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Analytical solutions detailing the propagation of longitudinal waves in slender rods subjected to a
sudden increase of internal energy provide simple tools for the calculation of the temperature distribution in
impacted rods as well as the resulting mechanical response. The topic is of great interest in particle
accelerator technology, especially with regards to collimation systems, where beam intercepting devices
can be generally approximated to one-dimensional (1D) elements potentially subjected, in accidental
scenarios, to abrupt thermal energy depositions induced by the impacting particles. In this study, two finite
element numerical models are presented and compared to the analytical solutions by Bertarelli, Dallocchio
and Kurtyka, discussing the rapid temperature increase in slender rods due to particle beam impacts and the
resulting dynamic longitudinal response. The first model is a sequentially coupled thermomechanical
analysis; the second is based on a modal analysis to find the harmonic response of the system. The results
indicate that phenomena neglected in analytical solutions, primarily dispersion of the longitudinal wave
due to interactions with the free external surface of the rod, can be included in numerical models and can be
observed in simulation results. The study further shows how numerical methods can be utilized to predict
the frequencies and amplitudes of high-frequency disturbances in the longitudinal wave signal, and how
these effects can be mitigated in preparation for experimental scenarios by fine-tuning the geometry of the
rod and varying the duration of the pulse. This is especially useful with regards to experiments conducted in
the HiRadMat facility at CERN, such as the recently conducted HRMT36 experiment, where high-
frequency components can distort the signal to be observed.
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I. ANALYTICAL MODELING OF THERMALLY
INDUCED ELASTIC STRESS WAVES

Subatomic particles interacting with matter transfer some
of the energy to the material they interact with in the form
of heat, leading to a temperature increase in the impacted
material. Different effects may result from such an inter-
action, depending on the power density deposited. In
particle accelerators, a continuous energy deposition is
provoked by beam losses, which can last from a few
seconds up to hours. In the case of accidental beam
impacts, energy is rapidly deposited in the order of

nanoseconds to microseconds, in turn leading to a dynamic
response of the structure [1].
The dynamic response of slender rods subjected to a very

fast internal temperature increase is of particular interest for
high energy particle physics applications, as many beam
intercepting devices are in the form of long rods of material.
Studies on analytical solutions for this subject were
performed by Bargmann [2] and Sievers [3], and more
recently, work by Bertarelli et al. [4] has focused on both
longitudinal and flexural vibrations. The latter is used as a
general reference in this study, with emphasis on the
longitudinal response.
Bertarelli [4] considers a slender cylindrical rod subject

to a temperature increase induced by an internal heat
generation along the rod axis. This is a common scenario
when particle accelerator components are subject to high
energy subatomic particle beams. Beam targets are one
example, generally being slender rods directly hit by a
beam in order to create a shower of secondary particles [5].
The rod is simply supported and free to expand at its
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extremities. The energy deposition has a Gaussian distri-
bution over the cross section, with a standard deviation φ
and eccentricity η. The material model assumes an isotropic
material with linear elastic behavior, no damping, and
with thermal and mechanical properties independent of
temperature.
As mentioned, in accidental beam impact scenarios the

heating process typically lasts a few nanoseconds to
microseconds, and during this thermal shock duration τ,
the deposited energy can be considered to grow linearly. If
the thermal diffusion time td is much longer than τ, it can be
assumed that no heat diffusion occurs during the thermal
shock and that therefore the temperature increase is propor-
tional to the deposited energy. The system can initially be
considered adiabatic, hence the total energy remains con-
stant following the energy deposition. Due to the rapidity of
energy deposition, material inertia effects cannot be
neglected, and in fact play a major role when considering
longitudinal and flexural stresses. Material inertia in the
radial direction, and consequently its effects on the longi-
tudinal dynamic response, is neglected in the analytical
model, based on considerations made by Graff [6]. As will
be shown in this study, such effects have a significant
impact on the longitudinal response and cannot be gen-
erally neglected.
The problem can be solved in two steps—a thermal

analysis needs to be performed first, followed by a
structural analysis. Assuming a constant temperature dis-
tribution along the rod axis with no eccentricity in the radial
direction, the thermal analysis can be reduced to a one-
dimensional (1D) problem. For a specified Gaussian load
distribution, the energy density (J=m3) across the cross-
section at the end of the energy deposition, UðrÞ, takes the
following form:

UðrÞ ¼ Umaxe−r
2=ϕ2

; ð1Þ

where r is the radial position and Umax is the maximum
energy density deposited, at the center of the beam.
Assuming no heat diffusion occurs during the energy
deposition and that the heat capacity is constant, the
temperature increase across the cross section at the end
of the thermal shock can be simply calculated by

