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Abstract

The CMS full simulation using Geant4 has delivered billions of simulated events for analysis during
Runs 1 and 2 of the LHC. However, the HL-LHC dataset will be an order of magnitude larger, with a
similar increase in occupancy per event. In addition, the upgraded CMS detector will be considerably
more complex, with an extended silicon tracker and a high granularity calorimeter in the endcap
region. Increases in conventional computing resources are subject to both technological and budgetary
limitations, so novel approaches are needed to improve software efficiency and to take advantage of
new architectures and heterogeneous resources. Several projects are in development to address these
needs, including the vectorized geometry library VecGeom and the GeantV transport engine, which
uses track-level parallelization. The current computing performance of the CMS simulation will be
presented as a baseline, along with an overview of the various optimizations already available for
Geant4. Finally, the progress and outlook for integrating VecGeom and GeantV in the CMS software
framework will be discussed.
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Abstract. The CMS full simulation using Geant4 has delivered billions of sim-
ulated events for analysis during Runs 1 and 2 of the LHC. However, the HL-
LHC dataset will be an order of magnitude larger, with a similar increase in
occupancy per event. In addition, the upgraded CMS detector will be con-
siderably more complex, with an extended silicon tracker and a high granu-
larity calorimeter in the endcap region. Increases in conventional computing
resources are subject to both technological and budgetary limitations, so novel
approaches are needed to improve software efficiency and to take advantage of
new architectures and heterogeneous resources. Several projects are in devel-
opment to address these needs, including the vectorized geometry library Vec-
Geom and the GeantV transport engine, which uses track-level parallelization.
The current computing performance of the CMS simulation will be presented
as a baseline, along with an overview of the various optimizations already avail-
able for Geant4. Finally, the progress and outlook for integrating VecGeom and
GeantV in the CMS software framework will be discussed.

1 Introduction

The CMS experiment has dedicated software called CMSSW [1] to produce Monte Carlo
simulation events [2–4]. Primary physics processes are generated by programs such as
pythia [5, 6] and the output particle information is converted into the standard HepMC for-
mat [7, 8]. The detector simulation employs models of various types of particle interactions
with materials, called “physics lists”, to propagate particles through the detector. This simu-
lation uses the Geant4 software [9–11]. Subsequently, the response from detector electronics
is simulated in a dedicated digitization step to produce output signals, and then various re-
construction algorithms are applied to those signals. The detector simulation step is the most
expensive in terms of CPU usage, consuming 40% of the total computing budget of CMS.
Within the detector simulation step, evaluating the geometry and magnetic field propagation
uses 60% of the time; electromagnetic (EM) physics models use 15%; hadronic physics use
10%; and other components, including CMS-specific operations, use the remaining 15%.

The high-luminosity upgrade to the LHC will have significant implications for the CMS
computing budget. This motivates continued efforts to improve the speed and efficiency of
the detector simulation. More information about the CMS detector and planned upgrades is
given in Section 2. CMS has activated numerous technical options and implemented several
approximations to improve the CPU usage of the detector simulation. The impacts of these
improvements will be discussed in Section 3. Potential improvements using vectorized li-
braries for geometry and simulation are being evaluated. Some progress has already been
∗e-mail: pedrok@fnal.gov



made toward integrating these libraries in CMSSW; the status and outlook will be described
in Section 4.

2 The CMS detector and upgrades

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections.
Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap
detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return
yoke outside the solenoid. A more detailed description of the CMS detector, together with a
definition of the coordinate system used and the relevant kinematic variables, can be found in
Ref. [12].

In the original design and installation of the CMS detector (“Phase 0”), the pixel system
included 66 million channels, the strip tracker system 9.6 million channels, the ECAL 76
thousand channels, the HCAL 7 thousand channels, and the forward calorimeter 2 thousand
channels. Leading up to Run 3 of the LHC, several detector upgrades have been or will
be installed, called the “Phase 1” upgrades [13, 14]. These upgrades include a new pixel
detector, which has 127 million channels. The readout electronics for the HCAL are also
upgraded, increasing its channel count to 15 thousand.

