest order result in Eq. (4.4) is applicable
when the corrections to the QNM spectrum due to modifications of GR are small, but large
enough that the higher order WKB corrections need not be taken into account.

The impact of next-to-leading and next-to-next-to-leading order WKB corrections in GR was
calculated explicitly in [59]. There, it was shown that the accuracy of the WKB approxima-
tion decreases for larger n, but actually increases for larger `. Assuming that the same holds
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true in scalar tensor theories, this is quite encouraging because future experiments will have
access to higher values of ` but not of n [60].

5 The odd sector

After the general discussion about QNMs and the light ring approximation in the last two
sections, we will now turn our attention to studying the odd sector. As we mentioned earlier,
the odd modes are easier to study than the even ones since, based on our assumptions,
they amount to a single propagating degree of freedom. The most general odd-parity metric
perturbation, shown in Eq. (3.8), can be rewritten more explicitly as follows [47]:

δgodd
µν =


0 0 −h0 csc θ∂φ h0 sin θ∂θ
0 0 −h1 csc θ∂φ h1 sin θ∂θ

−h0 csc θ∂φ −h1 csc θ∂φ
1
2h2 csc θX −1

2h2 sin θW
h0 sin θ∂θ h1 sin θ∂θ −1

2h2 sin θW −1
2h2 sin θX

Y`me
−iωt , (5.1)

where h0, h1, h2 are functions of r alone, and we have defined the differential operators

X = 2(∂θ∂φ − cot θ∂φ) ,

W = (∂θ∂θ − cot θ∂θ − csc2 θ∂φ∂φ) .
(5.2)

Under a gauge transformation of the form x̃µ = xµ + ξµ, with

ξµ = (0, 0, δ
1

sinθ
∂φ,−δ sinθ ∂θ)Y`me

−iωt , (5.3)

the metric perturbations transform as

h̃0 = h0 − iωδ , h̃1 = h1 + δ′ − 2c′

c
δ , h̃2 = h2 − 2δ , (5.4)

where ( )′ ≡ ∂r( ).

In the rest of this section we will adopt the Regge-Wheeler gauge, where h2(r) = 0. Notice
that this choice is perfectly compatible with the unitary gauge in the even sector, and that,
as expected, the physical conclusions we derive in this section are ultimately independent of
the choice of gauge.

Our starting point is the effective action for perturbations in unitary gauge in Eq. (2.4).
Owing to the simplicity of the odd sector, only a subset of the operators shown there actually
affect the dynamics of odd perturbations. In fact, recall that the background metric (2.1)
is even by construction, and so is every tensor evaluated on the background. The operators
δgrr and δK are also even, and thus one can safely disregard any term that contains them.
The resulting action reads:

Sodd =

∫
d4x
√
−g
[

1

2
M2

1 (r)R− Λ(r)− f(r)grr − α(r)K̄µνK
µν

+M2
10(r)δKµνδK

µν +M12(r)K̄µνδK
µρδKν

ρ + . . .

]
. (5.5)

As one can see, at quadratic level and up to second order in derivatives, the effective action
for the odd modes contains six functions {M2

1 (r),Λ(r), f(r), α(r),M2
10(r),M12(r)}, three of

which can be expressed in terms of a fourth one and the background metric components by
using the background equations of motion—see discussion in Sec. 2.1.
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5.1 Leading order in derivatives

We will at first restrict our attention to the lowest-order terms in the derivative expansion,
which appear in the first line in Eq. (5.5). Here, by lowest-order in derivatives, we refer to
expanding the non-Einstein-Hilbert terms in number of derivatives and keeping the leading
order. In this case in particular, the surviving terms are

√
−gΛ(r) and

√
−gf(r)grr which

carry no derivatives on metric fluctuations. These are the terms that break the radial-
diffeomorphism invariance. We will also perform a conformal transformation of the metric
to set M2

1 (r) = M2
Pl. As we already pointed out, this transformation would affect the

coupling with other matter fields (for instance, those that make up the detector). At this
stage, however, we will not concern ourselves with that, and therefore we will work with the
effective action

S =

∫
d4x
√
−g
[
M2

Pl

2
R− Λ(r)− f(r)grr

]
. (5.6)

The functions Λ(r) and f(r) are given in terms of the background metric coefficients by Eqs.
(2.12) and (2.11) with α = 0 and M1 = MPl. By varying our action with respect to the
inverse metric, we find that the (θ, φ) component yields

h0 =
ia2b2

ω

[
h1

(
a′

a
+
b′

b

)
+ h′1

]
. (5.7)

This constraint can be combined with the (r, φ) component to derive a second order equation
of motion for h1. By following the procedure outlined in App. E, this equation can be cast
in a Schrödinger-like form, i.e.

d2

dr̃2 Ψ(r̃) +W (r̃)Ψ(r̃) = 0 (5.8)

where the potential is given by

W (r̃(r)) = ω2 + a2b2
[
c′′

c
− 2

c′2

c2
+
a′c′

ac
+
b′c′

bc
− (`+ 2)(`− 1)

b2c2

]
, (5.9)

the radial coordinate r̃ is defined as

r̃(r) =

∫ r

rc

dl

a(l)b(l)
(5.10)

for some fiducial rc, and the variable Ψ is related to h1 by an overall rescaling:

h1(r)→ Ψ(r̃(r)) = exp

[∫ r

rc

(
a′(l)

a(l)
+
b′(l)

b(l)
− c′(l)

c(l)

)
dl

]
h1(r) . (5.11)

These results are consistent with what was found in [61]. Furthermore, in the limit where
the background solution is exactly Schwarzschild, i.e. a(r) = b(r) = (1 − 2GM/r)1/2 and
c(r) = r, the coordinate r̃ reduces to the usual tortoise coordinate in GR (see Eq. (G.7)),
(5.11) matches the field redefinition in [47], and V (r̃) reduces to the Regge-Wheeler potential.

A few additional comments are in order. First, we should stress that without loss of generality
one can always choose a radial coordinate such that c(r) = r, in which case the potential
(5.9) is completely determined by the two functions a(r) and b(r). Moreover, in the Einstein
frame and at the order in derivatives we are considering, these two functions are in turn
constrained by the differential equation (2.14). Finally, remembering that `(` + 1) is the
eigenvalue of the angular part of the Laplacian, from (5.8) and (5.9), it is easy to see that
the squared propagation speeds in the radial and angular directions are c2

r = c2
Ω = 1.
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5.2 Worked examples

Before discussing the higher derivative corrections appearing in the second line of (5.5), we
will pause for a moment to illustrate the usefulness of our EFT approach in a couple of
different scenarios. First, we will consider a particular scalar tensor theory which admits an
analytic black hole solution with scalar hair. In this case, we will show how, by matching
the action of this particular model onto our effective action (5.6), one can bypass the entire
derivation of the Schrödinger equation for QNMs and obtain the effective potential directly
from Eq. (5.9). Although in this section we are focusing on the odd modes, this strategy
becomes particularly convenient in the case of even modes. The second idealized scenario we
will consider is one in which the spectrum of QNMs is known from observations. We will then
show how this information can be used to constrain the arbitrary functions that appear in
our effective action. At the lowest order in the derivative expansion (and only at this order),
this procedure is equivalent to constraining the background metric coefficients a(r) and b(r).

5.2.1 From the background solution to the QNM spectrum

In this section, we will consider the black hole solutions with scalar hair found in [15] for a
scalar-tensor theory theory which can be described using the leading order action (5.6). In
this section only, we decide to set G = (8π)−1 for simplicity (MPl = 1). The action for such
theory is of the form

S =

∫
d4x
√
−g
[
R

2
+

1

2
gµν∂µΦ∂νΦ− V(Φ)

]
, (5.12)

with a potential given by

V(Φ) =
3(q + 2M)

|q|3
[(

3 + Φ2
)
· sinh |Φ| − 3|Φ| · cosh Φ

]
. (5.13)

We should emphasize that such an action is not very well-motivated from an effective field
theory viewpoint, due to the ad hoc form of the potential, and especially due to the ghost-like
kinetic term. However, this theory will serve our purposes as an interesting toy-model, since
it admits an analytic black hole solution with scalar hair. Such a solution is parametrized by
two numbers, the asymptotic mass 8πM of the black hole and its scalar charge q, and it is
such that [15]

Φ̄(r) =
q

r
(5.14a)

a2(r) = b2(r) =
r2(6M+ 3q)e−

q
r

4q3
− e

q
r

[
r2(6M+ 3q)

4q3
− r(6M+ 3q)

2q2
+

6M+ q

2q

]
, (5.14b)

c2(r) = r2e−
q
r . (5.14c)

Notice that the existence of a horizon requires q > −2M, and that in the limit q → 0
this solution reduces to the usual Schwarzschild solution. However, for non-vanishing q can
in principle deviate significantly from the Schwarzschild solution, and therefore so can the
corresponding spectrum of QNMs.

By working in unitary gauge, it is easy to see that the action (5.12) is precisely of the
form (5.6) with Λ(r) = V(Φ̄(r)) and f(r) = Φ̄′(r)2/2. Thus, we can immediately plug the
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expressions for a(r), b(r) and c(r) given in Eqs. (5.14) into the QNM effective potential (5.9)
to obtain

W (r̃(r)) = ω2 +
e−

2q
r

64q4r4

{
e

2q
r
[
2q2(6M+ q) + 3r2(2M+ q)− 6qr(2M+ q)

]
− 3r2(2M+ q)

}
{
e

2q
r
[
−r2((4`+ 1)(4`+ 3)q + 6M) + 6q2(6M+ q) + 6qr(18M+ q)

]
+ 3r2(2M+ q)

}
.

(5.15)
As expected, this expression reduces to the Regge-Wheeler effective potential [47] in the
limit q → 0. It is also important to point out that, for any value of q, the potential V (r) ≡
ω2 −W (r) vanishes exactly at the horizon, and V (r) > 0 for r > rhor. This condition by
itself is sufficient to ensure the stability of the odd sector.

