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Abstract

We prove a version of the Weak Gravity Conjecture for 6d F-theory or heterotic string compactifications 
with 8 supercharges. This sharpens our previous analysis by including massless scalar fields. The latter are 
known to modify the Weak Gravity Conjecture bound in two a priori independent ways: First, the extremal-
ity condition of a charged black hole is modified, and second, the test particles required to satisfy the Weak 
Gravity Conjecture are subject to additional Yukawa type interactions. We argue on general grounds that at 
weak coupling, the two types of effects are equivalent for a tower of asymptotically massless charged test 
particles predicted by the Swampland Distance Conjecture.

We then specialize to F-theory compactified on elliptic Calabi–Yau three-folds and prove that the precise 
numerical bound on the charge-to-mass ratio is satisfied at weak coupling. This amounts to an intriguing 
coincidence of two a priori different notions of extremality, namely one based on the balance of gauge, 
gravitational and scalar forces for extremal (non-BPS) black holes, and the other encoded in the modular 
properties of certain Jacobi forms. In the presence of multiple abelian gauge group factors, the elliptic genus 
counting these states is a lattice quasi-Jacobi form of higher rank, and we exemplify this in a model with 
two abelian gauge group factors.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction and summary

In a consistent quantum theory, the gravitational and the non-gravitational sectors are typi-
cally far from independent. String theory as a framework for a UV consistent theory is the prime 
example where this principle is realized. More generally, a number of remarkable conjectures 
constrain the properties of quantum field theories by requiring that they can be consistently cou-
pled to quantum gravity. One of the earliest such conjectures is the Weak Gravity Conjecture 
(WGC) [1] and its refinements [2–4]. It postulates the existence of a set of particles on which 
gravity acts weaker than any gauge force. Apart from being an exciting arena to study general 
principles of fundamental physics, the conjecture has important implications on phenomenol-
ogy. At a fundamental level, it is related to the so-called Swampland Distance Conjecture [5], 
as studied in [6–12], guarantees Weak Cosmic Censorship in AdS space [13,14] and underlies a 
conjectured instability of non-supersymmetric AdS vacua [15–17]. From a more applied point of 
view, its generalization to p-form interactions for p = 0 constrains theories of large field infla-
tion, as reflected in a substantial corpus of work including [18–38] (for additional aspects of this 
axionic Weak Gravity Conjecture see [39–41]); other versions affect the allowed range of Stück-
elberg masses [38] and have been argued to have implications on neutrino physics [15,42,43] or 
the electroweak scale [44–46]. Understanding the WGC and its refinements in as much detail as 
possible is therefore an important subject. General arguments aiming to prove the Weak Grav-
ity Conjecture involve the entropy of black holes [14,47,48], consistency of the effective field 
theory [9,49] or the AdS/CFT correspondence [50–53]. A lot of evidence for the various forms 
of the conjecture has already been accumulated in a string theoretic context e.g. in [1,4,11], in 
situations with extended supersymmetry in various numbers of dimensions.

1.1. Recap of previous analysis

In [12] we have studied the Weak Gravity Conjecture for 6d string compactifications with 
minimal, i.e. with N = (1, 0), supersymmetry. As noted above, the WGC is related to the so-
called Swampland Distance Conjecture [5], which posits that as we traverse the moduli space 
of a theory over infinite distances, a tower of states must become exponentially light. One such 
regime is where the gauge coupling becomes asymptotically weak. Near this region, infinitely 
many charged massless states are expected to appear [8–11] and to lead to a breakdown of the 
effective theory. This is consistent with the postulate [54–56] that no global symmetries can arise 
in a theory with dynamical gravity.

In [12] we have characterized the most general limit in 6d N = (1, 0) supersymmetric com-
pactifications of F-theory in which the gauge coupling of a single gauge group factor becomes 
asymptotically weak, while gravity stays dynamical. In this limit, a curve C on the base B2 of 
the elliptic fibration Y3 tends to infinite volume while the volume of B2 stays finite. The expected 
tower of charged asymptotically massless states has been explicitly identified: It consists of cer-
tain non-BPS excitations of a D3-brane wrapped on a curve of zero self-intersection. The volume 
of the wrapped curve tends to zero in the weak coupling limit, and the wrapped D3-brane gives 
rise to a string which becomes tensionless as the gauge coupling vanishes. This asymptotically 
tensionless string is in fact the 6d critical heterotic string. Its elliptic genus [57,58] captures a 
subset of the physical string excitation spectrum and can be computed, by duality with M-theory 
[59–61], in terms of the genus-zero Gromov–Witten invariants of the elliptic three-fold, Y3. The 
key observation [12] is that, for a theory with a single U(1) factor, the spectrum includes states 
whose charges span the sublattice
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qk = 2mk , k ∈ Z , (1.1)

of the full charge lattice, and whose masses Mk satisfy the relation1

q2
k = 4mnk = 4m(M2

k /(4mg2
YM) + 1) . (1.2)

Here m is an integer of order one which can be read off from the geometric realisation of the 
theory, and which coincides with the fugacity index of the elliptic genus. Moreover, nk denotes 
the string excitation level at which the states appear.

In short, eq. (1.2) follows from the modular properties [57] of certain weak Jacobi forms in 
terms of which the elliptic genus is expressed [62–64], as will be reviewed in section 4.1. The 
mathematical properties of Jacobi forms imply that the sector of the theory charged under the 
U(1) can always be characterised by a charge lattice from strings winding on an S1, and it is 
the physics of such winding states that governs the charge-to-mass relationship (1.2) of extremal 
string states.

1.2. Content of the present article

It has already been announced in [12] that the relation (1.2) is precisely of the right form in 
order for the states in the charge sublattice to satisfy a sublattice version [4] of the Weak Gravity 
Conjecture. To complete the proof of this Sublattice Weak Gravity Conjecture, we still need 
to perform careful calculations of the extremality condition on the black hole side, involving 
precise numerical factors. This is the main purpose of this note. On a side line, we generalize 
the setup to an arbitrary number of abelian gauge group factors. Along the way we develop a 
better understanding of the nature of the WGC, which may be useful also beyond the specific 
applications presented here.

A crucial point is that a proper formulation of the WGC must address the role of the mass-
less scalar fields that are present in the low-energy effective theory. There are two, at first sight 
different ways how such scalar fields enter: First, a moduli dependence of the gauge kinetic term 
modifies the charge-to-mass ratio of an extremal black hole [3,65]; according to one of the orig-
inal motivations for the WGC [1], such black holes must be able to decay and hence there must 
exist particles which are super-extremal with respect to this charge-to-mass ratio. On the other 
hand, in [7] it has been argued that the particles into which an extremal black hole may decay 
must not be able to form gravitational bound states. Hence the attractive force between two such 
particles must be smaller than the repulsive gauge forces. If the particles couple also to massless 
scalars via a Yukawa interaction, the latter yields an extra contribution to the attractive force in 
addition to the gravitational force. This leads to an – a priori different – bound which the particle 
species must obey [7].

As we will argue, if we assume that the WGC is satisfied by a tower of asymptotically mass-
less particles in a neighbourhood of the weak gauge coupling point, then the two criteria are 
automatically equivalent, in this regime of moduli space and in any number of dimensions. This 
is a simple consequence of the exponential collapse of the tower of particle masses near the weak 
coupling point, as postulated by the Swampland Distance Conjecture.

1 A priori, this relation holds in the weak gauge coupling regime, where the dual heterotic string becomes perturbative 
as well.
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Having identified the correct criterion for the WGC particles to fulfill, we carefully examine 
the role of scalar fields in the 6d F-theory setup introduced in [12]. As a result of this analysis we 
will find that the correct numerical bound to be satisfied is (in units where MPl = 1)

g2
YMq2 !≥

(
3

4
+ 1

4

)
M2 = M2 . (1.3)

The first term in the brackets is the purely gravitational contribution and the second the scalar-
field induced contribution. The latter corresponds to the modification of the extremality condition 
due to the scalar fields of a dilatonic Reissner–Nordstrøm black hole in the approach of [3], or 
to the Yukawa force according to [7]. This bound is to be compared with the bound (1.2) of [12]
for the sublattice (1.1) of non-BPS states,

g2
YMq2

k = M2
k + 4mg2

YM , (1.4)

which follows from general properties of weak Jacobi forms, as reviewed above.
We see that the sublattice of super-extremal string states barely lies above the WGC bound 

(1.3). In particular, for large charges qk , the additive constant on the RHS of (1.4) can be ne-
glected. From a mere computational point of view, the outcome that the two relations (1.4) and 
(1.3) agree so closely may appear as quite miraculous: The relation (1.4), or more clearly (1.2), is 
a consequence of the modular properties of the elliptic genus, while (1.3) arises as the sum of the 
gravitational and scalar contributions to the zero-force condition of extremal black holes. Viewed 
in this way, it may seem surprising that the two, a priori different notions of extremality2 give 
the same numerical bound for the asymptotic charge-to-mass ratio. See Fig. 1 for a suggestive 
visualisation.

The physics behind this seeming coincidence, is, of course, analogous to the behaviour ob-
served already for the heterotic string on flat backgrounds in [1,4]: It reflects the fact that the 
highly excited string states can asymptotically become extremal black holes themselves [66].