TðrÞ ¼ UðrÞ
ρcp

: ð2Þ

The system is considered to be adiabatic, therefore the
total energy following the beam impact remains constant
and the final uniform temperature increase of the system is
calculated by

Tf ¼
R
r UðrÞdr
ρcpπR2

: ð3Þ

Due to the high energy and temperature gradient across
the radius considered for the Gaussian distributed load, this
can be simplified by instead considering a pencil beam,
consisting of a circular cross section having a uniform load.
In this case, for a beam without eccentricity, Eqs. (1)–(3)
are simplified to

UðrÞ ¼ Umax for r < φ UðrÞ ¼ 0 elsewhere; ð4Þ

TðrÞ ¼ Tmax ¼
Umax

ρcp
for r < φ TðrÞ ¼ 0 elsewhere;

ð5Þ

Tf ¼ Tmax
ϕ2

R2
; ð6Þ

where φ is the pencil beam radius and R is the radius of
the rod.
Thermal expansion is initially prevented by the body’s

inertia, establishing a coupling between thermally induced
forces and inertia forces. In the case of a rod, this results in
dynamic stresses propagating along the rod as elastic stress
waves, with the system still being in a compressive state.
The stress relaxation initiates from the two ends of the rod,
as shown in Fig. 1, with two stress waves propagating along
the rod and superimposing at the center, before reflecting at
the opposite end.
For each propagating wave, a reference stress can be

defined as follows:

σref ¼ EαTf: ð7Þ

This value corresponds to the compressive axial stress
that would be induced by a uniform temperature increase
Tf, in a rod with its ends fixed. This stress is equal to the
maximum stress induced by each stress wave, resulting in a
maximum dynamic longitudinal stress of 2σref when the
two waves superimpose. This only occurs if the pulse
duration is short enough, and with a longer energy
deposition time this maximum stress value might not be
reached. The evolution of the dynamic longitudinal stress
scaled to the reference stress, as computed in Bertarelli’s
study [4], is shown in Fig. 2.

FIG. 1. Compressive state of the rod following the energy
deposition, resulting in the propagation of longitudinal stress
waves from its extremities.
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The first fundamental longitudinal period tL for elastic
longitudinal waves is found by

tL ¼ 2L
c0

; ð8Þ

where c0 ¼
ffiffiffi
E
ρ

q
is the velocity of longitudinal wave

propagation in the material and L is the length of the rod.
Another important parameter is the thermal diffusion

time td, related to the time it takes to reach a uniform
temperature distribution in a specified region by means of
heat diffusion processes:

td ¼
B2

a
; ð9Þ

where B is the relevant dimension (the radius in case of
cylinders) and a is the thermal diffusivity, given by

a ¼ k
ρcp

; ð10Þ

where k is the conductivity, ρ is the density, and cp is the
specific heat capacity of the material.
The time period for radial waves propagating from the

center of the rod outwards in hydrostatic conditions is
defined by

tR ¼ 2Rffiffiffi
K
ρ

q ; ð11Þ

where R is the radius of the rod and K is the bulk modulus
of the material. The radial waves travel to the rod’s free
surface and are then reflected inwards.
In the analytical model considered, radial inertia effects

on longitudinal waves are neglected based on the hypoth-
esis that the frequency of the system is small compared to a

reference value. This follows the study made by Graff [6]
on the breakdown of the classical wave theory with regards
to dispersive effects, showing that up to a limiting working
frequency radial inertia can be neglected and the classical
wave theory for longitudinal wave propagation in cylin-
drical rods is relevant. Beyond this frequency, the classical
wave theory breaks down and radial inertia must be
considered.
As described by Carra [7], there are two separate

phenomena leading to high-frequency disturbances in axial
oscillations, mainly cylindrical waves propagating from the
center of the rod and dispersion of the longitudinal wave
due to the boundary conditions.
The first phenomenon is related to radial waves propa-

gating from the center of the rod (the point of impact),
which travel to the external surface of the rod and are then
reflected back. The radial displacement produced by these
waves lead to an axial component related to the material’s
Poisson’s ratio. For materials with a low Poisson’s ratio,
radial displacements are small and the Poisson effects on
the axial vibrations are therefore not largely significant.
The second phenomenon is related to the dispersion of

the longitudinal wave due to the free external surface of the
rod. In this case, since the velocity of the wave is dependent
on its frequency, higher frequencies generated by effects at
the lateral free surface travel slower. Figure 3 shows the
propagation of waves in a cylinder, with release waves
generating at the free surfaces and trailing the main wave at
lower velocities. This causes fluctuation in particle velocity,
and is consequently observed in stress and strain readings at
the surface of the rod.
Pochhammer [9] describes the phase velocity cp in the

case of a longitudinal bar by

cp
c0

¼ 1 − ν2π2
�
r
Λ

�
2

; ð12Þ

where c0 is the ideal velocity, ν is the Poisson’s ratio, r is
the bar radius and Λ is the length of the wave, showing how

FIG. 2. Longitudinal dynamic stress at the center of the rod
(z ¼ L=2) and at one-fourth the length of the rod (z ¼ L=4) [4].