After Run 3, the LHC will undergo a high luminosity (HL) upgrade, becoming the HL-
LHC. It is currently operating at a luminosity close to 2 × 1034 cm−2 s−1, almost double its
original design luminosity. The HL-LHC will reach a luminosity of at least 5× 1034 cm−2 s−1

and potentially up to 7.5 × 1034 cm−2 s−1. This will lead to a high rate of secondary proton-
proton collisions, up to 200 interactions per bunch crossing (pileup), and associated large
radiation doses. To cope with these extreme conditions, the CMS detector will undergo a
more substantial upgrade, called the “Phase 2” upgrade [15]. There will be a new pixel
detector with 1947 million channels. In addition, the endcap calorimeter system, both ECAL
and HCAL, will be replaced with an integrated high granularity calorimeter (HGCal). The
HGCal will have 6 million channels, a substantial increase from the current calorimeters.
This may require more accurate physics lists in Geant4 in order to achieve desired levels of
agreement between simulation and observation.

The upgrades to the CMS detector are reflected in the simulated geometry used in the
CMS software. The original CMS geometry has 2.1 million elements, and the Phase 1 CMS
geometry is similar. Because of the greater complexity of the Phase 2 pixel detector and
HGCal, the Phase 2 CMS geometry has 21.9 million elements. These increases in channel
counts and geometry elements translate into an increase in CPU usage for the simulation,
depicted in Fig. 1.

The jump in data volumes and detector complexity for the HL-LHC upgrade will place
numerous demands on CMS computing. We will need to simulate 10 times more events to
keep up with the recorded data. The reconstruction algorithms will take longer to run because
of higher occupancies from pileup and the aforementioned increases in detector channels. In
total, the yearly CPU requirements are expected to grow by more than an order of magnitude
compared to the current run [16]. For Phase 2, the CMS simulation must provide more events
and more accuracy, with a more complicated geometry, while using a relatively smaller frac-
tion of the total CPU budget. To achieve these goals, we must find significant improvements
in efficiency, even beyond those already implemented in CMSSW.
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Figure 1. CPU usage for different CMS geometries, based on Table 1 from Ref. [17]. The values for
each process type are normalized to the Phase 0 values.

3 Existing improvements

The CMS simulation includes a number of improvements over the baseline CPU performance
from Geant4. Some of these improvements are purely technical, while others are approxi-
mations that preserve the essential physical accuracy of the simulation while reducing the
computational time, in some cases substantially. In Ref. [17], each of the improvements in
the following list was profiled to determine its impact on CPU usage for simulations of sev-
eral physics processes: minimum bias (“minbias”) and top pair production (“ttbar” or tt). The
improvements considered are:

• Static library: all simulation code in CMSSW is compiled into one static library file, to
avoid calls to the procedure linkage table that would occur if libraries were loaded dynam-
ically.

• Production cuts: a requirement on the range value to produce secondary particles is cus-
tomized for each detector region. For the pixel system, the cut is 0.01 mm; for the strip
tracker, 0.1 mm; for the ECAL and HCAL, 1 mm; for the muon systems, 0.002 mm; and
for the support structure, 1 cm.

• Tracking cut: within the vacuum chamber, between the interaction point and the start of
the pixel system, charged particles with energy less than 2 MeV are rejected. This avoids
the possibility of looping electrons or positrons.

• Time cut: the maximum propagation time considered is 500 ns.

• Shower library: a library of pre-generated showers is used for the forward calorimeter.
Particle multiplicities are highest in the forward region, so this relatively small volume can
take a disproportionate amount of CPU to simulate completely.

• Russian roulette: an algorithm which discards, at random, N−1 neutrons with energy less
than 10 MeV or photons with energy less than 5 MeV in the calorimeter system. The N th

particle is retained and assigned a weight of N to account for the energies of the discarded
particles.