Suppose the theory gave, instead of (1.4), a relation of the form g2
YMq2

k = cM2
k + . . . with c > 1

for a set of physical states, and with corrections which become subleading for high charges. If 
the WGC is satisfied by a sublattice of states, the constant c must be given by c = 1: Otherwise, 
for high charges we would form a black hole whose charge-to-mass ratio exceeds the extremality 
bound (1.3). In this sense there are only two options: Either violate the sublattice version of the 
WGC altogether, or satisfy it à point. This principle seems to be deeply built into string theory, 
and in particular cannot depend on any BPS property.

As we will detail further, while for the tower states the Coulomb interaction exceeds the 
combined attraction of gravity and scalar interactions, in the spirit of the WGC, the gravitational 
force as such is not weaker, but stronger compared to the scalar force acting between two such 
test particles. The slogan ‘gravity is the weakest force’ hence holds only with a grain of salt, at 
least for the tower of WGC states which become asymptotically massless near weak coupling in 
the present setup.

In a secondary direction of this article, we generalize the above findings to an arbitrary 
number of abelian gauge group factors: At a technical level, the elliptic genus of the asymptoti-
cally tensionless string now involves a lattice quasi-Jacobi form of higher rank [67]: Its elliptic 
transformation behaviour is determined by a matrix which underlies the definition of a higher-
dimensional charge lattice. Higher rank Jacobi forms comprise, as a special case, Weyl invariant 

2 Recall that we consider non-BPS, classical black holes here; for BPS states, the equivalence of both notions of 
extremality is guaranteed by supersymmetry.
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Fig. 1. Charge-mass spectrum of a 6d F-theory, or heterotic, string compactification as determined by the elliptic genus, 
for a particular example of ref. [12]. Note how narrowly the bound of the Sublattice Weak Gravity Conjecture (solid blue 
line) is satisfied by the super-extremal, non-BPS string states (red dots). The new feature we show is how the blue line 
arises as the net sum of gravitational (dashed red line) and scalar (dotted green line) contributions. It is intriguing that this 
sum, which reflects a zero force property of the physics of extremal (non-BPS) black holes, conspires with the spectrum 
of super-extremal string states, which reflects certain mathematical properties of Jacobi forms. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

Jacobi forms, whose associated charge lattices are those of simple Lie algebras. Such generaliza-
tions of weak and of Weyl invariant Jacobi forms are an active field of arithmetic geometry [68]. 
While to date an explicit basis of the set of generators, comparable to the rank one case, is not 
available in the literature, the theta-decomposition already invoked in [12] to prove (1.1) carries 
over to several U(1)s. To confirm this general pattern in an example, we will propose a closed 
form for the elliptic genus in an F-theory model with two abelian gauge factors, which passes 
non-trivial consistency checks against the BPS invariants as computed by mirror symmetry. It 
would be interesting to explore the application of higher rank quasi-modular forms along these 
lines further.

More specifically, the present article is structured as follows: In section 2.1 we contrast 
the two a priori different ways how massless scalar fields enter the WGC, by modifying the 
extremality bound [3] or by contributing extra scalar forces [7]. In section 2.2 we point out 
under which assumptions the resulting WGC bounds are guaranteed to agree. In section 3 we 
prove the WGC in the most general F-theory compactification to 6d with 8 supercharges near 
a weak coupling point. After setting the stage of the relevant chiral supergravity theory in sec-
tion 3.1, we carefully compute, in section 3.2, the scalar field kinetic metric in the weak coupling 
limit introduced in [12]. This allows us to prove that the Sublattice WGC conjecture is in-
deed satisfied in the weak coupling regime in section 3.3. The discussion is phrased directly 
for several abelian gauge fields. In section 4.1 we first prove the generalization of the rela-
tion (1.2) from [12] for multiple abelian gauge fields, by invoking a theta decomposition of 
higher-rank quasi-Jacobi forms. Section 4.2 demonstrates this in an explicit example, which also 
shows how to overcome the limitations in the literature in providing an explicit basis of such 
forms.
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2. On the Scalar Weak Gravity Conjecture

The main aim of this work is to verify the Weak Gravity Conjecture (WGC) in the presence 
of massless scalar fields in a concrete string theoretic setting. As described in the Introduction, 
there exist seemingly different formulations and justifications for this conjecture, and it may a 
priori not be obvious to what extent they are strictly equivalent. In order for the comparison to be 
meaningful at a quantitative level, it is important to keep track of the precise numerical factors 
that appear in each formulation. For these reasons we now revisit the WGC in the presence of 
massless scalar fields.

2.1. Super-extremality versus balancing of forces

According to one of the original arguments in [1] for motivating the WGC bound, charged ex-
tremal black holes must be able to decay. In absence of massless scalar fields the extremal black 
holes charged under the abelian gauge symmetry correspond to extremal Reissner–Nordstrøm 
black holes. In the context of a supergravity theory, on the other hand, the couplings of the ef-
fective theory are controlled by the vacuum expectation value of moduli fields. If the latter are 
massless, a charged extremal black hole solution imprints a non-trivial profile of the scalars en-
tering the gauge coupling. This scalar profile modifies the charge-to-mass ratio of an extremal 
charged black hole, and it is this modified value that constitutes the lower bound for the charge-
to-mass ratio of a particle satisfying the WGC [3].

Let us consider a theory with several abelian gauge group factors U(1)a , a = 1, . . . , nU(1), 
whose kinetic terms depend on a set of scalar fields φr , r = 1, . . . ns . This is encoded in the 
following action:

SEMd =
∫

R1,d−1

Md−2
Pl

2

√−gR − Md−2
Pl

2
grsdφr ∧ ∗dφs − 1

2
fab(φ

r)F a ∧ ∗Fb . (2.1)

The d-dimensional Planck mass MPl has been included in such a way that the scalars, which we 
write in an obvious vector notation as �φ, have mass dimension zero. We are working in a frame 
where the scalar kinetic matrix grs is taken to be constant.

As a special case the gauge kinetic terms can depend exponentially on �φ. Such a dilatonic 
theory is hence characterized by a matrix of gauge kinetic terms

fab( �φ) = fab( �φ0) e�α·( �φ−�φ0) (2.2)

in terms of the invariant combination

�α · �φ = grsα
rφs . (2.3)

In this situation and with the above normalization of the fields, the charge-to-mass ratio of an 
extremal dilatonic Reissner–Nordstrøm black hole with total charges Qa and ADM mass MADM
is given by [65,69]

〈Q,Q〉f ( �φ0)
:= Qaf

ab( �φ0)Qb = μ
M2

ADM

Md−2
Pl

, (2.4)

with

μ = μG + μ �φ , μG = d − 3
, μ �φ = 1 �α · �α . (2.5)
d − 2 4
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Here we have identified the reference value �φ0 with the asymptotic value of the scalar fields �φ in 
the extremal dilatonic Reissner–Nordstrøm black hole solution,

�φ → �φ0 as r → ∞ , (2.6)

where r is the spatial radial coordinate r . It is this asymptotic value which controls the extremal-
ity condition (2.4), where f ab( �φ) = f ab( �φ0)e

−�α·( �φ− �φ0) is the inverse of the gauge kinetic matrix 
fab( �φ). Note that if the scalars �φ were massive and hence not activated in the black hole so-
lution, the dilatonic contribution μ �φ would be absent. In this sense, μG represents the purely 
gravitational contribution to the extremality condition.

The WGC then requires the existence of a suitable set of particles of charges q and associated 
masses m whose charge-to-mass ratio exceeds this extremality bound [3] in such a way that every 
extremal charged dilatonic black hole can decay into super-extremal particles [1]. The minimal 
requirement which guarantees this in the presence of several U(1) factors is the Convex Hull 
Condition of [2]. A stronger condition, which is the one we will be studying in this article, is 
the Sublattice Weak Gravity Conjecture [4]. It postulates that (at least) a sublattice of the charge 
lattice is populated by physical states whose charge-to-mass ratio exceeds the extremality bound 
(2.4),

〈q,q〉f ( �φ)

!≥ μ
m2

Md−2
Pl

. (2.7)

This condition implies the Convex Hull Condition of [2] and moreover is stable under dimen-
sional reduction [3]. Note that for a spatially varying scalar field configuration, we immediately 
face the question which specific value of �φ appears in (2.7), i.e. for which values of r the equa-
tion is to be evaluated [6]. A related issue is whether also the mass m of the test particle on the 
RHS is field dependent. We will address both points in section 2.2.

Let us now turn to an at first sight rather different interpretation of the WGC, which posits 
that ‘gravity should be the weakest force’ [1]. This means that there must exist a set of parti-
cles (possibly populating a charge sublattice) such that for two such test particles the attractive 
gravitational interaction is smaller than the repulsive Coulomb interaction. When extra massless 
scalar fields are present, ref. [7] has proposed to modify this criterion such that for two such test 
particles, the following stronger force balancing condition

|FCoulomb| !≥ |FNewton| + |FYukawa| (2.8)

must be imposed. Here FCoulomb and FNewton describe the classical electromagnetic and gravi-
tational force between two test particles of mass m and U(1)a charges qa . The crucial insight 
of [7] is to include the attractive force FYukawa between two test particles that couple to a set of 
massless scalar fields �i via a Yukawa interaction. Among other things it has been shown in [7]
that BPS states in 4d N = 2 supergravity necessarily saturate the inequality because BPS objects 
do not exert any net force onto each other.