FIG. 3. Longitudinal wave propagation in cylindrical elastic
bar, showing effects at free boundaries [8].
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dispersion is affected directly by the parameters listed,
including the Poisson’s ratio of the material.

II. NUMERICAL MODELING OF THERMALLY
INDUCED ELASTIC STRESS WAVES

In this study, the problem presented is studied with a
finite element model implemented in ANSYS. The problem
is solved by first performing a transient thermal analysis to
model the energy deposition during the beam impact, the
results of which are input in a transient structural analysis
as a thermal load to model the mechanical response of the
system during and after the impact.
In the design phase of components subject to such loads,

numerical simulations are preceded by a predesign based
on analytical models such as that described in the previous
chapter, which allows for the computation of temperatures
and thermally induced stresses as defined by Eqs. (5)–(10).
These preliminary calculations are then followed by
numerical modeling, allowing to easily account for material
nonlinearities with temperature, as well as other phenom-
ena which cannot be modeled analytically, such as high-
frequency effects on longitudinal waves and singularities at
free mechanical boundaries.
The numerical model considers a rod with circular cross

section, having a length of 125 mm and a diameter of
10 mm. The particle beam is modeled by considering an
internal heat deposition in a cylinder of radius 0.5 mm
along the longitudinal axis of the rod, with a pulse duration
of 7.2 μs (a typical timescale in the case of beam impact on
structures in CERN accelerators and experimental facilities,
such as HiRadMat [10]) and a total deposited energy
density of 1000 J=m3 at the end of the pulse. The problem
is modeled in 2D, utilizing axial symmetry along the rod’s
longitudinal axis. For the thermal model, the initial temper-
ature is taken to be 22 °C, with adiabatic boundary con-
ditions. For the structural analysis, the rod is unrestricted
and free to expand in any direction.
Two material models are considered in this section:

tungsten and graphite, two materials which are widely used
in accelerator technology. In both cases the materials are
modeled with linear, temperature-independent properties,

as is the case in the analytical model considered. The two
materials have very different material properties, as indi-
cated in Table I, with graphite having a relatively low
Poisson’s ratio, which theoretically minimizes Poisson’s
ratio effects resulting from the propagation of waves in the
radial direction, and tungsten having a high density, stiff-
ness, and Poisson’s ratio.
The analytical model allows for the calculation of

various values, such as the wave period, maximum temper-
ature increase, and reference stress of the longitudinal
wave, which can be compared with numerical results.
Calculated results are shown in Table II for graphite and
tungsten rods with the defined dimensions.
Temperature results can be compared with thermal

analysis results computed in ANSYS. Figure 4 shows the
numerically computed temperature distribution along the
radius of the rods at different times. At the end of the energy
deposition, the maximum temperature is 420.5 °C and
531.3 °C for tungsten and graphite rods respectively,
agreeing well with the analytical solutions for temperature
increase of 398.6 °C and 509.3 °C, considering an initial
temperature of 22 °C. As seen in Fig. 4, at the end of the
energy deposition the maximum temperature is constant
along the radius of the heated region, with a sharp drop to
the initial temperature at the boundary. At the end of the
energy deposition the heat starts diffusing throughout the
body, until a final uniform temperature is achieved. Note
that the temperature along the rod’s longitudinal axis does
not vary since the energy deposition is assumed constant
along this axis.
The reference stress for the longitudinal wave is a

function of the final uniform temperature in the rod
and is calculated with Eq. (7). In the numerical model,
the results from the thermal analysis are imported in the
structural analysis as a thermal load. Figure 5 shows the
dynamic longitudinal strain at the center of the tungsten and

TABLE I. Linear, temperature independent material properties
for tungsten and graphite [11].