Table 1. The impact of each improvement in the CMS simulation, for minbias and tt processes with
the Phase 0 geometry and Geant4 version 10.2. Each entry is normalized to the “No optimizations”

row. This table is based on Tables 2 and 3 from Ref. [17].

Relative CPU usage
Configuration Minbias tt
No optimizations 1.00 1.00
Static library 0.95 0.93
Production cuts 0.93 0.97
Tracking cut 0.69 0.88
Time cut 0.95 0.97
Shower library 0.60 0.74
Russian roulette 0.75 0.71
FTFP_BERT_EMM 0.87 0.83
All optimizations 0.21 0.29

• FTFP_BERT_EMM: a modified physics list with a simplified model of multiple scatter-
ing used in most regions, except for HCAL and HGCal.

The impact of each improvement, as well as the overall impact, can be seen in Table 1.
The shower library and Russian roulette improvements have the largest effects. Overall,
the CMS simulation is 4.7 (3.4) times faster for minbias (tt) processes, compared to the
baseline version with no optimizations. This is a significant achievement made possible by
years of work and collaboration. In absolute terms, the CMS simulation takes 4.3 sec/event
(24.6 sec/event) for minbias (tt), where 1 sec = 11 HS06 for the benchmark machine.

Multithreading is another important development. Geant4 supports event-level multi-
threading with nearly perfect scaling up to the limit of physical cores (57 physical cores in a
Xeon Phi test machine), and a further 30% gain from hyperthreading. The memory usage is
reduced by a factor of 10 with respect to a multiprocessing approach with no memory shar-
ing. The CMSSW framework supports multithreading [18] and this facility is employed in
the production of simulated events. Similar gains in throughput are observed in the CMSSW
framework, compared to the standalone Geant4 tests described previously. The memory
usage remains under 2 GB when using up to 8 threads, which is ideal for a production envi-
ronment. Though the absolute time per event does not change, this improvement allows CMS
to make more efficient use of grid resources.

CMS continues to explore further improvements to the CPU efficiency of the simulation.
One such improvement is the use of VecGeom [19, 20], a new library for detector geometry.
This library supports vectorization and new computing architectures. The code is rewritten
to be more modern and efficient, compared to existing detector geometry libraries. Geant4
supports the use of VecGeom in scalar mode, without vectorization. CMS has tested this
combination and observes a 7–13% speed improvement, depending on the process, with sim-
ilar memory usage. This improvement comes just from the code improvements in the new
library, because vectorization is not supported in Geant4. This improvement is included in
the latest production releases of CMSSW and constitutes the first mainstream usage of a new
vectorized library by a major experiment.

An even more recent set of improvements concerns the magnetic field evalua-
tion. A faster and more robust stepping algorithm for tracking in the magnetic field,
called G4DormandPrince745, has been compared to the Geant4 default algorithm,
G4ClassicalRK4. In addition, a smart tracking algorithm is employed for energy-dependent
propagation of particles through EM fields. CMS observes an 8–10% speed improvement



with these new optimizations in preliminary tests, conducted with gcc 7.0 and 16 threads.
These tests were enabled by migration to Geant4 version 10.4 in CMSSW.

4 Potential improvements

CMS has already achieved significant speed improvements in Geant4 and enabled event-level
multithreading for more efficient use of resources. However, even those improvements will
not suffice to meet the demands of the HL-LHC and the Phase 2 detector upgrades. One
potential step forward is GeantV, the vectorized transport engine [21]. While Geant4 al-
lows event-level parallelism, GeantV is based on track-level parallelism: processing multiple
events simultaneously in a single engine. It exploits single instruction, multiple data (SIMD)
vectorization. By grouping tracks from multiple events—based on similarity in terms of par-
ticle type, geometry, or material—into a basket, the entire basket can be processed together.
GeantV vectorizes all components of the simulation, including geometry navigation and al-
gorithms, magnetic field propagation, and physics algorithms. To accomplish this, it builds
on lower-level libraries such as VecCore [22] and VecMath [23]. These libraries serve as
abstraction layers to support different architectures, processors, and instruction sets.