To compare the two formulations (2.7) and (2.8) of the WGC, in an arbitrary number of 
dimensions and also for non-BPS particles, consider the action

S = SEMd + SYuk (2.9)

SYuk =
∫

1,d−1

−Md−2
Pl

2
gij d�i ∧ ∗d�j + ψ̄iγ · (∂ + iqaA

a)ψ +m( ��)ψ̄ψ . (2.10)
R
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Here ψ denotes a charged test particle, which is taken to be fermionic for definiteness. It couples 
not only to the gauge fields Aa (whose dynamics is described by SEMd as in (2.1)), but in addition 
to some massless real scalars

�i = ϕi + δϕi , (2.11)

where by δϕi we are denoting the fluctuations around the background configuration ϕi . With this 
split we can write

m( ��) =m( �ϕ) + ∂m( �ϕ)

∂ϕi
δϕi + . . . (2.12)

so that the mass of the test particle, m( �ϕ), is controlled by the background value �ϕ of the dimen-
sionless massless scalars. Similarly,

hi( �ϕ) := ∂m( �ϕ)

∂ϕi
≡ ∂im( �ϕ) (2.13)

governs a triple Yukawa interaction

SYuk ⊃
∫

R1,d−1

hi( �ϕ) δϕi ψ̄ψ . (2.14)

Note that a priori the scalars ϕi which determine the mass of the test particle and the scalars 
φr which control the gauge kinetic matrix as in (2.1) are independent.3 In fact, from a purely 
low-energy effective field theory point of view, a dependence of the test particle mass on scalar 
fields, as encoded in SYuk, would be perfectly consistent with the absence of any dilaton field in 
the gauge kinetic term.

The Coulomb, gravitational, and Yukawa forces between two test particles of U(1)a charges 
qa and mass m( �ϕ) then take the textbook form

|F | = A

Vol(Sd−2) rd−2 (2.15)

with

ACoulomb = 〈q,q〉f ( �φ) , ANewton = m( �ϕ)2

Md−2
Pl

d − 3

d − 2
, AYukawa = hi( �ϕ)gij hj ( �ϕ)

Md−2
Pl

.

(2.16)

Here Vol(Sd−2) is the volume of the unit sphere in d − 1 spatial dimensions. The gravitational 
force has a dimension-dependent prefactor, which has been carefully derived for instance in [70]. 
It originates in taking the non-relativistic limit of the Einstein equations in d dimensions and has 
no analogue for the Coulomb and Yukawa force. Note furthermore that the coupling appearing 
in ACoulomb involves the inverse of the background gauge kinetic matrix, evaluated at a certain 
reference value �φ to be discussed momentarily.

3 In this sense, it is a slight abuse of notation to assemble both types of fields into vectors denoted by the same 
vector-symbol. If there is a (partial) overlap between the set of scalar fields φr and �i , it is understood that the kinetic 
terms appear only once of course.
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The requirement (2.8) for two test particles of species ψ then translates into the constraint

〈q,q〉f ( �φ)

!≥ m( �ϕ)2

Md−2
Pl

(
d − 3

d − 2
+ 1

m( �ϕ)2 gij ∂im( �ϕ)∂jm( �ϕ)

)
. (2.17)

This formula generalises the expression postulated in [7] for d = 4, which was shown to be 
satisfied by charged BPS states in N = 2 supergravity.

2.2. The Scalar Weak Gravity Conjecture near a weak coupling point

Comparing the two constraints (2.7) and (2.17), we first observe that the numerical prefactors 
multiplying m2 in the purely gravitational parts – encoded in μG and ANewton, respectively – 
perfectly agree. On the other hand, the scalar contributions – μφ and AYukawa – can only be 
equivalent if the moduli dependence of the gauge coupling and the moduli dependence of the 
mass term of the test particle are properly correlated.

It is conceivable that the strict equivalence of (2.7) and (2.17) can be argued for by black hole 
decay arguments: If an extremal black hole is supposed to decay into a set of particles which 
do not satisfy (2.17), the decay products could form bound states as the attractive force exceeds 
the repulsion. This was discussed, along with other aspects of the criterion (2.17), in ref. [7], 
which motivated (2.17) by requiring that the decay products of an extremal black hole should 
not be able to form gravitational bound states. As it stands, this argument just posits that there 
must exist particles satisfying (2.7) and in addition (2.17), and in principle there is room for a 
numerical difference between these two criteria.

Our approach to understanding the relation between (2.7) and (2.17) follows a different line 
of arguments: Suppose a particle satisfies either of the WGC bounds at a given point in mod-
uli space. By continuity it is reasonable to expect that it continues to satisfy the bound in 
an entire neighbourhood. This principle was dubbed ‘Local Weak Gravity Conjecture’ in [6], 
which studies in detail the relation between a field dependent version of the WGC and the 
Swampland Distance Conjecture. Clearly, in such a neighbourhood, the moduli dependence 
of the bilinear form 〈q, q〉f = qaf

abqb and of m must be related for the WGC particle. In 
fact, if we assume that the WGC particles populate (at least) a charge sublattice, the moduli 
dependence of m( �ϕ) for the WGC particles and of the inverse gauge kinetic matrix f ab( �φ)

must agree in the neighbourhood where the WGC is satisfied. The reason is that for asymptoti-
cally large charges the super-extremal particles must saturate the extremality bound. Hence, the 
functional dependence of both sides of the extremality bound on the scalar fields must be the 
same.

This in particular identifies the moduli controlling the mass of the WGC particles with the 
moduli entering the gauge coupling, and we conclude that

f ab( �ϕ) = f ab F ( �ϕ) , m2( �ϕ) =m2 F( �ϕ) (2.18)

in a neighbourhood around the point in moduli space where the particles in question satisfy the 
WGC bound.

Suppose now furthermore that we are considering the limit in moduli space where

f ab( �ϕ) → 0 , MPl finite as �ϕ → �ϕ∞ . (2.19)
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This is what is meant by the ‘weak coupling regime’ in moduli space for several abelian fac-
tors: In particular, all eigenvalues of f ab( �ϕ) must approach zero4 and there must be an overall 
asymptotic behaviour of the form (2.19).

In order to avoid tension with the conjectural requirement that no global continuous symme-
tries exist in any consistent theory of quantum gravity [54,55], the weak coupling point �ϕ∞ must 
lie at infinite distance in moduli space. According to the Swampland Distance Conjecture [5], 
a tower of states becomes massless whenever a point at infinite distance is approached, and the 
mass is conjectured to decrease exponentially in the distance in moduli space. This means that 
the mass scale of the particle tower should asymptotically behave like

m2( �ϕ) =m2 e−�c· �ϕ as �ϕ → �ϕ∞ (2.20)

for some order one numbers ci . (Recall that we are working in conventions where the scalar fields 
ϕi are dimensionless.) The fact that the ci are of order one is the content of the Refined Swamp-
land Distance Conjecture [6], but this plays no essential role for us here. Suppose furthermore 
that the tower of asymptotically massless states satisfies the WGC. Then in a neighbourhood of 
the point at infinity, we must identify the moduli dependence appearing in (2.18) as

F( �ϕ) = e−�c· �ϕ as �ϕ → �ϕ∞ . (2.21)

This inevitably puts us in the context of dealing with a dilatonic type black hole with coupling 
(2.2) with

�α = �c , (2.22)

at least in the neighbourhood of the weak coupling point. With this input, the two criteria (2.7)
and (2.17), including the precise numerical factors, for the asymptotically massless WGC parti-
cles are equivalent by inspection, in the vicinity of the weak coupling point.5 In particular, the 
super-extremality condition yields the same constraint at every value of the scalar fields in the 
weak coupling region, simply because the field dependence cancels on both sides of the equation. 
Of course, this was essentially put in by assuming that the WGC holds not just at isolated points, 
but in a region of moduli space [6].

Let us summarize this discussion in the form of the following

Observation. Consider the point �ϕ∞ at infinite distance in moduli space where the gauge cou-
pling matrix f ab( �ϕ) vanishes asymptotically. By the Swampland Distance Conjecture a tower of 
states becomes massless with m2(ϕ) = m2 e−�c· �ϕ as �ϕ → �ϕ∞. If a subset of these asymptotically 
satisfies the Sublattice Scalar Weak Gravity Conjecture in the form (2.17) in a neighbourhood
of �ϕ∞, then at least in this neighbourhood also f ab( �ϕ) = f abe−�c· �ϕ , and the criterion (2.17) is 
equivalent to the super-extremality condition (2.7) at any point in the neighbourhood.

We believe that this is indeed the general behaviour in the vicinity of an asymptotic weak 
coupling point, as summarized in the following

4 In principle only a subset of the eigenvalues may approach zero, in which case we have to restrict to the corresponding 
subset of U(1)s. See the discussion after eq. (3.23).

5 The fact that two extremal (non-SUSY) dilatonic Reissner–Nordstrøm black holes exert no net force on each other 
(‘equipoise’ or ‘anti-gravity’) is a classic result [65,71].
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Conjecture. Near a weak coupling point (2.19), the charge vectors of a tower of asymptotically 
massless states span at least a sublattice of the full charge lattice, and the corresponding physical 
states satisfy the Sublattice Weak Gravity Conjecture bound (2.17) at least in a neighbourhood
of the weak coupling point. By the above Observation, (2.17) is then guaranteed to be equivalent 
to super-extremality, (2.7), with respect to a dilatonic extremal charged black hole.