Material property Symbol Tungsten Graphite Units

Density ρ 19 300 1785 kg=m
Specific heat capacity cp 130 1100 J=kgK
Young’s modulus E 410 11.5 GPa
Coefficient of thermal
expansion

α 4.25 × 10−6 4.5 × 10−6 1=K

Poisson’s ratio ν 0.28 0.1 /
Thermal conductivity k 145 60 W=mK

TABLE II. Calculated values for speed of sound, longitudinal
wave period, longitudinal wave frequency, maximum temper-
ature increase, final temperature increase, reference stress,
reference strain (reference stress divided by Young’s modulus),
and thermal diffusion time for tungsten and graphite rods with
radius 5 mm and length 125 mm.

Calculated value Symbol Tungsten Graphite Units

Speed of sound c 4609 2538 m=s
Longitudinal wave period tL 54.2 98.5 μs
Longitudinal wave
frequency

fL 18.4 10.2 kHz

Maximum temperature
increase

Tmax 398.6 509.3 °C

Final temperature increase Tf 4.0 5.1 °C
2 × reference stress 2σref 13.89 0.53 MPa
2 × reference strain 2εref 33.9 45.8 μm=m
Thermal diffusion time td 0.43 0.83 s
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graphite rods (at radial and longitudinal positions of 0 mm
and L=2 respectively) computed numerically. The trap-
ezoidal shape of the analytical solution for the longitudinal
wave in the center of the rod, as shown in Fig. 2, is
replicated well in the numerical results for both material
models, as is the longitudinal wave period, however, the
maximum dynamic strain is underestimated in the analyti-
cal calculations—this is mainly due to high-frequency
disturbances overlapping the longitudinal wave signal.
These disturbances are observable in results for both
material models, and can be seen to increase in amplitude
as the longitudinal wave propagates through the material.

A Fourier analysis of the results, shown in Fig. 6, identifies
the frequency spectrum of the obtained signals, with
frequencies in the range of 0–130 kHz dominated by the
odd harmonics making up the underlying longitudinal
wave. At higher frequencies, peaks can be observed at
158 and 435 kHz for the graphite material model. For the
tungsten rod, two adjacent frequency peaks can be iden-
tified from the Fourier analysis at approximately 345 and
350 kHz, resulting in a beating effect in the signal.
There are various phenomena which can contribute to the

generation of the high-frequency disturbances observed in
the results shown in Figs. 5 and 6. The analytical model

FIG. 4. Temperature distribution along tungsten rod (left) and graphite rod (right) radius at different times: 7.2 μs (at the end of the
energy deposition), at 500 μs, and at 1 ms.

FIG. 5. Dynamic longitudinal strain for tungsten (left) and graphite (right) rods (at a radius of 0 mm and a longitudinal position of
L=2). The computed maximum dynamic longitudinal strain (2εref ) is 33.9 μm=m for tungsten and 45.8 μm=m for graphite, while the
simulation results show that the strain, while maintaining the expected trapezoidal shape, oscillates around this value for an actual
maximum strain of approximately 49 and 56 μm=m for tungsten and graphite, respectively.
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considered requires various simplifications, including
neglecting inertia in the radial direction. The disregard of
radial inertia in turn neglects lateral effects on the longi-
tudinal waveform and effects due to wave dispersion. As
seen in the results, neglecting such phenomena could lead to
the underestimation of dynamic stresses induced by particle
beam impacts, as the high-frequency radial components are
observed to have a significant amplitude in certain cases,
such as in the modeled tungsten rod, where the high-
frequency components have an amplitude of more than
40% of the base longitudinal harmonic. This can result in a
non-negligible increase in the maximum equivalent stress,
leading to a nonconservative prediction of the dynamic
stress, which can indeed have an impact in the design of
beam-intercepting devices, where the calculated values must
be compared with the allowable stress. This may potentially
lead to the failure of the component due to the stress
deviations caused by the high-frequency components.
The increase in stress can be even greater than what is

observed in this case study, as shown in the HRMT27
(Rodtarg) experiment at CERN [12], where high-frequency
radial waves with relatively large amplitudes were observed
in the longitudinal displacement readings of impacted high-
density targets. In this case, the radial component was in
fact the dominating phenomenon in the signal. Similarly,
other experiments which plan to reproduce the behavior of
components impacted by particle beams, such as the recently
completed HRMT36 (MultiMat) [13], require the use of
instrumentation having a high sampling rate in order to
register the high-frequency signals. Better understanding of
such phenomena ultimately benefits the design of full-scale

collimators, which are required to operate safely upon
impact of high intensity particle beams [14].
The above results prompt further studies on the param-

eters affecting the frequency and amplitude of high-
frequency components in longitudinal waves. The work
presented in this section aims to identify and better
understand the phenomenon being observed, whilst the
following section explores the dependence on parameters
such as radius and length.
Two additional scenarios are now considered to better