Various plots of V (r̃(r)) for ` = 2, 3, 4 and different values of q are shown in the right panels
of Fig. 2. The corresponding left panels show the values of real and imaginary parts of
the QNM frequencies with n = 0. For simplicity, these values were derived using the WKB
result (4.1), but of course they could also be calculated numerically using the exact potential
(5.15).

5.2.2 From the QNM spectrum to the effective potential: the inverse problem

Let us now consider scenario where the QNM spectrum is known empirically, and discuss
to what extent this information can be used to constrain the coefficients appearing in our
effective action. This procedure goes under the name of “inverse problem”—see for example
[62, 63]. In our analysis, we will resort to a WKB approximation, and restrict ourselves to the
case where the background metric is a “small” deviation from Schwarzschild. This, in turn,
can be reasonably expected to lead to a “small” displacement of the light ring. As shown in
Sec. 4, in this limit one can perform a light-ring expansion to the express the QNM spectrum
in terms of a finite number of parameters, which are the values of the EFT coefficients, the
background metric components and a few of their derivatives at the GR light ring.

The advantage of this approach is that one could in principle use observation to place model-
independent constraints on these parameters. This should be reminiscent of what happens in
slow-roll inflation. There, all the complexities of the inflaton action are reduced to a handful
of slow-roll parameters, which in turn determine observable quantities such as spectral indices
and scalar-tensor ratio. There are however also a couple of downsides to our approach. First,
small deviations from the Regge-Wheeler potential likely correspond to small deviations
from the QNM spectrum predicted by GR, making their detection in principle more difficult.
Second, because we are essentially placing constraints on the effective potential and its first
few derivatives at a single point, there will be in general a degenerate set of background
solutions compatible with any given QNM spectrum.

Our result (4.4), valid at first order in the light ring expansion and for a radial coordinate such
that c(r) = r, implies that the tower of complex frequencies ωn,` is completely determined
by the values of W,∂rW,∂

2
rW,∂

3
rW,∂r/∂r̃, ∂r(∂r/∂r̃) and ∂2

r (∂r/∂r̃) at the GR light ring.
According to the results (5.9) and (5.10) (which we derived from the effective action (5.6),
valid at lowest order in the derivative expansion) these quantities depend only on a(r), b(r)
and their derivatives at the GR light ring. To be more precise, second and higher derivatives
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Figure 2: Left panel: Odd spectrum of QNM for n = 0 and some representative values of q.
Right panel: The plot of the corresponding potential V (r̃(r)) . From top to bottom: ` = 2,
` = 3, ` = 4.
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of a(r) can always be removed by using the constraint (2.14) recursively. Thus, using Eq.
(4.4) we can calculate the QNM frequencies in terms of the following 7 parameters:

{a(r), a′(r), b(r), b′(r), b′′(r), b(3)(r), b(4)(r)}
∣∣
r=r∗,GR(`=3)

. (5.16)

Since the QNM frequencies ωn` are complex, in principle one has two real measurements for
each mode that is observed. In practice, though, it is challenging to observe overtones with
n > 0 for a single event, though a stacking of multiple events might prove helpful. One is
also limited to the frequencies ω0,` for a finite range of values of `. However, a space-based
experiment like LISA could be sensitive to modes with angular momentum as large as ` = 7
(see [60] for a discussion), and these modes would be sufficient to estimate the 7 parameters
in (5.16).

Finally, notice that by using Eqs. (2.11), (2.12) and (2.14) we could translate these results
into direct constraints on the values of the EFT coefficients f(r), Λ(r), and their first few
derivatives at r∗,GR(3).

5.3 Next-to-leading order

In the previous section we worked at leading order in derivatives and derived the equation
of motion governing the single physical degree of freedom in the odd sector. At this order,
we showed that the QNM spectrum is completely determined by the background metric
coefficients. We will now turn our attention to the higher derivative corrections appearing
in the effective action (5.5). These introduce three additional parameters—α(r),M2

10(r),
and M12(r)—the last two of which cannot be expressed in terms of the background metric
coefficients. This kind of behavior is of course commonplace in effective theories: the next
order in the derivative expansion always introduces new free parameters (functions, in our
case).

Once again, we choose to work in the Regge-Wheeler gauge. At higher order, it becomes
more convenient to work directly at the level of the action. To this end, we expand (5.5) up
to quadratic order in the odd-type metric perturbations. We focus on the modes with m = 0,
since all the others with m 6= 0 satisfy the same equations of motion due to the spherical
symmetry of the background. After series of integration by parts, find the following result:

S
(2)
odd,m=0 =

∞∑
`=0

∫
dtdr

[
u1h2

0 + u2h2
1 + u3

(
ḣ2

1 − 2ḣ1h′0 + h′20 + 2vḣ1h0

)]
, (5.17)
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where ui(r) and v(r) are defined as follows:

u1(r) =
`(`+ 1)

4a4bc3

{
a2c
[
2abcb′c′ + 2ab2∂r

(
cc′
)

+ a(`− 1)(`+ 2)− 2b2ca′c′
]
M2

Pl

−2a2b2c2∂r(ac)(M
2
10)′ − 2ab3c (∂r(ac))

2M ′12

+2abc
[
abca′c′ + 4bc2a′2 + a2cb′c′ + a2bcc′′ + 3a2bc′2

]
α+ 2a3b2c2c′α′

−2abc
[
acb′∂r(ac) + abc

(
ac′′ − a′c′

)
+ bc2

(
aa′′ − 2a′2

)
− a2bc′2

]
M2

10

+2b2c ∂r(ac)
[
−2ab′∂r(ac) + bc(a′2 − 2aa′′)− ab(3a′c′ + 2ac′′)

]
M12

}
,

(5.18a)

u2(r) =
`(`+ 1)(`− 1)(`+ 2)ab

4c3

[
2bc′M12 − c

(
M2

Pl − 2M2
10

)]
, (5.18b)

u3(r) = −`(`+ 1)b

4a2c

[
∂r(ac)bM12 − ac

(
M2

Pl − 2M2
10

)]
, (5.18c)

v(r) =
`(`+ 1)b

2a3c2u3

[
a2cc′(M2

Pl + α)− ac ∂r(ac)M2
10 − b (∂r(ac))

2M12

]
. (5.18d)

Fixing the gauge at the level of the action might rightfully be a source of apprehension for
some readers. In this case, though, we have checked explicitly that the equation of motion
one “misses” by doing so becomes redundant with this gauge choice. Hence, this particular
gauge can be fixed at the level of the action.

The modes with ` = 0, 1 must be treated separately. For simplicity, we will therefore focus
our attention on the modes with ` > 2. Following the same procedure used in [64], we
introduce an auxiliary field q(t, r) and rewrite the action above as follows:

S
(2)
odd,m=0,`>2 =

∫
dtdr

{(
u1 − ∂r(u3v)− u3v

2
)

h2
0 + u2h2

1

+ u3

[
2q
(

ḣ1 − h′0 + vh0

)
− q2

]}
. (5.19)

It is easy to show that by solving for q one recovers the action in (5.17). Varying instead the
action with respect to h0 and h1 yields the algebraic constraints

h0 =
∂r (u3q) + u3vq

∂r (u3v) + v2u3 − u1
, h1 =

u3

u2
q̇ , (5.20)

which can be used to find the effective action for the master variable q:

S
(2)
odd,m=0,`>2 =

∫
dtdr

[
G00q̇2 + Grrq′2 + Gqqq2

]
. (5.21)

with

G00(r) =− u2
3

u2
, (5.22a)

Grr(r) =
u2

3

−u1 + vu′3 + u3 (v′ + v2)
, (5.22b)

Gqq(r) =
(Grr)2

u3
3

[
u′3
(
2u′3v

′ − u′1
)

+ u3

(
−vu′1 − u′′3v′ + u′3v

′′ + vu′3v
′)+ u1u

′′
3 (5.22c)

+2vu1u
′
3 + u1u3

(
3v′ + v2

)
− u2

1 + u2
3

(
vv′′ − 2v′2

)]
.

By varying the action above one finds a second order equation of motion for q, which can be
again cast in a Schrödinger-like form by following the procedure discussed in Appendix E.
Since the final result is not particularly illuminating, we will not report it here.
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6 The even sector

We now turn our attention to the even sector. Unlike what happens for the odd sector, now
all the operators in the EFT (2.4) in principle contribute to the quadratic action for the
even perturbations. Following the most general parity-even perturbation of the metric in Eq.
(3.7) can be written more explicitly as follows:

δgµν =


a2H0 H1 H0∂θ H0∂φ
H1 H2/b

2 H1∂θ H1∂φ
H0∂θ H1∂θ c2[K +G∇θ∇θ] c2G∇θ∇φ
H0∂φ H1∂φ c2G∇φ∇θ c2[sin2 θK +G∇φ∇φ]

Y`m , (6.1)

where H0, H1, H2,H0,H1,K and G are functions of (t, r), and ∇θ,φ are covariant derivatives
on the 2-sphere of radius one. Explicit expressions for the second derivatives are given in
Eq. (3.6).

In Appendix G we show explicitly how one of the odd perturbations can always be set
to zero by an appropriate choice of coordinates. Something similar holds true for even
metric perturbations. In fact, any infinitesimal “even diffeomorphism” xµ → xµ + ξµ can be
parametrized as

ξµ =

(
α(t, r), β(t, r), γ(t, r)∂θ,

γ(t, r)∂φ

sin2 θ

)
Y`m(θ, φ). (6.2)

Under this coordinate change, the metric perturbations in Eq. (6.1) transform as follows:

H̃0 = H0 + 2α̇+ 2a
′
a β (6.3a)

H̃1 = H1 + a2α′ − β̇/b2 (6.3b)

H̃2 = H2 + 2 b
′
b β − 2β′ (6.3c)

H̃0 = H0 + a2α− c2γ̇ (6.3d)

H̃1 = H1 − β/b2 − c2γ′ (6.3e)

G̃ = G− 2γ (6.3f)

K̃ = K − 2 c
′
c β. (6.3g)

By choosing to work in unitary gauge, we are choosing the function β(r) in such a way as
to ensure that the scalar perturbation vanishes. We can then use the remaining coordinate
freedom and fix the gauge completely by demanding that

H0 = G = 0. (6.4)

We refer to this gauge choice of δΦ = H0 = G = 0 as Regge-Wheeler-unitary gauge. Once
again, in what follows we will fix this gauge at the level of the action. We have checked
explicitly that this is allowed, in that the equations of motion for δΦ, H0 and G become
redundant once these variables are set to zero.