It is interesting to speculate what happens away from the weak coupling point. A priori, it 
is not clear if the Weak Gravity Conjecture must be satisfied at an arbitrary point in moduli 
space, in particular at those where the gauge couplings are far from zero.6 Verifying the equiva-
lence between the super-extremality and the force balancing condition in such regimes requires 
knowledge of the extremal black hole solution for more general gauge kinetic matrices. Turning 
tables round, if the two criteria were guaranteed to be equivalent away from weak coupling on 
general grounds, then this would give a much simpler way to compute the extremality bound of 
a Reissner–Nordstrøm black hole with scalar charge for an arbitrary moduli dependence of the 
coupling. Clearly this should be understood better.

As a final remark, let us compare the purely gravitational and the scalar field induced terms on 
the RHS of (2.17), in the regime where m(ϕ) =m e− 1

2 �c· �ϕ . Their relative size depends on the ratio 
between d−3

d−2 and �c2/4. We will see in this paper that there are consistent string constructions 
in which the gravitational interaction is in fact stronger than the Yukawa interaction in the sense 
that

d − 3

d − 2
>

�c2

4
(2.23)

for the tower of states satisfying the WGC near the weak coupling point. Of course, there may ex-
ist other particles for which the Yukawa interaction is smaller than the gravitational one. Whether 
such particles always exist, in agreement with another conjecture in [7], would be interesting to 
investigate further.

3. The Scalar Weak Gravity Conjecture in F-theory

In this section we prove the WGC in the vicinity of a weak coupling point in 6d F-theory 
compactifications with 8 supercharges. By duality the result carries over to 6d compactifications 
of the heterotic string with the same amount of supersymmetry. As we have seen, the precise 
formulation of the WGC heavily depends on the dynamics of the light scalar fields in the theory. 
In order to study their effect at a quantitative level, we first translate the parametrization of the 
weak coupling limit given in [12] into the formalism of 6d N = (1, 0) supergravity, in which 
the scalar kinetic terms have been reliably computed in the literature. This allows us to evaluate 
the WGC bound in this context and to compare it to the charge-to-mass ratio of the tower of 
asymptotically massless states found in [12].

3.1. General form of the effective action

The low-energy effective theory of F-theory compactified on an elliptic Calabi–Yau three-fold 
Y3 is described by a 6d N = (1, 0) supergravity. This chiral theory contains nT tensor multiplets, 

6 We thank Irene Valenzuela and Eran Palti for interesting discussions on this.



332 S.-J. Lee et al. / Nuclear Physics B 938 (2019) 321–350
whose bosonic components comprise an anti-self-dual 2-form field along with a real scalar. In-
cluding the self-dual gravi-tensor we denote the 2-form fields as Bα, α = 0, . . . , nT , and the real 
scalar fields as jα . The latter are subject to the constraint

j · j = 
αβjαjβ = 1 , (3.1)

where 
αβ is an SO(1, T ) invariant inner product. Without loss of generality we can go to a 
diagonal basis where


αβ = diag(1,−1, . . . ,−1) . (3.2)

The pseudo-action of the 6d N = (1, 0) supergravity theory coupled to nV abelian gauge fields 
has been worked out in [72]. In the notation of [73] it can be written as

S =
∫

R1,5

1

2
R ∗ 1 − 1

2
gαβdjα ∧ ∗djβ − 1

2
(j · bab)F a ∧ ∗Fb + Stensor + Smatter . (3.3)

Here the kinetic metric is defined as

gαβ = 2jαjβ − 
αβ , (3.4)

and we have set the 6-dimensional Planck mass to unity.7 Furthermore the gauge kinetic terms 
are controlled by the parameters bα

ab. The tensor part of the pseudo-action takes the form

Stensor = −1

4
gαβGα ∧ ∗Gβ − 1

2

αβBα ∧ X

β
4 . (3.5)

The gauge invariant 3-form field strength

Gα = dBα + 1

2
aαωL + 2bα

abω
ab
YM (3.6)

is subject to the self-duality constraint

gαβ ∗ Gβ = 
αβGβ , (3.7)

which is to be imposed at the level of the equations of motion. The Chern–Simons terms are 
defined in the usual way such that the Bianchi identity takes the form

dGα = 1

2
aαtrR2 + 2bα

abF
a ∧ Fb . (3.8)

Finally, Smatter contains the hypermultiplets of the theory, which includes the sector of charged 
matter fields.

An important detail for us is that we are normalizing the gauge kinetic term as in (3.3), which 
differs by a relative factor of 1

4 from the conventions of [72,73]. This normalization, together 
with the definition of the tensor field pseudo-action (3.5), implies that in particular the quartic 
anomaly equation for U(1)a

4 takes the form

1

3

∑
n

Nn(q
(n)
a )4 = baa · baa . (3.9)

7 If we generalise to non-abelian gauge groups, we must replace Fa ∧ ∗Fb by 1
λI

trFI ∧ ∗FI , where λI is the Dynkin 
label associated with the Lie algebra and takes the value λ = 1 for gauge algebra su(N).
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Here, q(n)
a denotes the U(1)a charge of the canonically normalised massless hypermultiplet 

fermions and Nn is the number of such hypermultiplets. In particular, the charge vector qa ap-
pears in the covariant derivative Dμ = ∂μ + iqaA

a
μ acting on the charged matter hypermultiplets.

The above quantities are related to the geometric data of an F-theory compactification on 
an elliptic three-fold Y3 with base B2 as follows8: The object 
αβ can be interpreted as the 
topological intersection form of a basis of H 1,1(B2, R). In particular we can introduce a basis 
{wα} = {w0, wi} of H 1,1(B2, R) such that 
αβ = ωα · ωβ is in the diagonal form (3.2). Given 
such a basis, the scalar fields jα are interpreted as the components of the object j = jαωα which 
is related to the Kähler form J of B2 via

J = √
2V j , V = vol(B2) . (3.10)

The normalization j · j = 1 then implements that vol(B2) = 1
2J · J , as required. The real scalar 

degrees of freedom can always be organized into a distinguished real scalar x and a set of nT − 1
real scalars φa , a = 1, . . . , nT − 1, by parametrizing

j0 = cosh(x) , j i = ui(φa) sinh(x) , i = 1, . . . , nT . (3.11)

Here ui are functions of φa with
nT∑
i=1

(ui)2 = 1. (3.12)

Indeed, this is the most general parametrization for j subject to j ·j = 1. The kinetic matrix (3.4)
in this basis becomes

gαβ =
(

cosh(2x) −sinh(2x)uj

−sinh(2x)ui 2sinh2(x)uiuj + δij

)
, (3.13)

from which the kinetic terms for the independent real scalar fields x and φa are computed as

1

2
gαβdjα ∧ ∗djβ = 1

2
dx ∧ ∗dx + sinh2(x)

nT∑
i=1

dui(φa) ∧ ∗dui(φa) . (3.14)

Finally, the anomaly coefficients bα
ab, which control both the inverse gauge coupling and the form 

of the anomaly counterterms, are the coefficients of a two-cycle class Cab,

Cab = bα
ab ωα . (3.15)

Here [79]

Cab = −π∗(σ (Sa) · σ(Sb)) (3.16)

is the height pairing matrix associated with the rational sections Sa on the elliptic fibration Y3, 
which underlie the definition of the abelian gauge group factors in F-theory. With these conven-
tions, the U(1)a charges qa are integral, and it can be checked that this definition is consistent 
with the anomaly equation (3.9). In particular, the gauge kinetic matrix is determined as

fab = j · bab = 1√
2V

J · Cab . (3.17)

8 The effective action of 6d F-theory compactifications has been under intense investigation in the recent literature, 
including [73–76]. Background on F-theory and the realisation of abelian gauge group factors can be found in the recent 
reviews [77,78], to which we also refer for a more complete account of the original literature.
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3.2. The weak coupling limit for several U(1)s

We now wish to parametrise the limit in moduli space where the nV abelian gauge factors 
become asymptotically weakly coupled, while at the same time the 6d Planck mass stays finite. 
The special case of a single abelian gauge group factor has already been treated in detail in [12]: 
In this case, the inverse gauge coupling is controlled by the volume of a single curve C on B2. In 
order for this volume to become infinite, while the volume of B2 stays finite, the Kähler form J
of the F-theory base B2 must asymptotically take the form

J = tJ0 + sνIν . (3.18)

Here J0 and Iν are the integral classes that generate the Kähler cone of B2 and J0 has the property 
that J0 · J0 = 0. Furthermore

m = 1

2
C · J0 (3.19)

is non-vanishing. As a result, the volume of the curve C which controls the inverse gauge cou-
pling diverges as t → ∞. A careful analysis of the ansatz (3.18) in terms of the Kähler cone 
parameters shows that sν must vanish in this limit as9∑

ν

sν(J0 · Iν) → V/t (3.20)

in order for the volume of B2 to stay finite. For a given base B2 and curve C it may not be possible 
to take such a limit. In this case, the infinitesimal coupling point cannot be taken geometrically 
while keeping the volume of B2 finite. If such a limit exists, on the other hand, it must be of the 
above form.