understand the factors affecting the high-frequency com-
ponents observed in the dynamic longitudinal response of
the rod, namely scaling the beam impact area over the
whole rod section, and modifying the material properties
and setting the Poisson’s ratio to zero. This allows the
separation of the different phenomena, i.e. lateral inertia
effects on the longitudinal wave due to the Poisson’s ratio
and effects due to wave dispersion. All other numerical
model parameters are retained, namely a rod length of
125 mm and a radius of 5 mm, a Poisson’s ratio of 0.28 for
tungsten and 0.1 for graphite for the first scenario, and a
beam impact diameter of 1 mm for the latter scenario.
By assuming a beam covering the whole cross section of

the rod, maintaining the same total energy deposited, the
rod is heated throughout its volume and therefore the final
uniform temperature increase (4.0 °C for the tungsten rod
and 5.1 °C for graphite) is achieved at the end of the pulse,
rather than after the thermal diffusion time elapses. In this
case, as shown in Fig. 7 in the time domain and Fig. 8 in the
frequency domain, the results still show a clear high-
frequency component in the longitudinal wave signal for

FIG. 6. Fourier analysis of the dynamic longitudinal strain results shown in Fig. 5 for tungsten (left) and graphite (right) rods
with length 125 mm and radius 5 mm. The frequency domain results show high-frequency peaks at 345 kHz for tungsten and
two peaks at 158 and 435 kHz for graphite, whilst the lower frequencies are dominated by the odd harmonics making up the
square longitudinal wave.
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both material models, however in both cases the amplitude
of these components is significantly reduced (from 40%
down to 25% in the case of tungsten). In this scenario there
is no temperature gradient in the radial direction, which
could result in the reduction in amplitude observed in the
high-frequency components, however radial waves are not
completely eliminated due to the relaxation occurring at the
rod’s surface. The Fourier analysis results also indicate that,
in the case of the graphite rod, the second high-frequency
harmonic—at approximately 435 kHz—is diminished.
The final scenario is that of setting the Poisson’s ratio to

zero whilst keeping other material and dimensional proper-
ties constant, reverting back to a pencil beam with a
diameter of 1 mm. The results, shown in Fig. 9 with the

corresponding Fourier transform plots in Fig. 10, give an
important indication that the high-frequency components
observed are indeed due to dispersion of the longitudinal
wave and a coupling between radial and longitudinal
vibrations, both phenomena being a function of the
material’s Poisson’s ratio. In the case of the tungsten
rod, the high-frequency disturbances are essentially elim-
inated by setting the Poisson’s ratio to zero, whilst for
the graphite rod some disturbances are still observable but,
as can be seen in frequency domain, the high-frequency
peaks are no longer tied directly to the radius of the rod,
but instead consist of a spectrum of frequencies. The
source of these second order effects is possibly a combi-
nation of three phenomena: numerical disturbances;

FIG. 7. Dynamic longitudinal strain for rod with a beam sigma of 5 mm (energy distributed over whole body) for tungsten (left) and
graphite (right) at a radius of 0 mm and a longitudinal position of L=2.

FIG. 8. Fourier analysis of the dynamic longitudinal strain results shown in Fig. 7 for tungsten (left) and graphite (right) rods with a
beam sigma of 5 mm (energy distributed over whole body).
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surface waves—such as Rayleigh waves—inducing a
longitudinal motion of the surface (and beneath the surface
at smaller amplitudes); or modal conversion of purely
expansive radial waves to shear waves, thus acting longi-
tudinally. The latter case is similar to the seismological
phenomenon where p-waves are partially converted to
s-waves upon reflection at an interface [15]. Numerical
errors can be considered negligible as in the other scenarios
considered, whilst the effects of surface waves can be
investigated by taking results at different radial positions.
For the scenario considered, the high-frequency compo-
nents on the dynamic longitudinal strain results at the
surface of the rod have a similar amplitude to the results at

the core, indicating that the distortion is not a result of
surface waves (which decay exponentially with depth from
the surface). Further studies are required to better under-
stand such second order effects and shed light on the
phenomena in play.
As described by Carra [7], waves propagating radially

from the rod’s core weakly influence the axial dynamic
response when compared to the dispersive effects related to
the presence of free lateral surfaces.
In the case of dispersion, high-frequency waves follow

the main rectangular wave and thus should appear follow-
ing its arrival. In the modeled scenarios, taking Figs. 5
and 7 as examples, one can see that the high-frequency

FIG. 9. Dynamic longitudinal strain for rod with ν ¼ 0 for tungsten (left) and graphite (right) at a radius of 0 mm and a longitudinal
position of L=2.