Two other popular gauge choices for the even sector are H0 = H1 = G = 0 (this is the
original Regge-Wheeler gauge; see e.g. [43, 47, 65]) and H0 = K = G = 0 (e.g. [66]). The
perturbations in these gauges can be easily obtained from ours by using Eqs. (6.3) with
α = γ = 0 and β = b2H1 in the first case, β = c

2c′K in the latter. The scalar perturbation

then is given by δ̃Φ = −βΦ̄′, where Φ̄(r) is the background configuration of the scalar field.
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6.1 Leading order in derivatives

At lowest order in the derivative expansion, the effective action (2.4) reduces to

S =

∫
d4x
√
−g
[

1

2
M2

1 (r)R− Λ(r)− f(r)grr +M4
2 (r)(δgrr)2

]
. (6.5)

Unlike in the odd sector, here there are three operators that can in principle modify the
linear behavior of even quasi-normal modes. For simplicity, in this section we will work
with a radial coordinate such that c2(r) = r2, and we will perform once again a conformal
transformation of the metric to set M2

1 (r) = M2
Pl. Also, due to the spherical symmetry of

the background, modes with different values of m satisfy the same equations of motion. For
this reason, we can choose to focus on the modes with m = 0, in which case the functions
H0, H1, ... are all real.

Upon judicious and repeated use of the background equations, we find the following quadratic
action for the modes with m = 0:

S
(2)
even,m=0 =

∞∑
`=0

∫
dtdr ar

2

2b M
2
Pl

{
H0

[
− Jb2

r3

(
1 + r b

′
b

)
H1 − 1

2r2

(
J + 2b2

(
1 + r a

′
a + r b

′
b

))
H2

+ (2−J)
2r2
K − b2

r H
′
2 + Jb2

r2
H′1 + b2

r

(
3 + r b

′
b

)
K′ + b2K′′

]
+ Jb2

r2a2

(
1
2H

2
1 + a2

r2
H2

1

)
+ b2

2r2

(
1 + r a

′
a + r b

′
b +

4b2r2M4
2

M2
Pl

)
H2

2 + (J−4)a−2r2bb′a′

2r2a
H2K (6.6)

+ b2

a2
H1

[
2
r Ḣ2 − J

r2
Ḣ1 − 2rK̇′ − 2

r

(
1− r a′a

)
K̇
]

+ Jb2

r2
H1(Ḣ2 + K̇)

+ b2

r H2

[
− J

r2

(
1− r b′b

)
H1 + 1

rb2

(
1 + r2bb′a′

a

)
K −

(
1 + r a

′
a

)
K′

+ J
rH
′
1 + r

a2
b2K̈

]
− 1

2a2
K̇2 + b2

2 K
′2 + Jb2

2r2a2
Ḣ2

1

}
,

where we have defined J ≡ `(` + 1) for notational convenience. Despite its complicated
appearance, this Lagrangian propagates only two physical degrees of freedom, which we can
loosely think of the scalar mode plus one of the graviton polarizations. We will now show
explicitly how to obtain a Lagrangian that contains only these two degrees of freedom. The
modes with ` = 0, 1 require once again special treatment—see e.g. [66]. Hence, for simplicity
we will restrict our attention to the modes with ` > 2 in what follows.

The form of the Lagrangian (6.6) makes it clear that H0 is just a Lagrange multiplier enforcing
a “Hamiltonian” constraint among the remaining variables. We can render such constraint
algebraic in H1 by trading H2 for a new variable ψ defined as follows,

ψ = −rab
2

(
H2 − rK′ −

JH1

r

)
, (6.7)

Notice that this field redefinition is such that the term K′′ also disappears from the constraint
equation. A similar change of variable was performed in a different gauge in [66]. Then, this
constraint can be easily solved forH1 to express it in terms of ψ,K and their radial derivatives.
Using the background equations of motion, the solution can be expressed as

H1 =
4b2rψ′ + 2Jψ + (2− J)rabK
Jb [a(J − 2b2) + 2rb2a′]

− r2

J
K′. (6.8)
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Moreover, the only term quadratic in H1 that appears in the Lagrangian (6.6) does not
contain any derivatives. This means that the equation of motion for H1 can be solved
immediately, and using the field redefinition (6.7) we find

H1 = −Ḣ1 +
4ψ̇

Jab
+

2r

J

(
1− ra

′

a

)
K̇. (6.9)

By plugging the solution (6.8) into this result, one can express H1 just in terms of ψ,K, and
their derivatives. Notice that such an expression contains mixed second derivatives of the
form ψ̇′ and K̇′, and therefore one might fear that the quadratic Lagrangian (6.6) contains
terms with four derivatives when expressed in terms of ψ and K alone. However, because the
coefficients in front of the H2

1 and Ḣ2
1 terms are identical, these higher derivative terms cancel

out. After some integrations by parts, terms with three derivatives cancel out as well,20 and
we are left with a Lagrangian of the form

S
(2)
even,m=0,`>2 =

∫
dtdr 1

2M
2
Pl

(
Aijχ̇iχ̇j − Bijχ′iχ′j − Cijχiχ′j −Dijχiχj

)
, (6.10)

where χi ≡ (ψ,K) and

Aij =

8[Jr(ba′−ab′)+ab(J−2)]

Ja2[2rb2a′+a(J−2b2)]2
− 2(J−2)r
Ja[2rb2a′+a(J−2b2)]

− 2(J−2)r
Ja[2rb2a′+a(J−2b2)]

(J−2)r2

2Jab

 , (6.11a)

Bij =a2b2Aij +

(
−32r2ab5M4

2 /M
2
Pl

[2rb2a′+a(J−2b2)]2
0

0 0

)
, (6.11b)

Cij =

(
0 0

−4(J−2)ab[Jr(ba′−ab′)+ab(J−2)−4Jr2ab3M4
2 /M

2
Pl]

J [2rb2a′+a(J−2b2)]2
0

)
, (6.11c)

D11 =− 8
r2a2[2rb2a′+a(J−2b2)]3

{
4r2ab3[−r2ab2a′2(−4rbb′+2b2+J)+2ra2ba′(2Jrb′−4rb2b′−b3+b)+2r3b4a′3

+a3(−4Jrbb′+4rb3b′+(J−2)b2+2b4−J)]M4
2 /M

2
Pl−4r3a2b5(a−ra′)[2rb2a′+a(J−2b2)](M4

2 )′/M2
Pl

+r2a2b2(ra′−a)b′′[2rb2a′+a(J−2b2)]+r2a2b(a−ra′)b′2[2rb2a′−a(J+2b2)] (6.11d)

+rab′[−r2ab2a′2(4b2+3J)+ra2b2a′(2b2+J+4)+2r3b4a′3+(J−2)a3(2b2+J)]

+b[r3ab2a′3(3J−4b2)−(J+2)r2a2b2a′2−ra3a′(3Jb2−4b4+(J−3)J)+2r4b4a′4+a4((J+2)b2−2b4−J2+3J−4)],

D12 =D21 = −2(J−2)[a2(J−2)+2rb(a′r−a)(ab′−ba′+2rab3M4
2 /M

2
Pl)]

r[2rb2a′+a(J−2b2)]2
, (6.11e)

D22 =
(J−2)2a[2Jrab(ba′−ab′)+4b2(a2r2a′2)−2(J+2)a2b2+a2J2−4Jr2a2b4M4

2 /M
2
Pl]

2Jb[2rb2a′+a(J−2b2)]2
. (6.11f)

Starting from a Lagrangian of the form (6.10), we can obtain the radial speeds of propagation
for the two even modes by diagonalizing the matrix

c2
r ≡

1

a2b2
A−1B . (6.12)

20This is not surprising given that the action (5.6) simply corresponds to a P (X,Φ) theory in the covariant
formulation, which clearly has second order equations of motion.
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Notice the extra factor of 1/(a2b2), which is needed because the (t, t) and (r, r) components
of the background metric are non-trivial. Using the particular form of the kinetic coefficients
in Eqs. (6.11a) and (6.11b), we find that the two eigenvalues of the matrix (6.12) are

c2
r,1 = 1 , c2

r,2 =
f − 4M4

2

f
, (6.13)

where f(r) is the tadpole coefficient (2.11) with M1 ≡ MPl, α ≡ 0 and c(r) = r. Thus,
we see that the last operator in (6.5) breaks the degeneracy between the two sound speeds.
Absence of superluminality as well as gradient instabilities in the radial direction then implies
0 < 4M4

2 /f < 1. At this order in the derivative expansion, the sound speeds in (6.13) can
also be recovered by working in the decoupling limit, as we will show in the next section.
This is no longer true when higher derivative operators such as δgrrδK are included in the
action.

By varying the action (6.10) with respect to ψ and K one finds a system of two coupled,
linear differential equations, which can be further simplified with an appropriate rescaling of
the coordinate r and a redefinition of the field ψ and K. A discussion along this line will be
presented elsewhere, while in the following we will focus only on a very specific limit such
that the dynamics of the scalar degree of freedom decouples from the gravity sector.

6.2 Goldstone mode and decoupling limit

In constructing the unitary gauge action (2.4) we have chosen a specific foliation of the
spacetime by fixing radial diffeomorphisms in such a way to set to zero the perturbations
of the scalar field. In turn, they have shown up in the metric tensor (6.1). An alternative
but equivalent choice, which turns out to be particularly convenient to decouple scalar and
metric perturbations, can be made by restoring the full diffeomorphism invariance using the
so-called Stückelberg trick. This amounts to performing a broken radial diffeomorphism of
the form r → r + π(r, xa) in the action (2.4), and promoting the gauge parameter π to a
full-fledged field. The field π then admits a natural interpretation as the Goldstone boson
that realizes non-linearly the spontaneously broken r-translations. After restoring full diff-
invariance, one can then fix the gauge by imposing conditions on the metric perturbations
alone, as discussed below Eq. (6.4).