In the presence of several abelian gauge group factors, this discussion generalizes in that we 
now require that all eigenvalues of the gauge kinetic matrix fab in (3.17) asymptote to infinity, 
while the volume of B2 stays finite. That is, we need to consider a limit where the inverse of the 
gauge kinetic matrix behaves as

f ab = √
2V(J · Cab) → 0 . (3.21)

Indeed, this ensures that f abqa qb → 0 for any charge vector qa , which is the combination that 
controls the gauge interactions as discussed in the previous section. The requirement (3.21) sim-
ply means that J0 in (3.18) must be chosen in such a way that the matrix

mab = 1

2
Cab · J0 (3.22)

is of maximal rank, i.e.

det(mab) �= 0 . (3.23)

Again, in a given geometry with a specific choice of gauge kinetic matrix (3.17), it may not be 
possible to take such a limit (3.18) subject to (3.23). In this case, the weak coupling limit can 
be taken only for a (possibly empty) subset of the abelian gauge group factors. In the sequel, 
we focus on those abelian gauge factors for which (3.23) holds, and study the Weak Gravity 
Conjecture for this kind of gauge groups in the vicinity of the weak coupling point.

9 In [12] we had set V ≡ 1, but there is no harm in leaving V general, but fixed at a finite value.
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Coming back to the ansatz (3.18), recall it has been proven in [12] that J0 is the class of a 
holomorphic, rational curve C0 with C0 · C0 = 0. As such we can parametrise

C0 = k (w0 +
∑

i

ciωi) (3.24)

with 
∑

i (c
i)2 = 1 and k some numerical constant. Hence

J = tk(ω0 + ciωi) + sνIν . (3.25)

We can compare this asymptotic Kähler form J = √
2Vj in the general parametrization (3.11),

J = √
2V

(
1

2
ex(ω0 + uiωi) + 1

2
e−x(ω0 − uiωi)

)
(3.26)

= √
2V

(
1

2k
exJ0 + 1

2
ex(ui − ci)ωi + 1

2
e−x(ω0 − uiωi)

)
. (3.27)

Comparison with (3.18) shows that ex → ∞ as t → ∞ and we asymptotically identify the pref-
actor of J0 with the parameter t in (3.18),

t =
√

2V
2k

ex . (3.28)

The property (3.20) of the limit translates into the requirement that in particular the second term 
in (3.27) must be suppressed by 1

t
∼ e−x as x → ∞. This is possible only if

ui(φa) = ci + e−2xũi(φa) , (3.29)

where ũi (φa) takes values at most of order one for x → ∞. Note that the condition 
∑

i (c
i)2 =

1 = ∑
i (ui)

2 implies that

∑
i

ci ũi = −1

2
e−2x

∑
i

ũi ũi , (3.30)

i.e. for x → ∞ the moduli dependent function ũi must align essentially orthogonally to the 
parameters ci . This characterizes the limit of nearly vanishing gauge coupling with finite Planck 
mass, in the chosen field basis.

Importantly, in the limit x → ∞, the canonically normalised scalar x asymptotically controls 
the gauge kinetic matrix via

fab = j · Cab = mab

k
ex + 1

2
e−xCab · (ũiωi + ω0 − uiωi) −→ mab

k
ex . (3.31)

At the same time, in the asymptotic Kähler metric

vol(C0) = J · C0 = √
2V

(
k e−x + k

4
e−3x

∑
i

ũi ũi (1 − e−2x)

)
(3.32)

such that

vol(Cab)vol(C0) = (2V)mab +O(e−2x) . (3.33)
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3.3. Proving the Scalar Weak Gravity Conjecture near the weak coupling point

We are ready to investigate the Weak Gravity Conjecture for several abelian gauge group 
factors in the weak coupling regime, while systematically including the effect of scalar fields. 
According to the logic of section 2.2, the first step consists in identifying the tower of asymp-
totically massless states near the weak coupling point. To this end, recall from the Introduction 
that a D3-brane wrapping the curve C0 introduced in the previous section gives rise to a critical 
heterotic string in six dimensions [12]. Its tension, in the above conventions, is computed as10

T = j · C0 = ke−x +O(e−3x) , (3.34)

where the last equality uses the asymptotic expression (3.32). The excitations of this string carry 
space–time mass

M2
n = 4T (n − 1) . (3.35)

Since this mass vanishes in the weak coupling limit x → ∞, the associated string excitations 
represent the sought-after tower of asymptotically massless particles. In the special case of a 
single abelian gauge group factor, it was furthermore shown in [12] that for each charge in the 
sublattice defined by qk = 2mk with k ∈ Z, this tower contains a state at excitation level n(k) =
m k2, i.e. the states in the sublattice satisfy the relation

q2
k = 4mn(k) . (3.36)

The proof of this relation makes use of the arithmetic properties of the elliptic genus and will be 
reviewed in the next section.

To complete the argument, we must show that the states in the sublattice satisfy the Weak 
Gravity Conjecture bound. While the final result for the single U(1) case has already been stated 
in [12], a derivation of the effect of scalar fields has not been presented yet, and we provide this 
derivation now. However, before coming to this central point of the paper, we first generalize the 
above statements to an arbitrary number of abelian gauge group factors: In this case, the matrix 
2 mab introduced in (3.22) naturally defines a sublattice of the charge lattice ZnV ,

�2m := 2mZ
nV := {q ∈ Z

nV |q =
nV∑
a=1

ka va , ka ∈ Z} , (3.37)

where we have expressed the matrix 2mab as

2m = (v1, . . . , vnV
) , va ∈ Z

nV . (3.38)

As we will show in the next section, each charge vector q(k) in this lattice is populated by a 
physical state with associated excitation level n(k) such that

〈q,q〉m := mabqaqb = 4n(k) . (3.39)

Here mab is the inverse of the matrix mab. This directly generalizes the expression (3.36) gov-
erning the single U(1) case.

10 To compare this expression with the conventions used in [12], note that we have dropped an overall factor of 2π in 
the underlying ten-dimensional effective action, equ. (A.1) and (A.2) therein. This corresponds to rescaling the string 
tension with a factor of 1

2π
compared to the value (A.9) given in [12], and furthermore to dropping a factor of 2π in the 

mass relation (3.35) compared to equ. (2.52) of [12].
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In the weak coupling regime x → ∞ we can now trade mab for f ab with the help of (3.31). 
Using also the mass relation (3.35) along with (3.34) shows that the sublattice of charges q(k) is 
populated by string excitations which obey the charge-to-mass relation

〈q,q〉f = M2
n(k) + 4mabf

ab > M2
n(k) as x → ∞ . (3.40)

If we reinstate the 6d Planck mass, which had been set to unity in the above supergravity 
analysis, we arrive at

〈q,q〉f >
M2

n(k)

M4
Pl

as x → ∞ . (3.41)

Here mabf
ab = ke−x scales the same way in x as M2

n(k), but does not grow with n(k).
Our final goal is to compare the behaviour (3.41) to the WGC bound, including the effect of 

scalar fields. In the weak coupling limit, the relevant scalar field that controls both fab and the 
masses M2

n(k) of the tower of states in question is the canonically normalised field x. The impor-
tant observation is that, ignoring subleading corrections which vanish as x → ∞, the relevant 
part of the effective action reduces precisely to that of Einstein–Maxwell-dilaton theory, with 
dilaton coupling α = 1,

S =
∫

R1,5

1

2

√−gR − 1

2
dx ∧ ∗dx − 1

2
fab exF a ∧ ∗Fb . (3.42)

This follows from the general form of the effective action (3.3) together with the scalar kinetic 
matrix (3.14) and the gauge kinetic matrix (3.31), in the limit x → ∞. The numerical constant 
(2.5) in the extremality bound (2.7) hence becomes

μ = μG + μx = 3

4
+ 1

4
= 1 , (3.43)

in perfect agreement with the observed inequality (3.41). The same result follows, of course, 
from the WGC in its form (2.17) due to the scalar field dependence (3.34) of the masses. One 
can convince oneself that the subleading corrections, in particular those depending on the re-
maining nT − 1 moduli φa , do not alter this result in the limit x → ∞. For our purposes it 
suffices to determine the scaling of these corrections with x. Explicit computation shows that the 
contribution to (2.17) from the extra moduli, identified to first approximation with the order one 
functions ũi , is suppressed as

1

M2
n(k)

gij ∂iMn(k)∂jMn(k) =O(e−2x) as x → ∞ . (3.44)

Here we made use of the moduli metric (3.14). Hence the result (3.43) captures the full scalar 
field dependence of the WGC bound in the limit x → ∞ under consideration.

As discussed in section 2.2, the exponential behaviour of the gauge kinetic matrix near the 
weak coupling point is guaranteed already on general grounds, if we are willing to accept the 
Swampland Distance Conjecture as well as the Sublattice WGC. On the other hand, the precise 
value of the dilaton coupling, which governs the exponential behaviour of both the masses of 
the tower and the gauge kinetic matrix, can only be determined by an explicit computation in 
a concrete setup. What is remarkable is that this coupling and its resulting value (3.43) for the 
charge-to-mass ratio yields such an accurate lower bound for the physical state excitations in 
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the sublattice (3.37), near the weak coupling point. In particular, the underlying relation (3.39)
is purely arithmetic and derives from the modular properties of the elliptic genus. Any other 
numerical prefactor on the RHS of (3.39) would have led to a mismatch with the bound (3.43)
derived from the Scalar Weak Gravity Conjecture.