FIG. 10. Fourier analysis of the dynamic longitudinal strain results shown in Fig. 9 for tungsten (left) and graphite (right) rods with
Poisson’s ratio ν set to 0.
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oscillations are observable in the first ramp. At this point,
the coupling between radial and longitudinal waves
through the Poisson’s ratio has already occurred, due to
the short time period of the radial waves (approximately
2.85 μs for the tungsten rod, compared to the 56 μs period
of the longitudinal wave) which only have to travel across
the rod’s cross section. The results show that these high-
frequency oscillations initially have a very small amplitude,
which only becomes prominent once the longitudinal wave
plateaus at the maximum stress, at approximately 25 μs in
the case of tungsten.
This behavior is what would be expected if dispersion is

the dominating phenomenon, with slower, high-frequency
waves following the main longitudinal wave, appearing
following its propagation along the cylindrical rod. It can
thus be concluded that dispersion is the principal source of
high-frequency disturbances, whilst the coupling between
radial and longitudinal waves through the Poisson’s ratio
can be seen to contribute to a much lesser extent in the
initial stages of wave propagation. As mentioned, other
second order phenomena, including effects related to sur-
face waves, are also possible contributors to the observed
disturbances and are not dependent on the material’s
Poisson’s ratio.

III. NUMERICAL MODELING—COMPARISON
BETWEEN THERMOSTRUCTURAL ANALYSIS

AND HARMONIC RESPONSE ANALYSIS

The results presented so far in this study indicate that
there are two parameters affecting the dynamic response of
a slender rod subject to a rapid internal energy deposition,
mainly: (i) the input spectrum imposed on the system due to
the initial thermal pulse—this forces the system to oscillate
in a range of frequencies depending on the input, which
mainly depends on beam parameters and how the beam
interacts with the rod; (ii) the harmonic response of the
system—this is the range of frequencies at which the
system is free to oscillate, depending on the rod dimen-
sions, material properties, and boundary conditions.
This section of the study aims to highlight the effects of

the input spectrum on the thermomechanical response, and
eventually compare the results with results from modal
analyses conducted in ANSYS, discussing the similarities
and differences between the two.
The same numerical model presented in the first part of

the study is initially used to determine a relationship
between the radius of the rod and the frequencies and
amplitudes observed, retaining a length of 125 mm, a pulse
duration of 7.2 μs, a beam diameter of 1 mm, and a total
energy density of 1000 J=cm3 at the end of the pulse. The
rod radius is varied in a range from 2.5 to 7 mm in 0.5 mm
steps, maintaining all other parameters constant. This
section focuses solely on the material model for graphite,
presented in the previous section in Table I. Graphite is
widely used in accelerator technology and is one of the

materials tested in the HRMT36 experiment, as well as
being a constituent in various novel composites developed
for use in beam-intercepting devices at CERN, such as
molybdenum graphite [16].
The maximum temperature, dependent on the energy

deposited and beam sigma, and longitudinal period, de-
pendent on the material properties and length of the rod, are
both common for all rod radii. The defined equations give
results for a maximum temperature increase of 509 °C in the
heated region, and a longitudinal wave period tL equal to
98.5 μs (for a longitudinal frequency of 10.2 kHz). The
final uniform temperature, reference stress, and thermal
diffusion time are dependent on the total volume, and
therefore the radius, of the rod. The analytically computed
results for these values are shown in Table III for different
radii. The results for the dynamic longitudinal strain
following thermomechanical simulations for a range of
radii from 2.5 to 4.5 mm are shown in Fig. 10.
Ignoring the observed disturbances, analytical and sim-

ulation results can be seen to be in good agreement when
comparing the results for dynamic longitudinal strain
(2εref ) in Table III with the peak dynamic strain values
displayed in Fig. 11. The maximum strain decreases
accordingly with an increase in radius, whilst the longi-
tudinal period is constant at 98.5 μs for all rods. The high-
frequency component is superimposed on the longitudinal
wave as in the previous section, and can be seen to vary in
both amplitude and frequency with a change in radius.
Figure 12 shows the results of a Fourier analysis on the
dynamic longitudinal strain results for five rod dimensions,
as well as a zoomed in view on the same plot for all
dimensions tested. The Fourier analysis aids in identifying
the various frequencies making up each waveform. The
underlying longitudinal signal—due to its square-wave
shape—is made up of odd harmonics only, which range
from the underlying base frequency of 10.2 kHz up to the
11th harmonic (approximately 112 kHz) for all cases, at

TABLE III. Final uniform temperature increase, reference
stress and strain, and thermal diffusion time for rods with radii
2.5–7 mm. Values in bold (range 2.5–4.5 mm radius) relate to the
maximum dynamic longitudinal strain, displayed in Fig. 11.