The explicit transformation laws of the various geometric ingredients appearing in (2.4)
under a broken radial diffeomorphism are summarized in Appendix C. For the purposes of
the present discussion, it is sufficient to remind the reader of the following result:

grr → grr(1 + 2π′ + π′
2
) + 2gar∂aπ + 2garπ′∂aπ + (∂aπ)(∂bπ)gab , (6.14)

Without loss of generality, in the remaining of this section we will work with a radial coor-
dinate such that b ≡ 1 in the background metric (2.1).

For simplicity we will restrict our attention to the leading order action (6.5). The inclusion
of higher derivative operators is discussed in Appendix C.1. The tadpole coefficients (2.11)
and (2.12) then reduce to

Λ(r) = −
(
c′′

c
+
a′c′

ac
+
c′2

c2
− 1

c2

)
M2

Pl f(r) =

(
a′c′

ac
− c′′

c

)
M2

Pl . (6.15)
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After performing the Stückelberg transformation (6.14), the action (6.5) takes on the form

S =

∫
d4x
√
−g
[
M2

Pl

2
R− Λ(r + π)

− f(r + π)
(
grr(1 + 2π′ + π′

2
) + 2gar∂aπ + 2garπ′∂aπ + (∂aπ)(∂bπ)gab

)
+M4

2 (r + π)
(
δgrr + grr(2π′ + π′

2
) + 2gar∂aπ + 2garπ′∂aπ + (∂aπ)(∂bπ)gab

)2
]
.

(6.16)

Despite this action’s complicated appearance, one can usually find a regime—known as de-
coupling limit—where the kinetic mixing between the scalar mode and the graviton helicities
becomes negligible compared to their kinetic terms. For instance, let’s consider the mix-
ing term 2f(r)δgrrπ′ in Eq. (6.16). After introducing the canonically normalized fields

πc ≡ π
√

2f and δgrrc ≡ δgrrMPl, this terms reads
√

2f
MPl

δgrrc π
′
c. Thus, for energies above

Emix ≡
√

2f
MPl

it can be safely neglected compared to the kinetic terms for δgµνc and πc.
21 As

a result, in this regime one study the perturbations δgµν and π separately. Focusing on the
latter, we set the metric to its background value (2.1) to obtain the following quadratic action
for π:

S(2)
π =

∫
dtdrdΩ ac2

{[
∂r
(
ac2f ′

)
ac2

− (Λ′′ + f ′′)

2

]
π2 −

(
f − 4M4

2

)
π′

2 − f(∂aπ)(∂aπ)

}
.

(6.17)
The sound speeds of π in the angular and radial directions can be immediately read off from
(6.17):

c2
π,r =

f − 4M4
2

f
, c2

π,Ω = 1 . (6.18)

As anticipated, c2
π,r coincides with one of the two eigenvalues found in (6.13).

In the usual covariant language, the theory described by the action (6.5) corresponds to a
P (X,Φ)-theory. It is a straightforward exercise to show that the action (6.17) can also be
obtained from the Lagrangian L = P (X,Φ) by expanding Φ = Φ̄+ δΦ. The relation between
the Stückelberg field π and the scalar fluctuation δΦ is given by the equation Φ̄(r + π) =
Φ̄(r) + δΦ(r, xa). In particular, the tadpole conditions (6.15) reduce to

Λ ≡ −P +XPX , f ≡ −XPX , M4
2 ≡

1

2
X2PXX . (6.19)

After expanding the action (6.16) in powers of π, the linear term vanishes because it is
proportional to the background equation of motion for Φ, which in light of the results (6.19)
reads:

2

ac2
∂r
(
ac2f

)
− 2fΦ̄′′

Φ̄′
+ P,ΦΦ̄′ = 0 . (6.20)

Quite remarkably, if the theory is shift symmetric (i.e. P,Φ = 0), the equation (6.20) can be
solved analytically irrespective of the functional form of P (X). Indeed, integrating twice Eq.

21For simplicity we do not distinguish between energy and momentum scales. Since, strictly speaking, this
is truly legitimate only for luminal propagation, we will tacitly assume here that the speed of sound is not
too small.

– 29 –



(6.20) with respect to r, one finds

Φ̄(r) = Φ0 + Φ1

∫ r

dr̃ a(r̃)c2(r̃)f(r̃) , (6.21)

where Φ0 and Φ1 are arbitrary integration constants, and f is given by Eq. (6.15).22 This
occurs because, for shift symmetric theories, the background values of P and all its derivatives
can be unambiguously fixed in terms of the background metric only [34].

7 Outlook

The breakthrough detection of gravitational waves from binary black hole or neutron star
mergers presents us with the opportunity to test gravity in a new regime. Although GR with
a cosmological constant (CC) seems so far to provide the correct description of gravitational
interactions at long distances, the lack of a plausible field theory mechanism for the smallness
of the CC could be an indication of additional degrees of freedom in the gravitational sector.
It has even been recently conjectured that, if string theory is the correct UV completion of
gravity, the present accelerated expansion of the universe cannot be the result of a positive
cosmological constant [67], thus suggesting that additional dark energy fields must be present.

The new observational window opened up by gravitational waves could potentially uncover,
or at the very least constrain, the existence of this additional sector. A promising observable
is the spectrum of the QNMs emitted by the BH remnant during the ringdown phase of a
coalescence. The presence of additional degrees of freedom can in fact modify the frequencies
compared to the predictions of GR, depending on the additional interactions. In the absence
of a ‘best motivated’ proposal for the dynamics of the new sector, however, the best way to
characterize how different models affect the QNMs is to follow an EFT approach.

In this paper we have made a first step towards constraining in a model-independent way
modifications of GR. We focused our attention on alternative theories of gravity that satisfy
two main assumptions: i) include one additional light scalar degree of freedom besides the
graviton, and ii) admit BH solutions with a scalar hair. The second assumption is crucial to
generate a significant (and hopefully testable) departure from the QNM spectrum predicted
by GR. In fact, without a scalar hair it can be shown that, at second order in derivatives,
the GR frequencies are always a subset of the QNM spectrum of black hole solutions in
scalar-tensor theories [43].

Based on these assumptions, we derived the most general EFT up to quadratic order in
perturbations around static and spherically symmetric backgrounds with a scalar hair. To
constrain the coefficients in the effective Lagrangian it is necessary to measure the frequencies
of at least two QNMs. Such a result is presently not achievable at LIGO/Virgo, but should
be within reach when the upgraded detectors will reach design sensitivity, and certainly with
third-generation or space-based detectors (for a review on BH spectroscopy prospects see [7]
and references therein). Such experiments will be able to probe quasinormal modes with

22We remind that the analogue for FLRW backgrounds is (see e.g. [34])

Φ̄(t) = Φ0 + Φ1

∫ t

dt̃ a3(t̃)Ḣ(t̃) .
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higher `, for which the WKB approximation employed in this paper is expected to perform
even better. In principle, there exist other ways, which do not rely on the ringdown phase,
to obtain independent bounds on the EFT parameters, e.g. the one given by the study of
dissipative effects in the form of dipole radiation during the inspiral stage [68]. However, this
would deserve a separate discussion, beyond the purposes of the present work, and is left for
the future.

To make contact with actual observations there are still a few steps missing. An important
issue that should be addressed in full generality is the coupling to matter fields. Our calcu-
lations for both even and odd sectors are done in the frame where the M1(r) = MPl (the so
called Einstein frame). The question is whether/how matter fields, for instance the LIGO
mirrors, are coupled to the scalar field Φ in addition to the expected coupling to the Einstein
frame metric. The observational implications fall into two classes depending on this coupling:

• If the scalar-matter coupling is absent or very weak, only the tensor quasi-normal modes
would be observed. The scalar could still indirectly affected the observational signals
through the deviation in the tensor spectrum from GR, and through the breaking of
isospectrality between even and odd modes.

• If the scalar-matter coupling is at gravitational strength or larger, the most prominent
observational signal would be the scalar mode itself—this is the extra mode in the even
sector. It is distinguished from the tensor modes not only in terms of its spectrum, but
also in terms of how it affects the detectors. Interferometric detectors with different
orientations can be combined to tell apart scalar from tensor modes. Of course, the
scalar could also make its presence known through a deviation of the tensor spectrum
from GR, and through the breaking of isospectrality.

Another important issue to address is that the EFT for perturbations must be generalized
from static backgrounds to spinning ones. The reduced number of isometries of the back-
ground will translate into a larger number of operators in the action and, therefore, of free
parameters to be constrained by observations.

The number of independent operators can be reduced, even in the case of static backgrounds,
if one is willing to make additional assumptions about the underlying scalar-tensor theory. In
the present paper, we have included in the effective action all operators compatible with the
symmetries that contribute at quadratic order and contain at most two derivatives. Some of
these operators are actually generated by terms in the covariant scalar-tensor theory that de-
pends on second derivative of the scalar field. This can lead to a much richer phenomenology,
but at the same time it is potentially dangerous because it can propagate an additional degree
of freedom giving rise to instabilities. Additional relations on the coefficients can be enforced
to prevent its appearance, extending what is already known in the case of time dependent
backgrounds [51]. Further conditions can be derived by imposing additional symmetries (e.g.
shift symmetry on the scalar [34]), or by considering positivity constraints that follow from
unitarity and analyticity of scattering amplitudes (as was done for instance in the case of
inflation in [69]). All these topics will be discussed elsewhere.

To conclude, we should mention that the formalism developed in this paper lends itself also to
a few more formal applications. First, because our effective Lagrangian is solely determined
by the background isometries, it can also be used to describe perturbations around metrics
other than black holes, provided they are static and spherically symmetric. For instance, our
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approach can be used to investigate the stability of wormholes in theories with a scalar field
[70]. It can also offer a different perspective on the (long) list of no-hair theorems, allowing
to characterize the conditions for hairy BHs in a more model independent way. The formal
applications of this approach will be discussed in a companion paper [71].