Another interesting point to stress is that the contribution μx = 1
4 to the WGC bound due 

to the scalar field interactions is of the same order, but slightly smaller than the gravitational 
contribution μG = 3

4 . Hence at least for the tower of asymptotically massless states considered 
here, and near x → ∞, the strength of the attractive Yukawa interactions does not exceed that of 
the gravitational interaction.

4. The arithmetics of the WGC with multiple U(1) factors

It remains to prove the relation (3.39) used in the previous section, by generalizing our findings 
of [12] for the elliptic genus in the presence of a single abelian gauge group to multiple U(1)

factors. After briefly reviewing the role of weak Jacobi forms for a single U(1), we point out the 
analogous modular properties in the more general situation and finally demonstrate the validity 
of our general findings for an explicit example.

4.1. The elliptic genus and higher rank Jacobi forms

Consider the critical 6d heterotic string that arises from a D3-brane wrapped on the curve C0
introduced in the previous section. If the base B2 is one of the Hirzebruch surfaces, F-theory on 
Y3 has a perturbative heterotic dual in terms of a standard heterotic compactification on some 
elliptic K3-surface, K. The curve C0 is the fiber of the Hirzebruch surface and the 6d heterotic 
string in question is the heterotic string describing this string vacuum. For bases more general 
than Hirzebruch surfaces, heterotic duals still exist, but these are necessarily strongly coupled as 
they involve heterotic NS5-branes and therefore produce extra massless, self-dual tensor fields. 
We can continue to think of the heterotic duals as compactifications on K3-surfaces K, albeit with 
extra 5-brane defects. Despite the absence of a fully perturbative description of such theories, 
quantitative statements are still possible at least for a subsector of the spectrum.

The subsector of the string excitations we have in mind is encoded in the elliptic genus [57,58]

ZK(τ, za) = TrR(−1)F F 2qHLq̄HR

nV∏
a=1

(ξa)Ja . (4.1)

The trace is taken over the Ramond sector of the string along a torus T 2, and F denotes the 
fermion number. The modular parameter τ of the torus appears in q = e2πiτ . The nV abelian 
gauge factors U(1)a of the 6d theory act as global symmetries on the worldsheet of the string, 
with generators Ja . The trace is weighted by the U(1)a charges by including the elliptic param-
eters za in the combination

nV∏
a=1

(ξa)Ja = e2πi
∑

a Jaza

, ξa = e2πiza

. (4.2)

Using a chain of dualities [59–61], this object can be related [12] to the generating function 
for the genus-zero BPS invariants of Gopakumar–Vafa type on the elliptic threefold Y3. More 
precisely, the elliptic genus can be computed as



S.-J. Lee et al. / Nuclear Physics B 938 (2019) 321–350 339
ZK(τ, za) = −q−1F (0)
C0

(τ, za) = −q−1
∑

NC0(n, ra)q
n
∏
a

(ξa)ra . (4.3)

Here F (0)
C0

(τ, za), encoding the BPS invariants NC0 , is the genus-zero prepotential of the topologi-
cal string on the elliptic Calabi–Yau three-fold Y3 as appearing in the expansion of the topological 
string free energy

F(τ, za, tβ, λs) =
∞∑

g=0

λ
2g−2
s

∑
Cβ∈H2(B2,Z)

F (g)
Cβ

(τ, za)e2πitβ . (4.4)

The topological string on elliptic three-folds has been studied in detail in the recent literature 
such as [80–83], to which we refer for more information and references on this vast subject.

The special case of a single abelian group, nV = 1, has already been treated in detail in [12]. 
In this case, ZK(τ, z) is a quasi-modular weak Jacobi form (aka quasi-Jacobi form) of weight 
w = −2 and fugacity index m, where m = 1

2C0 · C. An analysis of its pole structure [80,81]
exhibits that

ZK(τ, z) = �10,m(τ, z)

η24(τ )
, (4.5)

where η(τ) is the Dedekind function and �10,m(τ, z) is quasi-modular of weight w = 10 and 
fugacity index m. According to a classic result [84] the ring of weak Jacobi forms of modu-
lar weight w and fugacity index m is freely-generated by two particular weak Jacobi forms,11

ϕ0,1(τ, z) and ϕ−2,1(τ, z), over the ring of modular forms C[E4(τ ), E6(τ )]. Here E2k(τ ) de-
notes the Eisenstein series. Quasi-modularity, on the other hand, means, in the present context, 
that ZK(τ, z) satisfies the modular anomaly equation [80,81]

∂

∂E2(τ )
F (0)

C0
(τ, z) = 1

24

∑
C1+C2=C0

(C1 · C2)F (0)
C1

(τ, z)F (0)
C2

(τ, z) . (4.6)

The ring of associated functions is generated by the same ϕ0,1(τ, z) and ϕ−2,1(τ, z) over the ring 
C[E2(τ ), E4(τ ), E6(τ )], where E2(τ ) is only a quasi-modular form. In the special case where 
the base B2 is a Hirzebruch surface and hence a perturbative heterotic dual exists, ZK(τ, z) is in 
fact modular, as opposed to quasi-modular, in agreement with classic results [57] on the elliptic 
genus of the perturbative heterotic string.

Given its modular properties, any weak Jacobi form can always be expanded [84] into a finite 
number of theta-functions of the form

ϑm,�(τ, z) =
∑
k∈Z

q(�+2mk)2/4mξ�+2mk . (4.7)

Extremal states are characterized by � = 0 and thus by the vanishing of the discriminant � ≡
4mnk − qk = 0, which is solved by eq. (1.1) and nk = mk2. Due to the mass relation (3.35), this 
sublattice of physical states indeed has a charge-to-mass ratio that obeys the bound [12]

g2
YMq2

k >
M2

nk

M4
Pl

as x → ∞ , (4.8)

where 1
g2

YM
replaces fab in the gauge kinetic term of a single U(1) factor.

11 See e.g. the appendix of [12] and references therein for the properties of these functions.
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After this brief review let us now generalize the above findings to situations with nV different 
abelian gauge factors. The ansatz (4.5) is replaced by

ZK(τ, za) = �10,mab
(τ, za)

η24(τ )
. (4.9)

Here �10,mab
(τ, za) denotes a lattice quasi-Jacobi form of modular weight w = 10 which is 

elliptic of rank nV . This means that it depends on nV elliptic parameters za . The generalisation 
from rank one to general rank has first been made in [67] and is reviewed e.g. in [85].

For simplicity of presentation, we restrict ourselves to modular lattice Jacobi forms for 
a moment. The modular behaviour is now encoded, apart from the modular weight, in the 
matrix-valued fugacity index mab. In our context, this matrix is determined geometrically as 
mab = 1

2Cab · C0. The transformation properties of a higher-rank modular form ϕw,mab
(τ, za) of 

weight w and fugacity matrix mab are given by

ϕw,mab

(
aτ + b

cτ + d
,

za

cτ + d

)
= (cτ + d)we2πi c

cτ+d
(zamabz

b)ϕw,mab
(τ, za) (4.10)

ϕw,mab
(τ, za + λaτ + μa) = e−2πi(λamabλ

bτ+2λamabz
b)ϕw,mab

(τ, za) (4.11)

where

λa,μa ∈ Z
nV ,

(
a b

c d

)
∈ SL(2,Z) . (4.12)

This definition can be generalized by considering also quasi-modular, lattice Jacobi forms of 
higher rank, as is relevant in studying F-theory models on a general base. The discussion is 
completely parallel to the rank one case.

As remarked in the Introduction, higher rank lattice Jacobi forms extend the notion of Weyl 
invariant Jacobi forms. For the latter, the elliptic variables za take values in the complexified 
Cartan subalgebra of a simple Lie algebra, while the elliptic index continues to be determined by 
a single number [83]. This is a reflection of the Weyl symmetry of Lie algebra weight lattices, but 
for the more general lattices of the type we consider, there are generically no such symmetries. 
Unlike for weak Jacobi forms and some Weyl invariant Jacobi forms, an explicit basis for the 
space of rank nV lattice Jacobi forms, comparable to the basis ϕ0,1(τ, z) and ϕ−2,1(τ, z) for rank 
one, is not known to us as of this writing, but this is a topic of ongoing research in arithmetic 
geometry [68]. The explicit computation of ZK(τ, za) in concrete examples can therefore be 
considerably more involved. An example shall be discussed in the next section.

What continues to be available on general grounds, however, is the existence of a finite expan-
sion in terms of lattice theta-functions. This is all we need in order to prove the Sublattice Weak 
Gravity Conjecture. Indeed, every weak Jacobi form with positive definite index matrix mab

12

can be expressed in terms of higher rank theta-functions, ϑm,xa(τ, z
a). These are defined as

ϑm,xa (τ, z
a) =

∑
ra∈ZnV

ra=xamod�2m

q
1
4 ramabrb

∏
a

(ξa)ra , (4.13)

where the lattice �2m has already been introduced in (3.37). According to a general theorem 
(see e.g. the discussion in [85]), every quasi-Jacobi form can be written as a sum of finitely many 
terms, each of the form

12 This condition is always satisfied in our context because mab determines the abelian t’Hooft anomalies on the string, 
and upon diagonalisation these are positive because they depend quadratically on the charges.
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(
ξ1 d

dξ1

)d1

. . .