Radius
(mm)

Tf
(°C)

σref
(MPa)

εref
(μm=m)

2εref
(μm=m) td (s)

2.5 20.37 1.05 91.30 182.61 0.2
3.0 14.14 0.73 63.65 127.30 0.29
3.5 10.39 0.54 46.78 93.57 0.4
4.0 7.96 0.41 35.83 71.65 0.52
4.5 6.29 0.33 28.26 56.52 0.66
5.0 5.09 0.26 22.96 45.91 0.81
5.5 4.21 0.22 18.96 37.91 0.99
6.0 3.54 0.18 15.91 31.83 1.18
6.5 3.01 0.16 13.57 27.13 1.38
7.0 2.6 0.13 11.65 23.30 1.6
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which point the amplitude becomes negligible compared to
the higher frequency disturbances.
For each case study, i.e. for different radii, there are

respective high-frequency radial components, increasing in
frequency with a reduction in radius. The radial compo-
nents are also made up of multiple harmonics, for example
for a radius of 6.5 mm resonant frequencies are observed at
122 and 334 kHz. It is also interesting to note that there is a
discrepancy between radial harmonic results obtained from
the thermostructural analysis and those obtained analyti-
cally through Eq. (11). Differences between numerical and
analytical solutions are observable at smaller radii (and thus
higher frequencies). This follows the considerations made

by Graff [6] with regards to the breakdown of the classical
wave theory. At low frequencies the wave velocity is close
to the ideal velocity and therefore the analytical model
correctly predicts the frequency, while with an increase in
frequency, as a result of a decrease in radius, the discrep-
ancy between the predicted and actual wave velocity (and
in turn that between the predicted and actual frequency)
increases due to wave dispersion.
At this point it is also possible to identify a pattern in the

frequency spectrum which helps to decouple the effects of
the input spectrum and the harmonic response. Displaying
all thermostructural analysis results for dynamic longi-
tudinal strain in a graphite rod (for the radius range from 2.5
to 7 mm) on the same plot reveals that there are periodic
frequencies at which the amplitude is zero or close to zero.
For the scenarios tested, this occurs at approximately every
140 kHz, separating frequencies in batches. This is a result
of the input spectrum from the thermal pulse the system is
subject to [17]. The Fourier transform of a rectangular pulse
having a pulse duration τ ¼ 7.2 μs and an arbitrary
amplitude A ¼ 1 can be expressed by

GðfÞ ¼ sinðπfτÞ
πf

: ð13Þ

Figure 13 shows the Fourier transform result for longi-
tudinal strain for all rod radii simulated, plotted along with
the absolute values of the scaled input spectrum for a
rectangular pulse according to Eq. (13).
The width of each batch of frequencies in Fig. 13 is

139 kHz, equal to the inverse of the pulse duration. The
input spectrum is characterized by large amplitudes at
lower frequencies, which drop quickly to the first

FIG. 11. Dynamic longitudinal strain for graphite rods with
radius ranging from 2.5 to 4.5 mm at a radius of 0 mm and a
longitudinal position of L=2.

FIG. 12. Fourier analysis for the longitudinal strain at a radius of 0 mm and a longitudinal position of L=2 for graphite rods with radii
in the range 2.5 to 4.5 mm (left) and zoomed in view in the range 100–350 kHz for all radii modeled (right). For all rod radii, frequency
peaks up to approximately 112 kHz correspond to odd longitudinal wave harmonics. Beyond this frequency, longitudinal harmonics are
negligible in amplitude when compared to the high-frequency radial harmonics.
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minimum, with higher frequency batches having progres-
sively lower maximum amplitudes.
As mentioned at the beginning of this section, the second

component of the dynamic response observed in the
thermostructural analyses is related to the harmonic
response of the system, corresponding to the longitudinal
and radial resonant frequencies. As the material properties
and boundary conditions are constant for all modeled
scenarios in this section, the harmonic response is solely
dependent on the rod dimensions.
Harmonic response analyses are used to predict the

sustained dynamic behavior of a structure subject to a
load, helping to identify resonant frequencies excited by

forced vibrations. The problem can be modeled in ANSYS

by performing a modal analysis with a rod subject to a
radial force, representing the thermal load due to a particle
beam impact pushing from the center of the rod outwards.
Due to the material’s Poisson’s ratio, the rod is still excited
longitudinally at low (longitudinal) resonant frequencies
and high (radial) frequencies.
Modal analyses are typically less computationally