Acknowledgments

We thank Imre Bartos, Emanuele Berti, Vitor Cardoso, Andy Cohen, Pedro Ferreira, Austin
Joyce, Xinyu Li, Michele Maggiore, Szabi Marka, Alberto Nicolis, Paolo Pani, Federico Pi-
azza and Sam Wong for discussions. The work of R.P. was mostly supported by the US
Department of Energy (HEP) Award DE-SC0013528. L.S. is supported by the Netherlands
organization for scientific research (NWO). E.T. is partially supported by the MIUR PRIN
project 2015P5SBHT. L.H. is supported in part by NASA grant NXX16AB27G and DOE
grant DE-SC011941.

A Construction of the unitary gauge action

In this Appendix we present the construction of the effective theory for perturbations in the
unitary gauge, defined by δΦ ≡ 0. The breaking of radial diffeomorphism invariance induced
by δΦ ≡ 0 makes a radial foliation more natural with respect to the standard time-foliation
of the ADM decomposition: in the following, we will introduce the corresponding geometric
ingredients and derive analogue equations to the standard ADM case.

A.1 Notation and radial foliation

We start introducing a foliation of the spacetime manifold defined by the the family of
hypersurfaces that satisfy Φ = constant. The orthogonal unit vector is defined by

nµ ≡ ∇µΦ(x)√
∇µΦ∇µΦ

, (A.1)

satisfying nµn
µ = 1. In analogy with the ADM decomposition, the metric can be written as

ds2 = N2dr2 + hab(dx
a +Nadr)(dxb +N bdr) , (A.2)

where hµν ≡ gµν − nµnν is the induced metric, while N and Na are the lapse and the shift
respectively. In this notation, the metric tensor and its inverse read

gµν =

(
hab Na

Nb N
2 +N cNc

)
, gµν =

(
hab +N−2NaN b −N−2Na

−N−2N b N−2

)
, (A.3)

where the Latin indices a, b, c . . . are used for temporal and angular coordinates: {a, b, c . . .} =
{t, θ, φ}. The unitary gauge is fixed by requiring that constant-r hypersurfaces coincide with
the uniform scalar field hypersurfaces, i.e. δΦ(xa, r) ≡ 0. With this choice, nr = N and
na = 0. Therefore, gra = hra = Na and hrr = NaNa. By construction, the following
orthogonality conditions hold:

hµνn
ν = 0 , nµ∇νnµ = 0 . (A.4)
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Covariant derivatives acting on the (2 + 1)-dimensional hypersurface can be defined in the
standard way as

DaVb = hµah
ν
b∇µVν , (A.5)

for some generic vector Vµ. Moreover, the extrinsic curvature can be constructed by project-
ing on the hypersurface as

Kµν = hαµh
β
ν∇αnβ = hαµ∇αnν = ∇µnν − nαnµ∇αnν . (A.6)

In particular, the covariant temporal and angular components of the extrinsic curvature can
be conveniently written also as

Kab = ∇anb = −NΓrab =
1

2N
(∂rhab −DaNb −DaNb) . (A.7)

A.2 Gauss-Codazzi equation

The (2 + 1)-dimensional Riemann tensor is defined in the standard way as

− R̂αβµνV α = DµDνVβ −DνDµVβ . (A.8)

After some lengthy computation, one can derive the Gauss-Codazzi equation

hτµh
ρ
νh

σ
βRαστρ = R̂αβµν +KµβKνα −KνβKµα . (A.9)

Contracting both sides of (A.9) with the full metric gµαgνβ and after some manipulations,
one finds

R = R̂−KµνK
µν +K2 − 2∇µ(Knµ − nν∇νnµ) , (A.10)

which relates the full Ricci scalar R to the intrinsic curvature R̂. As expected, formally the
only difference with respect to the standard ADM decomposition based on a time foliation
consists in some signs.

A.3 Effective theory in unitary gauge

In parallel with [38], one can write the most general Lagrangian in unitary gauge by requir-
ing invariance only under the residual (temporal and angular) diffeomorphisms. Therefore,
besides the standard Riemann tensor, covariant derivatives and contractions thereof, one can
make use of additional building blocks consisting in: explicit functions of r; operators with
free r-upper indices, such as grr and Rrr; the extrinsic curvature Kµν . Notice that, because
of the Gauss-Codazzi relation (A.9), (3 + 1)-dimensional objects and their projected versions
are not independent. Therefore, one can forget about the induced Riemann R̂µναβ and con-
tractions thereof in the Lagrangian. Moreover, for the same reason, one can also avoid the
use of the induced metric and (3 + 1)-dimensional covariant derivatives.

As a result, the most general action in the unitary gauge δΦ ≡ 0 takes on the form

S =

∫
d4x
√
−gL

(
gµν , ε

µναβ , Rµναβ , g
rr,Kµν ,∇µ; r

)
. (A.11)
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A.3.1 Effective action for perturbations

The result (A.11) represents the most general theory that is compatible with the residual
symmetries after fixing the gauge δΦ ≡ 0. The logic underlying the construction of the
effective theory for perturbations closely follows the one of [38, 48], but the result turns out
to differ considerably in a few aspects, as already discussed in Sec. 2. Indeed, the different
degree of symmetry of the background (2.1) with respect to the case of FLRW cosmologies
crucially affects both the number of independent operators in the EFT for perturbations and
their transformation properties under residual (temporal and angular) diffeomorphisms. In
the following, we will explicitly construct the EFT (2.4) and make such differences manifest.
Let us start with the tadpole Lagrangian.

In full generality, up to linear order in perturbations, the effective theory contains the fol-
lowing tadpoles:

Stadpole =

∫
d4x
√
−g
[
−Λ(r)− f(r)grr + κµν(r)Kµν + ξµναβ(r)Rµναβ

]
, (A.12)

one for each building block in (A.11). Λ(r), f(r), κµν(r) and ξµναβ(r) are arbitrary functions
of the background metric and its derivatives.23 If κµν(r) and ξµναβ(r) were proportional
the background metric only, then the last two tadpoles in (A.12) would simply be κ(r)K
and ξ(r)R and, getting rid of K = ∇µnµ by an integration by parts, one would conclude
that (A.12) contains only 3 free functions. By contrast, since in general ∂rḡab��∝ ḡab, the
matrices κµν(r) and ξµναβ(r) have in principle many more independent entries corresponding
to additional free functions in the theory (A.12). In the following, we are going to make this
statement more quantitative, in particular we are going to show that eventually only 4 are
actually independent (i.e. κµν(r) and ξµναβ(r) contain only 2 free functions, the other 2
being Λ(r) and f(r)).

Let us start recalling that the orthogonality condition Kµνnµ = 0 allows to use the induced
metric to raise and lower indices in the tadpole κµν(r)Kµν , to be read therefore as κab(r)Kab.
Since the matrix κab(r) is a function of background quantities, it must carry the same sym-
metries of h̄ab, meaning that it has to be a diagonal matrix with only two independent entries:
κab ≡ diag(κtt, κθθ, κθθ sin2 θ). As a result, the tadpole κab(r)Kab can be explicitly written as

κab(r)Kab = κtt(r)Ktt + κθθ(r)

(
Kθθ +

Kφφ

sin2 θ

)
, (A.13)

where κtt(r) and κθθ(r) are the two free functions of r. Furthermore, since the trace of
the extrinsic curvature can always be recast in terms of Λ(r) and f(r)grr up to a total
derivative by an integration by parts (K = ∇µnµ), we are free to add a term of the type
−κθθ(r)c2(r)habKab to the Lagrangian (A.12) in order to cancel the last term in (A.13). This
means that κab(r)Kab contains actually only one free independent function.

Let us now focus on the last tadpole ξµναβ(r)Rµναβ . Again, since ξµναβ(r) is a background
tensor, because of rotational invariance, the angular components are not independent from
each other. In addition, taking into account the symmetry structure of the Riemann tensor,

23The Einstein Hilbert term simply corresponds to taking
M2

Pl
2
ḡµαḡνβ in ξµναβ(r).
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one infers that it contains in principle 8 arbitrary functions. Let us start analyzing those
corresponding to the coefficients of

Rrtrt , (Rθrθr +Rφrφr) , (Rθtθt +Rφtφt) , Rθφθφ . (A.14)

First of all, notice that the term involving Rrtrt can be always eliminated in favor of the
other tadpoles. Indeed, consider the operator KµνR

αµβνnαnβ, which in unitary gauge reads
(grr)−1KµνR

rµrν . Using the definition of Riemann tensor and Eq. (A.6),

KµνR
αµβνnαnβ = −Kµνnβ

(
∇β∇νnµ −∇ν∇βnµ

)
= −Kµνnβ [∇βKνµ +∇β (nαnν∇αnµ)−∇νKβµ −∇ν (nαnβ∇αnµ)]

= −Kµν
[
nβ∇βKνµ + nαnβ∇αnµ∇βnν − nβ∇νKβµ −∇ν (nα∇αnµ)

]
.

(A.15)

Therefore, up to integrations by parts, it can be re-written in terms of the tadpoles f(r)grr,
Λ(r) and κµν(r)Kµν . This means that we can forget about the first term in (A.14) in our
counting of independent functions. Moreover, taking the trace, the last three combinations
in (A.14) can be all eliminated in favor of the Ricci tensor as24,

Rrr = Rtrtr + (Rθrθr +Rφrφr) , (A.16)

Rtt = Rrtrt + (Rθtθt +Rφtφt) , (A.17)

Rθθ +
Rφφ

sin2 θ
= − c

2

a2
(Rθtθt +Rφtφt) + c2(Rθrθr +Rφrφr) + 2Rφθφθ . (A.18)

Therefore, in full generality the tadpole ξµναβ(r)Rµναβ can be always thought of as being a
sum of the four remaining building blocks

R , Rrr , Rtt ,

(
Rθθ +

Rφφ

sin2 θ

)
, (A.19)

with some arbitrary coefficients. Whether these are all independent or not is what we are
going to show now.