(
ξnV

d

dξnV

)dnV

fd(τ, za) , (4.14)

where d = (d1, . . . , dnV
) and da ∈ Z≥0. Each fd(τ, za) in turn enjoys an expansion

fd(τ, za) =
∑

xa∈ZnV /�2m

hk,xa (τ )ϑm,xa (τ, z
a) . (4.15)

The coefficient functions hk,xa (τ ) are certain vector-valued modular forms, expressions for 
which can be found in [85] and references therein.

The important point for us is that the sector with xa = 0 contains states of U(1)a charges

qa ∈ �2m (4.16)

and excitation levels

n = 1

4
qam

abqb . (4.17)

This follows by comparing the explicit form of ϑm,xa=0(τ, za) with the expansion in terms of 
the state multiplicities as in (4.3). This is exactly the relation (3.39) needed in order to prove that 
these states satisfy the Sublattice Weak Gravity Conjecture.

4.2. Example: Hirzebruch F1 and rank 2 Mordell–Weil group

We now exemplify the use of higher rank Jacobi forms in an F-theory model with two abelian 
gauge group factors. This example serves two purposes: First, we will confirm the existence of 
the sublattice (3.37) of physical states satisfying the WGC bound; second, at a technical level, we 
will see how the intertwining of the two abelian gauge group factors requires a considerably more 
complicated ansatz to give the elliptic genus ZK(τ, z1, z2) in closed form as compared to a single 
U(1) factor. As a main novelty of this example we will present a proposal for a closed expression 
for the genus-zero Gromov–Witten invariants and hence the elliptic genus ZK(τ, z1, z2) in terms 
of a finite set of rank-two lattice Jacobi forms.

A general class of elliptic fibrations which gives rise to two abelian gauge group factors can 
be expressed as the most generic Calabi–Yau hypersurface in a Bl2P2 fibration over a general 
base B2 [86–89].13 In the conventions of [86,87] we denote the homogeneous coordinates of the 
fiber ambient space by [u : v : w : s0 : s1], and the Calabi–Yau hypersurface equation takes the 
form

PT 2 :=v w(c1 w s1 + c2 v s0) + u (b0 v2 s2
0 + b1 v w s0 s1 + b2 w2 s2

1)+
u2(d0 v s2

0 s1 + d1 w s0 s2
1 + d2 us2

0 s2
1) = 0 .

(4.18)

The objects ci , bi and di transform as sections of certain line bundles on the base B2 which 
determine the topological structure of the fibration. Their transformation behaviour is determined 
by requiring homogeneity of (4.18). A consistent choice for the classes of these base sections has 
been made in Table 1 in terms of the anti-canonical bundle class K̄ of B2 and two more classes α
and β; the latter also determine the transformation behaviour of the ambient fibral coordinates as 
shown in Table 2. They are constrained by the requirement that all classes appearing in Table 1
are non-negative such that holomorphic polynomials bi , ci and di exist.

13 This fibration corresponds to the model F5 in [90]. The construction has been generalized further in [91].
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Table 1
Classes of the base sections appearing in the hypersurface equation (4.18) (taken from [86]).

b0 b1 b2 c1 c2 d0 d1 d2

α − β + K̄ K̄ −α + β + K̄ −α + K̄ −β + K̄ α + K̄ β + K̄ α + β + K̄

Table 2
Fiber ambient coordinates and 
their associated divisor classes 
(taken from [86]).

u v w s0 s1

α · · 1 · ·
β · 1 · · ·
U 1 1 1 · ·
S0 · · 1 1 ·
S1 · 1 · · 1

For generic such base polynomials, the elliptic fibration Y3 defined by (4.18) possesses three 
independent rational sections. The section divisor associated with the zero-section can be taken, 
for instance, to be given by S0 : s0 = 0, and the divisors associated with two other independent 
sections as

S1 : s1 = 0 , S2 : u = 0 . (4.19)

Then the two independent abelian gauge group factors are generated by the Shioda map14

σ(S1) = S1 − S0 − K̄ , σ (S2) = S2 − S0 − 2K̄ + α . (4.20)

The most important data for us is the height-pairing matrix

Cab = −π∗(σ (Sa) · σ(Sb)) =
(

2K̄ K̄ + β − α

K̄ + β − α 4K̄ − 2α

)
, (4.21)

which determines the gauge kinetic matrix as explained in section 3.1.
Over certain loci in codimension-two on the base B2, the elliptic fiber splits into two fiber 

components. Apart from the curve class CE of the generic fiber, this results in another two in-
dependent fibral curve classes Cf

1 and Cf
2. Wrapped M2-branes along the split fiber components 

over each of these specific loci give rise to matter fields charged under U(1)1 × U(1)2. These 
become massless in the F-theory limit of vanishing fiber volume. For a generic choice of base 
polynomials, the fiber splitting occurs over six types of codimension-two loci on B2, leading to 
six species of such charged massless matter [86–89],

C1,−1 = V (b0, c2) , C−1,−2 = V (b2, c1) , C0,2 = V (c1, c2) , (4.22)

C1,0 = V1 , C1,1 = V2 , C0,1 = V3 . (4.23)

Here Cq1,q2 denotes the locus of matter with charges q1 and q2, and the notation V (p1, p2) refers 
to the vanishing locus of p1 and p2 on B2. The loci appearing in the second line are associated 
with more complicated ideals whose form will not be needed.

14 For background on the construction of abelian gauge symmetries in F-theory, see e.g. the recent reviews [77,78].
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Table 3
GLSM charges of the toric coordinates of the Bl2P2[3] fibration over Fa .

νz1 νz2 νz3 νz4 νu νv νw νs1 νs0

U(1)1 0 1 0 1 −2 + x x − x′ 0 0 0
U(1)2 1 a 1 0 −(2 + a) + y y − y′ 0 0 0
U(1)3 0 0 0 0 1 1 1 0 0
U(1)4 0 0 0 0 0 1 0 1 0
U(1)5 0 0 0 0 0 0 1 0 1

We now specify the base of the fibration to be the Hirzebruch surface B2 = Fa . A Hirzebruch 
surface is a fibration of a P1 over P1, which can be thought of as the projectivisation of OP1 ⊕
OP1(−a). The weak coupling limit we aim to analyze corresponds to shrinking the volume of 
the fiber P1, C0, to zero volume while taking the volume of the base P1 to be infinite such that 
the total volume of B2 = Fa stays finite. We denote the class of the rational fiber and base of Fa

class by f and h, respectively. Their topological intersection numbers are

h · h = −a , f · f = 0 , h · f = 1 . (4.24)

Additional data of which we will make frequent use are the anti-canonical class of Fa,

K̄ = 2h + (2 + a)f , (4.25)

and the Mori cone M as well as the closure of the Kähler cone K

M(Fa) = Span 〈f,h〉 , (4.26)

K(Fa) = Span 〈f,h + af 〉 . (4.27)

To describe the elliptically fibered three-fold Y3, we parametrise the classes α and β in Table 1
as

α = (2 − x)h + (2 + a − y)f , β = (2 − x′)h + (2 + a − y′)f . (4.28)

The base B2 = Fa is itself a toric space with four toric coordinates νz1 , . . . , νz4 corresponding to 
νf , νh+af , νf and νh, respectively. In terms of these and the fiber coordinates, and modulo taking 
suitable linear combinations, the GLSM charges of the toric coordinates of the total ambient 
space of the elliptic fibration can be defined as in Table 3.

For the sake of an explicit example, let us specialise to a model over Fa=1 and choose the 
classes

α = 2h + 3f , β = f . (4.29)

Note that the class of the polynomial c1 in Table 1 becomes trivial. As a result the matter loci 
associated with the second and third charged matter species in (4.22) are absent.

The resulting height-pairing matrix (4.21) implies that the elliptic genus of the string from a 
D3-brane wrapping C0 transforms as a rank-two weak Jacobi form of fugacity index

mab = 1

2
Cab · C0 =

(
2 0
0 2

)
. (4.30)

The appearance of zeroes on the off-diagonal is an artifact of the choice (4.29), but it does not 
imply that the two abelian gauge group factors are truly independent because physical states can 
be simultaneously charged under both factors.
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Next let us turn to the computation of the Gromov–Witten invariants N(0)
C0

(n, r1, r2) of the 
curve classes

�C0(n, r1, r2) = C0 + nCE + r1C
f
1 + r2C

f
2 . (4.31)

Here C0 = f ⊂ B2 and CE , Cf
a=1,2 are three fibral curves, chosen such that CE represents the 

full fiber and S0 · Cf
a=1,2 = 0. The latter property implies that in the M-theory obtained by circle 

reduction of F-theory on Y3, an M2-brane wrapping Cf
a=1,2 has vanishing Kaluza–Klein charge.