expensive than full transient thermostructural analyses,
hence this section sets out to investigate whether the results
achieved with a thermostructural analysis can also be
attained through the harmonic response spectrum obtained
from a modal analysis. The final output of the system—the
dynamic longitudinal strain in this case—is a result of the
convolution of the input signal and the harmonic response
function of the system. One would therefore expect that the
result of this multiplication is similar to the results achieved
from performing a thermostructural analysis of a beam
impact.
The results of multiplying the input spectrum for a

rectangular pulse with the axial strain results of a harmonic
response simulated in an ANSYS modal analysis, for a rod
with a length of 125 mm and various radius dimensions,
are shown in Fig. 14 (left). This can be compared to results
from thermostructural simulations, shown in the same
figure (right). For both cases, the odd longitudinal wave
harmonics dominate at low frequencies and diminish as the
first minimum is reached at 139 kHz. The modal analysis
can be seen to predict well the frequencies in the range of
100 to 500 kHz, however the amplitude of the high-
frequency harmonics can be seen to be overestimated—
for the 4 mm radius rod, the harmonic analysis predicts
a peak at approximately 200 kHz having an amplitude
of 38% of the base longitudinal harmonic, whilst the

FIG. 13. Fourier analysis for the longitudinal strain for graphite
rods with radii in the range 2.5 to 7 mm with superimposed
rectangular pulse spectrum (dotted), showing periodic minima at
139 kHz intervals.

FIG. 14. Expected output of the system (rectangular pulse input multiplied by simulated harmonic response) with damping for
graphite rods with length 125 mm and radii in the range 3 to 6.5 mm (left), and Fourier transform of thermostructural simulation results
for graphite rods with length 125 mm and radii in the same range (right).
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thermostructural simulation shows a peak at the same
frequency having an amplitude of only 22% of the base
harmonic.
The results thus indicate that, while modal analyses can

certainly be useful in determining rod geometries which
minimize high-frequency components, the analyses need to
be fine-tuned further to predict correctly the amplitude of
distortional components. This can be done by scaling the
amplitudes of the input spectrum and harmonic response to
the reference strain, refining the damping parameter, and
possibly performing an inverse Fourier transform to obtain
the result in the time domain. This could present an
alternative to easily identify radial frequencies and, more
importantly, their amplitude relative to the longitudinal wave
amplitude, in turn making it possible to predict and mitigate
these effects by varying the geometry of the rod such that
these harmonics are at frequencies which coincide with a
minimum in the input pulse spectrum, or else varying the
pulse duration to vary the position of these minimums.
Modal analyses could then be used to strike a balance

between the speed of analytical solutions—which are used
first, when available, to compute quick approximations and
parameter optimization—and the customization achievable
with full-scale thermomechanical simulations.

IV. CONCLUSIONS

Numerical models presented in this study are used to
investigate the propagation of longitudinal waves in slender
rods subject to particle beam impacts, a topic of great
interest in accelerator technology, especially with regards to
beam-intercepting devices. The study considers a slender
cylindrical rod, simply supported and free to expand,
subject to a rapid internal temperature increase. The
problem is modeled numerically using two methods, the
first being a sequentially coupled thermomechanical analy-
sis, and the second based on a modal analysis.
Analytical models considered neglect lateral inertia

effects on the longitudinal waveform, however the numeri-
cal analyses performed illustrate that these effects, a result
of dispersion of the longitudinal wave and to a lesser degree
Poisson’s ratio effects due to radial wave oscillations, can
be included in numerical models and are clearly observable
in results. An adequate time step is thus required to ensure
that these effects are observable in the analysis results.
Thermomechanical analyses performed show that the

dynamic response of a slender rod subject to a rapid internal
energy deposition is dependent on the input spectrum of the
initial thermal pulse and on the harmonic response of the
system. Following this observation, modal analyses are
presented and compared to their thermomechanical coun-
terparts, indicating that modal analyses can be used to
quickly identify radial harmonics and approximate their
amplitude relative to the longitudinal wave amplitude.
The models presented are used to investigate factors

affecting the observed radial components, both in terms of

frequency and amplitude. This is of particular interest in
preparation for experiments such as those conducted at the
HiRadMat facility at CERN, where these effects can be
manipulated as required by varying parameters such as the
rod dimensions and beam parameters.
Other results presented in the study, including observed

phenomena such as beating and second order effects in
longitudinal waves, could also be the basis for further study
in future publications.
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