First, it is clear that the trace condition R = Rtt + Rrr + (Rθθ + Rφφ) allows immediately
to eliminate one of the last three terms in (A.19), say Rtt, with the only effect of redefining
the coefficients of the others. Second, consider the identity

RµνK
µν = Rµν∇µnν −

1

2
Rµνnα∇α(nµnν) . (A.20)

After simple integrations by parts, up to linear order in perturbations RµνK
µν ⊇ grr, R,

Rrr, K only. Thus, one is always free to add to the Lagrangian the operator RµνK
µν with

some proper coefficient in such a way to get rid of also (Rθθ + Rφφ) in (A.19), in analogy
with the discussion around (A.15). Finally, the identity

(grr)−1Rrr = Rµνn
µnν = K2 −KµνK

µν +∇µ (nν∇νnµ − nµK) , (A.21)

which simply follows from the definition of the (3 + 1)-dimensional Riemann tensor, allows
to re-express also Rrr as a function of the other tadpole operators.

24Since we are interested in terms that are linear in perturbations, we shall use the background metric to
raise and lower indices.
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In conclusion, the action (A.12) contains in general 4 independent tadpoles:

Stadpole =

∫
d4x
√
−g
[

1

2
M2

1 (r)R− Λ(r)− f(r)grr − α(r)K̄µνK
µν

]
, (A.22)

where M2
1 (r), Λ(r), f(r) and α(r) are the corresponding coefficients, some of which are to

be fixed by Einstein equations.

A.3.2 Quadratic action for perturbations

In the previous Section, we have shown that the only independent operators that enter up
to linear order in perturbations are those in (A.22). The next step is all possible operators
at quadratic order that are compatible with the symmetries of the system. In the spirit of
an effective description, we will classify the operators in terms of the number of derivatives.

Zero-th order in derivatives. At the zero-th order in derivatives, the only quadratic
operator in perturbations is given by M4

2 (r)(δgrr)2, where the coefficient M4
2 (r) is in principle

an arbitrary function of r of dimensions 4 in energy to be fixed experimentally.

First order in derivatives. At the first order in derivatives, the only non-trivial operators
we can add are of the form

fab(r)δg
rrδKab , (A.23)

where fab is an r-dependent matrix which must have the same symmetries of the background
metric (2.1). In other words, it is diagonal and with only two free entries:

fab(r) ≡
(
f1(r)

f2(r)γij

)
, γij ≡

(
1

sin2 θ

)
, {i, j} = {θ, φ} , (A.24)

for some arbitrary f1(r) and f2(r). As a result, at first order in derivatives there are only
two independent operators in the effective theories, that we choose to write as

M3
3 (r)δgrrδK , M2

4 (r)K̄abδg
rrδKab . (A.25)

Second order in derivatives. At the second order in the number of derivatives, we have
in principle many more independent operators allowed by symmetries. Let us start with
those involving the extrinsic curvature only, which schematically read

fabcd(r)δK
abδKcd , (A.26)

where again fabcd(r) has the same isometries of the background. Therefore, it is clear that
the only independent free functions in fabcd(r) are the coefficients of the operators

(δKtt)2, γijδK
ttδKij , (γijδK

ij)2, γijδK
tiδKtj , γijδK

jkγklδK
li . (A.27)

Let us now consider operators that involve the Riemann tensor. Analogous considerations to
Eq. (A.15) suggest that we can disregard operators of the type Rrµrν . Then, we can focus
only on those where the Riemann is projected onto the (2 + 1)-hypersurface, which can be
written as

fabcd(r)δR̂
abcdδgrr . (A.28)
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Because of the background isometries, only 2 are independent:

γijδR̂
titj , γijγklδR̂

ikjl . (A.29)

Finally, one could also think of adding operators involving derivatives of δgrr: the combina-
tions allowed by the residual symmetries in the EFT are (∂µδg

rr)2, (∂rδg
rr)2, (∂rδg

rr)δK and
(∂rδg

rr)K̄abδK
ab. In general these will be associated with higher order equations of motion.

Whether this fact is related to the presence of pathologies is beyond the scope of our work
and will be discussed elsewhere.

In conclusion, at second order in perturbations there are 14 independent operators admitted
by symmetries, that we write as follows:

S(2) =

∫
d4x
√
−g
[
M4

2 (r)(δgrr)2 +M3
3 (r)δgrrδK +M2

4 (r)K̄µνδg
rrδKµν

+M2
5 (r)(∂rδg

rr)2 +M2
6 (r)(∂rδg

rr)δK +M7(r)K̄µν(∂rδg
rr)δKµν +M2

8 (r)(∂aδg
rr)2

+M2
9 (r)(δK)2 +M2

10(r)δKµνδK
µν +M11(r)K̄µνδKδK

µν +M12(r)K̄µνδK
µρδKν

ρ

+ λ(r)K̄µρK̄
ρ
νδKδK

µν +M2
13(r)δgrrδR̂+M14(r)K̄µνδg

rrδR̂µν
]
. (A.30)

B Infinitesimal variations

In this section we derive the variations of the geometric ingredients of the radially foliated
manifold, collecting the results that have been used in the main text.

To begin with, the variation of the normal vector nµ (A.1) under an infinitesimal transfor-
mation of the metric of the type gµν → gµν + δgµν takes on the form

δnµ = −1

2
nµnαnβδg

αβ , (B.1)

leading also to

δnµ = nνδg
µν − 1

2
nµnαnβδg

αβ . (B.2)

Together with the orthogonality condition hµνnµ = 0, Eq. (B.1) can be used to derive the
following identity:

nµδh
µν = −hµνδnµ = 0 . (B.3)

The variation δK of the trace of the extrinsic curvature can be easily computed using the
identity

1√
−g

∂µ
(√
−g Xµ

)
= ∇µXµ (B.4)

(Xµ is a generic four-vector), which follows from the relation δ
√
−g = 1

2

√
−ggµνδgµν . Using

(B.4), we can write

K = ∇µnµ =
1√
−g

∂µ
(√
−g nµ

)
. (B.5)

Then, the variation δK is easily computed as

δK =
1

2
gµνδg

µνK +∇µ
[
nνδg

µν − 1

2
nµ(nαnβ + gαβ)δgαβ

]
, (B.6)
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where we have used the result (B.2).

Let us now focus on δKµν . From the definition (A.6), the variation of the extrinsic curvature
reads

δKµν = ∇µδnν − δΓρµνnρ − δnρnµ∇ρnν
− nρδnµ∇ρnν − nρnµ∇ρδnν + nρnµδΓ

σ
ρνnσ .

(B.7)

Plugging in the variation of the Christoffel symbol,

δΓρµν =
1

2
gρσ (∇µδgνσ +∇νδgµσ −∇σδgµν)

= −1

2
gρσ (gανgβσ∇µ + gαµgβσ∇ν − gαµgβν∇σ) δgαβ ,

(B.8)

it takes on the form

δKµν = −1

2
∇µ
(
nνnαnβδg

αβ
)

+
1

2
(gανnβ∇µ + gαµnβ∇ν − gαµgβνnρ∇ρ) δgαβ

− nβnµ(∇αnν)δgαβ + nαnβnµn
ρ(∇ρnν)δgαβ

+
1

2
nµn

ρ∇ρ
(
nνnαnβδg

αβ
)
− 1

2
nαnβnµ∇νδgαβ ,

(B.9)

and one can easily check that taking the trace the result (B.6) is recovered.

Finally, we calculate δR̂. Taking the variation of the trace of Eq. (A.9),

δR̂ = 2hµνRµρνσδh
ρσ + hµνhρσδRµρνσ + 2KδK − 2KµνδKµν , (B.10)

where
δhµν = δgµν − nλ

(
nµδgνλ + nνδgµλ

)
+ nµnνnαnβδg

αβ (B.11)

and
δRµρνσ = −Rβρνσgαµδgαβ + gµλ

(
∇νδΓλρσ −∇σδΓλρν

)
, (B.12)

where δΓλµν is written in Eq. (B.8). Therefore, after straightforward manipulations,

δR̂ = (Rαβ − nµnνRµανβ − 3Rραnβn
ρ + 2Rµνn

µnνnαnβ) δgαβ

+ hνµh
ρσ
(
∇νδΓµρσ −∇σδΓµρν

)
+ 2KδK − 2KµνδKµν .

(B.13)

C Stückelberg trick and decoupling limit

In this appendix we collect the Stückelberg transformations that can be used to restore full
gauge invariance in the theory (A.30). Without affecting the generality of the discussion, we
will set here b ≡ 1 in the background metric (2.1).

Under a general transformation of coordinates, x→ x̃(x), the metric changes as

g̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(x) , g̃µν(x̃) =

∂x̃µ

∂xα
∂x̃ν

∂xβ
gαβ(x) . (C.1)
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Focusing in particular on transformations that leave time and angular coordinates invariant,{
r → r̃ = r + π(xa, r) ,

xa → x̃a = xa ,
(C.2)

or, equivalently,
x̃µ(x) = xµ + π(x)δµr . (C.3)

A generic scalar function of r transforms as

F (r)→ F (r + π) = F (r) + F ′(r)π +
1

2
F ′′(r)π2 + . . . (C.4)

while

∂r → (1− π′ + π′
2
)∂r , (C.5)

∂a → (−∂aπ + π′∂aπ)∂r + ∂a . (C.6)

The transformation laws of the contravariant components of the metric take on the form

grr → grr(1 + 2π′ + π′
2
) + 2gar∂aπ + 2garπ′∂aπ + (∂aπ)(∂bπ)gab , (C.7)

gra → (1 + π′)gra + (∂bπ)gab , (C.8)

gab → gab . (C.9)

On the other hand, the Stückelberg transformations for the covariant metric can be easily
calculated by solving perturbatively in r(x̃) the equation r̃(x) = r+π(xa, r), from which one
finds r(x̃a, r̃) = r̃ − π(x̃a, r̃ − π) = r̃ − π(x̃a, r̃) + π′π(x̃a, r̃) + . . . and therefore

gra → grr
[
−∂aπ + 2π′∂aπ + . . .

]
(xa, r) + gra

[
1− π′ + π′

2
+ . . .

]
(xa, r) , (C.10)

gab → grr [∂aπ∂bπ + . . .] (xa, r) + grb
[
−∂aπ + π′∂aπ + . . .

]
(xa, r)+

+ gra
[
−∂bπ + π′∂bπ + . . .

]
(xa, r) + gab , (C.11)

grr → grr

[
1− 2π′ + 3π′

2
+ . . .