To compute the BPS invariants via mirror symmetry [92,93] we need the Mori cone generators 
as well as the triple intersection numbers, which can be determined via PALP [94,95]. We find 
one toric phase that describes a flat fibration, for which the Mori cone and triple intersection 
numbers take the following form:

l(1) = ( 1, 0, 1, 0, −1, 0, 0, 0, 0)

l(2) = ( 0, 1, −1, −1, 0, 0, 0, 1, 0)

l(3) = ( 0, 0, −1, 0, 1, 0, 0, 0, 1)

l(4) = ( 0, 0, 0, 1, 0, 1, 0, 0, −2)

l(5) = ( 0, 0, 1, 0, 0, 0, 1, 0, −1)

(4.32)

I = −2J 3
1 − 3J 2

1 J2 + J1J
2
2 + 2J 2

2 J3 + 2J2J
2
3 − 2J 2

1 J4 + J1J2J4 + 2J2J3J4

+J 2
2 J5 + J2J3J5 + J2J4J5 − 3J2J

2
5 − 2J3J

2
5 − 2J4J

2
5 + 8J 3

5 . (4.33)

We have characterized the Mori cone generators l(i) by listing their intersection numbers with 
the 9 toric divisors dρ = {νρ = 0}, whose classes are given in Table 3, appropriately reordered. 
These toric divisors can be expressed in terms of 5 basis elements Ji of H 1,1(X, Z) as

d1 = −J1 + 2J2 + J3 + J5 , d2 = J4 , d3 = −J1 + J3 − J4 , d4 = J2 − J4 , (4.34)

d5 = J1 , d6 = J2 , d7 = J3 , d8 = J4 , d9 = J5 .

With this input we can compute [92,93] the Gromov–Witten invariants of low degree with 
respect to the basis of curves l(i). The sought-after invariants N(0)

C0
(n, r1, r2) can then be obtained 

from them by writing the curve classes �C0(n, r1, r2) of (4.31) in the basis of l(i). A detailed 
analysis shows that

C0 = l(4), CE = 2l(1) + 3l(3) + 2l(5), Cf
1 = l(1) + l(3) + l(5), Cf

2 = l(3) + l(5), (4.35)

and therefore

�C0(n, r1, r2) = (2n + r1)l
(1) + (3n + r1 + r2)l

(3) + l(4) + (2n + r1 + r2)l
(5) . (4.36)

In the end, the relevant Gromov–Witten invariants can be packaged into the following genus-zero 
prepotential,

F (0)
C0

≡
∑

N
(0)
C0

(n, r1, r2)q
n(ξ1)r1(ξ2)r2 (4.37)

= −2 +
[
160 + 64ξ

(0,1)
± + 64ξ

(1,0)
± + 22ξ

(1,1)
± + 10ξ

(1,−1)
±

]
q (4.38)

+
[
52976 + 30400ξ

(0,1)
± + 4928ξ

(0,2)
± + 64ξ

(0,3)
± − 2ξ

(0,4)
± +

+ 30400ξ
(1,0)
± + 17028ξ

(1,1)
± + 16956ξ

(1,−1)
± + 2432ξ

(1,2)
± + 2432ξ

(1,−2)
±

+ 10ξ
(1,3)
± + 22ξ

(1,−3)
± + 4928ξ

(2,0)
± + 2432ξ

(2,1)
± + 2432ξ

(2,−1)
± + 200ξ

(2,2)
±
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+ 200ξ
(2,−2)
± + 64ξ

(3,0)
± + 10ξ

(3,1)
± + 22ξ

(3,−1)
± − 2ξ

(4,0)
±

]
q2

+O(q3) ,

with the short-hand notation

ξ
(r1,r2)± := (ξ1)r1(ξ2)r2 + (ξ1)−r1(ξ2)−r2 . (4.39)

The coefficients at level n = 1 and (r1, r2) �= (0, 0) in the first line of (4.38) agree with the mul-
tiplicities of the charged massless matter fields in the F-theory limit, as derived from (4.22) and 
(4.23). This is because the GW invariants for the split curve components over the codimension-
two loci (4.22) and (4.23) stay the same if we add the full fiber class CE and the class C0 in the 
base. Such pattern is, in fact, required by consistency because the above genus-zero prepotential 
is related to the elliptic genus of the dual heterotic model as in (4.3), and the terms at level n = 1
give the chiral index of the massless matter content. In particular, two of the charge combinations 
(4.22) and (4.23) are absent at this level, as expected based on the discussion after (4.29).

Following the general discussion, we make an ansatz

F (0)
C0

(τ, z1, z2) = − q

η(τ)24 �10,mab
(τ, z1, z2) , (4.40)

with �10,mab
(τ, z1, z2) a rank-two lattice Jacobi form whose index mab is given in (4.30). Note 

that in the present example �10,mab
(τ, z1, z2) is indeed modular, as opposed to merely quasi-

modular, because C0 is the fiber of a Hirzebruch surface and therefore a generator of the Mori 
cone. Hence the anomaly equation (4.6) of [80,81] is empty and does not imply any dependence 
on the quasi-modular form, E2.

Unlike for Jacobi forms of rank one, no explicit parametrization of a finite basis for higher 
rank Jacobi forms seems available in the mathematics literature to date. The naive assumption 
would be to continue to work with products of the weak Jacobi forms ϕ−2,1(τ, za) and ϕ0,1(τ, za)

for a = 1, 2 (together with E4(τ ) and E6(τ ) as always). As it turns out, an ansatz consisting 
of such a set of functions is not sufficient to match the GW invariants computed above. What 
turns out to be successful, on the other hand, is an ansatz for � using the most general linear 
combination of the forms15

E
n4
4 E

n6
6

∏
(p,q)

ϕ−2,1(τ,pz1 + qz2)ap,q ϕ0,1(τ,pz1 + qz2)bp,q (4.41)

of weight 10 and index mab, with p, q ∈ Z. Note that it follows from the definition (4.10) that 
the index of the product (4.41) is determined by the quadratic form

mabz
a zb ≡ ap,q(pz1 + qz2)2 + bp,q(pz1 + qz2)2 , (4.42)

which leads to a finite lost of allowed integer pairs (p, q). Comparison with the Gromov–
Witten invariants (4.38) with n = 0, 1 already fixes the coefficients in the ansatz for � ≡
�10,mab

(τ, z1, z2) to be

� = 1

72
E2

4E6ϕ
(−)
−2,1ϕ

(+)
−2,1 + 1

1728
E3

4ϕ
(−)
−2,1ϕ

(+)
0,1 − 1

1728
E2

6ϕ
(−)
−2,1ϕ

(+)
−2,1

+ 1

62208
E3

4E6(ϕ
(1)
−2,1)

2(ϕ
(2)
−2,1)

2 + 5

62208
E3

6(ϕ
(1)
−2,1)

2(ϕ
(2)
−2,1)

2

15 The forms (4.41) may not be independent, as explicit analysis suggests.
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Fig. 2. Shown on the left is the lowest lying charge-mass spectrum as determined by the elliptic genus given in eq. (4.43). 
The red dots denote the subset of super-extremal string states. The top picture on the right shows the charges of the 
maximally super-extremal states as determined in (4.17), as viewed from the top of the left picture; obviously they lie on 
a sublattice of the full charge lattice. On the right bottom, the charges of all super-extremal states are shown. These do 
not form a lattice, rather are given as the union of shifted copies of the sublattice.

− 1

27648
E4

4(ϕ
(1)
−2,1)

2ϕ
(2)
−2,1ϕ

(2)
0,1 − 13

82944
E4E

2
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0,1(ϕ
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− 1
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4(ϕ
(1)
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82944
E4E

2
6(ϕ

(1)
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2ϕ
(2)
−2,1ϕ

(2)
0,1

+ 1

1728
E2

4E6ϕ
(1)
−2,1ϕ

(1)
0,1ϕ

(2)
−2,1ϕ

(2)
0,1 − 29

248832
E3

4(ϕ
(1)
0,1)

2ϕ
(2)
−2,1ϕ

(2)
0,1

− 19

248832
E2

6(ϕ
(1)
0,1)

2ϕ
(2)
−2,1ϕ

(2)
0,1 − 29

248832
E3

4ϕ
(1)
−2,1ϕ

(1)
0,1(ϕ

(2)
0,1)

2

− 19

248832
E2

6ϕ
(1)
−2,1ϕ

(1)
0,1(ϕ

(2)
0,1)

2 + 1

10368
E4E6(ϕ

(1)
0,1)

2(ϕ
(2)
0,1)

2 , (4.43)

where

ϕ(a)∗,∗ = ϕ∗,∗(τ, za) , ϕ(±)∗,∗ = ϕ∗,∗(τ, z1 ± z2) . (4.44)

The analytic expression (4.43) does predict the correct Gromov–Witten invariants (4.38) also for 
n = 2, as it should. We have depicted the lowest-lying charge spectrum encoded in this generating 
function of Gromov–Witten invariants in Fig. 2.

Note that in absence of an underlying mathematical theorem, we cannot strictly guarantee 
that the ansatz (4.41) is sufficient and hence that it also captures all higher degree GW invariants 
beyond the ones computed explicitly via mirror symmetry. Nonetheless we conjecture that this is 
the case, motivated by the highly non-trivial checks occurring already at low degree. Note again 
that the non-standard generators ϕ(±)∗,∗ were necessary here even though the index mab is purely 
diagonal. It is tempting to speculate that a similar ansatz (4.41) correctly reproduces the GW 
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invariants also in other situations which require (quasi-)Jacobi forms of higher rank. This would 
be an interesting direction for further exploration.
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