It is important to have early testing of this new engine in experiments’ software frame-
works, in order to avoid incompatibilities between the threading models and interfaces that
would limit adoption by the experiments. This effort began with integration into toy-mt-
framework [24, 25], a standalone library used by CMS for multithreading research and de-
velopment with Intel Thread Building Blocks (TBB) [26]. The integration was successful,
and an example is included in the first public release of GeantV [21]. Subsequently, a work-
ing example has been developed within the CMSSW development release environment [1].
Repositories exist to install [27] and run [28] GeantV in CMSSW.

This example uses a new feature in CMSSW called ExternalWork, which enables asyn-
chronous task-based processing. The ExternalWork feature has two steps: acquire and
produce. The CMSSW module takes as input generated events in HepMC format, which are
created by other CMSSW modules. In the acquire step, the HepMC input is converted to the
native GeantV format and passed to the GeantV engine. A separate TBB task is then queued
for the GeantV engine to process the event, along with any other events that may be pro-
cessing in parallel. Along with the GeantV TBB task, the CMSSW framework can enqueue
additional TBB tasks to do non-GeantV work, thereby sharing the available threads. Once
GeantV finishes with an event, a callback function is executed, placing the second step, pro-
duce, into the task queue. In the produce step, the CMSSW module creates its output products
and finishes with that event. The CMSSW geometry is also used directly by GeantV, in the
ROOT geometry format [29, 30].

There are currently some limitations to the CMSSW integration of GeantV. A constant
magnetic field and a limited EM-only physics list are used, rather than the full equivalents
in the standard CMS simulation. Production cuts have not yet been included, for simplicity.
Sensitive detectors and scoring are not yet adapted to the new GeantV interfaces. With event-
level parallelism, the scoring code that turns Geant4 hits into CMSSW data structures must
only process one event at a time; separate instances of the scoring classes are created for each
thread. In contrast, the track-level parallelism in GeantV implies that any scoring code must
handle input from multiple events and multiple threads simultaneously. Work is ongoing to
update the scoring code to the required level of thread safety. Because of this limitation, inte-
gration with downstream steps such as digitization has not yet been accomplished. However,
once the scoring code is adapted, downstream steps will proceed without difficulty, as these
rely on CMS event products rather than direct GeantV information.



The first public release of GeantV is not faster than Geant4, as the vectorization of var-
ious components is not yet complete. The second public release of GeantV, scheduled for
2019, will be faster, depending on the choice of computing architecture, processor instruction
set, and other options. CMS plans to target the second public release of GeantV for complete
integration and demonstration of a speed improvement in the CMSSW framework. Depend-
ing on these results, there will be a community decision to support the GeantV engine as part
of Geant4 on the timescale of the HL-LHC upgrades.

5 Conclusions

The CPU usage of the CMS full simulation, which uses Geant4, has been substantially re-
duced. Various technical improvements and physics-preserving approximations make the
simulation 3–5 times faster, compared to baseline performance. We continue to find ≈10%
improvements in CPU usage from sources such as VecGeom and magnetic field algorithm
optimizations. The simulation can run in multithreaded mode with event-level parallelism,
enabling more efficient use of grid computing resources.

The high luminosity LHC upgrade and the corresponding CMS detector upgrades will
bring significant challenges. There will be an order of magnitude increase in data volumes, up
to 200 proton-proton interactions per bunch crossing, and highly granular detector systems.
The CMS simulation will be required to provide more events and more accuracy, with a more
complicated geometry, while using a relatively smaller fraction of the total CPU budget.

GeantV is one promising approach to speed up the simulation even further. It uses track-
level parallelism, rather than event-level, to exploit SIMD vectorization. The first public
release of the software is available, and the second public release, including a speed improve-
ment over Geant4, is planned for 2019. The first release has been successfully integrated in
the CMSSW framework. The eventual goal is to improve CPU usage by 2–5 times in the
final release.
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