]
(xa, r) . (C.12)

These expressions highly simplify in the decoupling limit regime. Setting the metric to its
background value (2.1), they can be assembled as

gµν →
(

ḡab (∂cπ)ḡac

(∂cπ)ḡcb ḡrr(1 + 2π′ + π′2) + (∂cπ)(∂dπ)ḡcd

)
, (C.13)

gµν →
(

ḡab + ḡrr∂aπ∂bπ ḡrr(−∂aπ + 2π′∂aπ)

ḡrr(−∂bπ + 2π′∂bπ) ḡrr(1− 2π′ + 3π′2)

)
. (C.14)

Moreover, some useful equations are:

Na = gra → −∂aπ + 2π′∂aπ +O(π3) , (C.15)

N =
1√
grr
→ 1− π′ + π′

2 − 1

2
(∂aπ)(∂bπ)ḡab +O(π3) , (C.16)

Na = −N2gra → −(1− 2π′)(∂bπ)ḡab +O(π3) , (C.17)

hab = gab − NaN b

N2
→ ḡab − (∂cπ)(∂dπ)ḡacḡbd +O(π3) , (C.18)
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up to quadratic order in π. Furthermore, the (2 + 1)-dimensional Christoffel symbol

Γ̂cab =
1

2
hcd (∂ahbd + ∂bhad − ∂dhab) (C.19)

transforms as (up to first order)

Γ̂cab → Γ̄cab +
1

2
ḡcd
(
−ḡ′bd∂aπ − ḡ′ad∂bπ + ḡ′ab∂dπ

)
+O(π2) , (C.20)

where Γ̄cab is defined as the background value of Γcab,

Γ̄cab ≡
1

2
ḡcd (∂aḡbd + ∂bḡad − ∂dḡab) . (C.21)

Together with (C.15)-(C.18), Eq. (C.20) can be used to compute the transformation law of
the extrinsic curvature, which up to linear order in π reads

Kab → K̄ab + D̄aD̄bπ +O(π2) , (C.22)

where D̄a is the projected covariant derivative computed on the background metric, while
taking the trace

K → K̄ + D̄aD̄
aπ +O(π2) . (C.23)

Therefore, the transformation laws for the perturbed quantities read

δKab → −K̄ ′abπ + D̄aD̄bπ +O(π2) , δK → −K̄ ′π + D̄aD̄
aπ +O(π2) . (C.24)

As already emphasized in the main text the perturbation δKab for the extrinsic curvature
does not transform as a tensor, as it is clear from the term K̄ ′ab in (C.24).

C.1 An explicit example: the cubic Galileon

In this appendix we extend the discussion of Sec. 6.2 of the decoupling limit in the EFT
(2.4) by including operators with one extra derivative, i.e. operators of the form (δgrr)nδK.
Up to quadratic order in the number of fields, this yields

S =

∫
d4x
√
−g
[
M2

Pl

2
R− Λ(r)− f(r)grr − α(r)K̄µνK

µν

+M4
2 (r)(δgrr)2 +M3

3 (r)δgrrδK +M2
4 (r)K̄µνδg

rrδKµν + . . .

]
. (C.25)

Let us focus for simplicity on the case of theories with α = M2
4 = 0, of which cubic Horndeski

operators are genuine examples (see App. D.1). Using (C.24) yields the following quadratic
action for the scalar mode in the decoupling limit:

S(2)
π =

∫
d4x ac2 sin θ

{[
1

ac2
∂r
(
ac2f ′ + ac2M3

3 K̄
′)− 1

2

(
Λ′′ + f ′′

)]
π2

+

[
f − a

c2
∂r

(
c2

a
M3

3

)]
π̇2

a2

−
[
f − 1

a
∂r
(
aM3

3

)] [(∂θπ)2

c2
+

(∂φπ)2

c2 sin2 θ

]
−
(
f − 4M4

2

)
π′

2
}
, (C.26)
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where the speeds of propagation are now modified according to

c2
π,r =

f − 4M4
2

f − a
c2
∂r

(
c2

aM
3
3

) , c2
π,Ω =

f − 1
a∂r

(
aM3

3

)
f − a

c2
∂r

(
c2

aM
3
3

) . (C.27)

Notice that the operator δgrrδK is responsible for making the velocity along the angular
direction non-unitary. Furthermore, it is now instructive to consider the flat spacetime limit
of (C.26) and compare the result for instance with [72]. To this end, it is convenient to make
the field redefinition π = δΦ/Φ̄′ + . . ., which holds at the leading order. Then, in the limit
a→ 1, c→ r, K̄ → 2

r , the action (C.26) takes on the form

S(2)
ϕ =

∫
d4x ac2 sin θ

{[
1

r2
∂r
(
r2f ′ + r2M3

3 K̄
′)− 1

2

(
Λ′′ + f ′′

)
− Φ̄′2

r2
∂r

[
r2Φ̄′′

Φ̄′3
(
f − 4M4

)]
−
(
f − 4M4

) Φ̄′′2

Φ̄′2

]
δΦ2

Φ̄′2

+

[
f − 1

r2
∂r
(
r2M3

3

)] ˙δΦ
2

Φ̄′2
−
[
f − ∂r

(
M3

3

)] (∂ΩδΦ)2

Φ̄′2
−
(
f − 4M4

) δΦ′2
Φ̄′2

}
. (C.28)

In order to make a comparison with [72], we take the cubic galileon Lagrangian [52] (see also
App. D.1)

L = g2(∂Φ)2 + g3(∂Φ)2�Φ = g2X +
2g3

3
X3/2K , (C.29)

where g2 and g3 are generic coupling constants. Therefore, expanding the metric in fluctua-
tions in the unitary gauge δΦ = 0 and comparing with (C.26) yields

M4(r) =
g3Φ̄′2

4

(
Φ̄′′ + Φ̄′K̄

)
, M3

3 (r) = g3Φ̄′3 , (C.30)

f = −g2Φ̄′2 + g3Φ̄′2
(
Φ̄′′ − Φ̄′K̄

)
, Λ = g3Φ̄′2

(
Φ̄′′ + Φ̄′K̄

)
. (C.31)

Using the expressions (C.30)-(C.31) and setting g2 = −3, g3 = −1, it is straightforward to
check that (C.28) coincides with the quadratic action of [72]. In particular, one can show
that the mass of δΦ in (C.28) is zero on the background equations of motion, as it should be
since the theory (C.29) we started with is shift invariant.

D Cubic and Quartic Horndeski in unitary gauge

The construction of the effective theory (2.4) is based only on the breaking pattern of Poincaré
down to time translations and spatial rotations. Additional symmetries (e.g. [34]) or the
requirement of not having any unwanted ghost like degree of freedom on top of the scalar
and tensor modes (see e.g. [51] for a discussion in the context of FLRW backgrounds),
will further constrain the r-dependent coefficients in (2.4). In addition, one could also expect
more constraints coming from causality and analyticity [69]. Postponing the study of all these
points to future work, in this appendix we confine ourselves to show which kinds of operators
are generated in the specific class of Horndeski theories [53], which besides of having second
order equations of motion [54] are known to be protected against large quantum corrections
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[73, 74]. As an example, we will focus on the cubic Horndeski and, as a prototype of theory
that yields the additional α-tadpole in (2.4), we will discuss the quartic Horndeski.

Let us start from the definition (A.1) of the unit vector perpendicular to the hypersurface.
Then, differentiating and using Eq. (A.6),

∇µ∇νΦ =
√
X∇µnν +

nν∇µX
2
√
X

=
√
X (Kµν + nαnµ∇αnν) +

nν∇µX
2
√
X

, (D.1)

where X ≡ ∇µΦ∇µΦ. On the other hand,

√
Xnνn

α∇αnµ +
1

2X
∇αΦ∇αXnµnν

= − 1

2X
nνn

α∇αX∇µΦ + nνn
α∇α∇µΦ +

1

2X
∇αΦ∇αXnµnν

=
1

2
√
X
nν∇µ (∇αΦ∇αΦ) . (D.2)

Eq. (D.2) can be used to re-write Eq. (D.1) as [75, 76]

∇µ∇νΦ =
√
X (Kµν + nαnµ∇αnν + nαnν∇αnµ) +

1

2X
∇αΦ∇αXnµnν . (D.3)

D.1 Cubic Horndeski

Let us focus on the cubic Horndeski Lagrangian

LH3 = G3(Φ, X)�Φ , (D.4)

where G3 is an arbitrary function of X ≡ ∇µΦ∇µΦ and Φ. Taking the trace of Eq. (D.1),
or equivalently Eq. (D.3),

�Φ =
√
XK +

∇µΦ∇µX
2X

, (D.5)

and defining F3 such that [75]

G3 = F3 + 2XF3X , (D.6)

after an integration by parts, the cubic Horndeski Lagrangian (D.4) can be written as follows:

LH3 = −F3X∇µX∇µΦ−XF3Φ + 2XF3X

(√
XK +

∇µΦ∇µX
2X

)
= 2X3/2F3XK −XF3Φ .

(D.7)

Solving the differential equation (D.6) yields

F3(X) =
1√
X

∫
dX

G3(X)

2
√
X

(D.8)

and

2X3/2F3X =
√
XG3(X)−

∫
dX

G3(X)

2
√
X

=

∫
dX
√
X G3X(X) . (D.9)
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D.2 Quartic Horndeski

Now we are going to rewrite the quartic Horndeski Lagrangian

LH4 = G4(Φ, X)R− 2G4X(Φ, X)
[
(�Φ)2 − (∇µ∇νΦ)2

]
(D.10)

in terms of the geometric quantities of the radially foliated spacetime. Using the second
identity in (A.4) and the orthogonality condition Kµνn

ν = 0, we can write

∇µ∇νΦ∇µ∇νΦ = X
(
KµνK

µν + 2nαnβ∇αnµ∇βnµ
)

+
1

4X2
(∇αΦ∇αX)2 . (D.11)

Then, following [75], the Lagrangian (D.10) takes on the form

LH4 = G4R− 2G4X

[(√
XK +

∇µΦ∇µX
2X

)2

−X
(
KµνK

µν + 2nαnβ∇αnµ∇βnµ
)
− 1

4X2
(∇αΦ∇αX)2

]
. (D.12)

Now, using that

nα∇αnµ =
∇αΦ√
X
∇α
∇µΦ√
X

=
∇αΦ∇µ∇αΦ

X
− ∇

αΦ∇µΦ∇αX
2X2

=
∇µX
2X

− nαnµ∇αX
2X

=
1

2X

(
gαµ − nαnµ

)
∇αX (D.13)

and that nµ∇βnµ = 0, Eq. (D.12) becomes

LH4 = G4R− 2XG4X

(
K2 −KµνK

µν
)
− 2G4X∇µX

(
Knµ − nβ∇βnµ

)
. (D.14)

Furthermore, after some final straightforward manipulations,

− 2G4X∇µX
(
Knµ − nβ∇βnµ

)
= −2

(
∇µG4 −

√
XG4Φnµ

)(
Knµ − nβ∇βnµ

)
= 2G4∇µ

(
Knµ − nβ∇βnµ

)
+ 2
√
XG4ΦK

= G4

(
R̂−KαβK

αβ +K2 −R
)

+ 2
√
XG4ΦK , (D.15)

where we have integrated by parts and used the Gauss-Codazzi (A.10), and substituting in
(D.14), we find

LH4 = G4R̂+ (G4 − 2XG4X)
(
K2 −KµνK

µν
)

+ 2
√
XG4ΦK . (D.16)

E Transformation to Schrödinger-like form

In this Section we summarise the procedure which can be systematically followed in order to
transform a second order differential equation

c1(r)Q′′(r) + 2c2(r)Q′(r) +
[
c3(r)ω2 + c4(r)

]
Q(r) = 0 (E.1)
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into a Schrödinger-like equation of the form

Q′′(r̃) +
[
ω2 + V (r̃)

]
Q(r̃) = 0 . (E.2)

Without violating the generality of the argument, we are going to set c3(r) = 1. This can be
always achieved multiplying (E.2) by an overall factor c−1

3 (r) which effectively coincide with
redefining ci(r)→ ci(r)/c3(r). Then, by the following coordinate redefinition

r → r̃(r) =

∫ r

rc

dl√
c1(l)

s.t.
d

dr̃
=
√

c1(r)
d

dr
(E.3)

and variable redefinition

Q(r)→ Q(r̃(r)) = exp

[∫ r

rc

(
c2(l)

c1(l)
− c′1(l)

4c1(l)

)
dl

]
Q(r) (E.4)

one obtains (E.2) with the potential:

V (r̃(r)) =
c′′1(r)

4
+

c2(r)c′1(r)

c1(r)
− 3

16

c′1(r)2

c1(r)
− c2(r)2

c1(r)
− c′2(r) + c4(r) . (E.5)

F The Regge-Wheeler equations

The Regge-Wheeler equations, in the form given by Zerilli [77], are:

h0
′′ − ḣ1

′ − 2

r
ḣ1 +

(
4GM
r2

− `(`+ 1)

r

)
h0

r − 2GM
= 0 (F.1)

ḧ1 − ḣ0
′
+

2

r
ḣ0 + (`− 1)(`+ 2)(r − 2GM)

h1

r3
= 0 (F.2)(

1− 2GM
r

)
h1
′ −
(

1− 2GM
r

)−1

ḣ0 +
2GM
r2

h1 = 0 (F.3)

They describe the GR dynamics of small perturbations around a Schwarzschild background.
Note that the Regge-Wheeler gauge has been chosen.

G Isolating the gravitational waves – the large radius limit

The GR equations governing the evolution of perturbations around a Schwarzschild black
hole were derived by [47, 65]. In this Appendix, we wish to describe how the equations can
be understood in a heuristic way. For simplicity, we focus on the odd perturbations.

In the odd sector, the only gauge transformation takes the form x̃µ = xµ + ξµ, with

ξµ = (0, 0, εi
j∂jδ) , (G.1)

under which

h̃0 = h0 + δ̇ , h̃1 = h1 + δ′ − 2c′

c
δ , h̃2 = h2 − 2δ , (G.2)
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where ˙( ) ≡ ∂t( ) and ( )′ ≡ ∂r( ). The Regge-Wheeler gauge corresponds to choosing
h̃2 = 0:

h0
RW = h0 + δ̇ , h1

RW = h1 + δ′ − 2c′

c
δ , 0 = h2

RW = h2 − 2δ , (G.3)

To isolate the gravitational waves, we find it more transparent to keep h2 around, i.e. to set
δ = h2/2 in the expressions for h0

RW and h1
RW. Further simplification is obtained by taking

the large r limit, which includes ∂r fluc. � fluc./r – with the understanding that ∂r pulls
out a factor of the momentum, and likewise for ∂t. For instance δ′ � c′δ/c.

We substitute the above expressions for h0
RW and h1

RW in terms of h0,h1 and h2 into
the standard Regge-Wheeler equations [47, 77], which for completeness are summarized in
Appendix F. After taking the large r limit, these equations reduce to

h0
′′ − ḣ1

′ ' 0 from Eq. (F.1) (G.4a)

ḧ1 − ḣ0
′ ' 0 from Eq. (F.2) (G.4b)

(−ḣ0 + h1
′) + 1

2(−ḧ2 + h2
′′) ' 0 from Eq. (F.3) . (G.4c)

These expressions make it manifest that h2 obeys a wave equation in the large r limit.
Interestingly, the wave equation lives in the Regge-Wheeler equation with the lowest number
of derivatives (no more than one derivative on h1 or h0). This large r limit of the Regge-
Wheeler equations is useful for seeing where the gravitational waves live, but not helpful for
deducing the quasi-normal spectrum. The dynamics of the modes at small r is important for
determining the latter.

To make progress with the finite r form of the Regge-Wheeler equations, we need to identify
the variable that contains the gravitational wave degree of freedom. Both h0

RW and h1
RW

contains h2, which is what we are ultimately interested in. However, because h0 transforms
by a time derivative of the gauge parameter (δ̇), it has no conjugate momentum. Thus, h1 is
the more promising quantity to focus on in terms of obtaining an equation with the desired
second derivative (in time and radius) structure. Our goal therefore reduces to finding a
second order equation of motion for h1

RW out of the Regge-Wheeler equations.

This procedure can in turn be approached in two different ways, recalling that h1
RW = h1 +

h2
′/2−h2c

′/c. Since h2 is the gravitational wave of interest, one could choose the h1 = 0 gauge
such that the equation for h1

RW becomes purely an equation for h2. A more sophisticated
viewpoint is to note that the combination h1+h2

′/2−h2c
′/c is gauge invariant (terms involving

δ cancel under a gauge transformation). This is the gauge invariant combination that contains
the gravitational wave degree of freedom; obtaining a single equation governing its evolution
is precisely what we want. Contrast this with the other gauge invariant combination involving
h0 and h1: that removes the gravitational wave degree of freedom and is therefore not what
we want to focus on. (Another useful combination is h0 + ḣ2/2.)

Now, there are three Regge-Wheeler equations. Because the gravitational wave of interest

lives in Eq. (F.3), this provides a natural starting point which gives an expression for ḣ0
RW

(adopting the standard Schwarzschild form for a, b, c in the background metric):

ḣ0
RW

= (1− 2GM/r)∂r([1− 2GM/r]h1
RW) . (G.5)
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This then motivates the use of Eq. (F.2) because it depends on ḣ0
RW

and its derivative, but
not h0

RW. Thus, substituting the above into Eq. (F.2):

ḧ1
RW − ∂r

([
1− 2GM

r

]
∂r

([
1− 2GM

r

]
h1

RW

))
+

2

r

(
1− 2GM

r

)
∂r

([
1− 2GM

r

]
h1

RW

)
+

(`− 1)(`+ 2)

r2

(
1− 2GM

r

)
h1

RW = 0 .

(G.6)

Eq. (G.6) lends itself to further simplification: introducing the tortoise coordinate r̃ defined
by

∂r̃ ≡ (1− 2GM/r)∂r , (G.7)

and multiplying h1
RW by a suitable function of r to remove the first derivative term (see

Appendix E). Thus one obtains the standard Schrödinger-like equation for determining the
spectrum of odd quasi-normal modes of a Schwarzschild black hole in GR (see e.g. [78]):[

d2

dr̃2
+ ω2 −

(
1− 2GM

r

)(
`(`+ 1)

r2
− 6GM

r3

)][(
1− 2GM

r

)
h1

r

]
= 0 . (G.8)

The even sector could be treated in a similar way, though it is considerably more complex.

H Bianchi identities

The Bianchi identities tell us that not all equations of motion are independent. In manipu-
lating the equations that govern black hole perturbations which are often quite complicated,
it is useful to know how the equations of motion are related. We give the relations here.

Under a gauge transformation x̃µ = xµ − ξµ, the metric transforms according to

δgµν = ξγ∂γgµν + gγµ∂νξ
γ + gγν∂µξ

γ , (H.1)

and the scalar field transforms according to

δΦ = ξγ∂γΦ . (H.2)

Using the fact that ξµ is an arbitrary function of space and time, it can be shown, using
arguments along the lines of those for proving Noether’s second theorem, that the equations
of motion are related by:

0 =
δS

δΦ
∂γΦ +

δS

δgµν
∂γgµν − 2∂µ

(
δS

δgµν
gγν

)
, (H.3)

where γ = 0, 1, 2, 3 for four identities. The form of the identities are fully general. When
the metric and scalar are separated into background and fluctuations, and the background
equations of motion are enforced, the Bianchi identities yield the following relations to first
order in perturbations:

0 =
δS

δ(δΦ)
∂γΦ̄ +

δS

δ(δgµν)
∂γ ḡµν − 2∂µ

(
δS

δ(δgµν)
ḡγν

)
, (H.4)
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Note that in the above formulation, it is important that gauge-fixing is performed after the
equations of motion are written down. For instance, suppose one chooses a gauge in which
the spatial part of the metric is diagonal; it is important the equations of motion that followed
from varying the off-diagonal parts of the spatial metric are also used.
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