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A satisfactory formulation of the laws of physics entails that the future evolution of a physical system
should be determined from appropriate initial conditions. The existence of Cauchy horizons in solutions
of the Einstein field equations is therefore problematic and expected to be an unstable artifact of general
relativity. This is asserted by the strong cosmic censorship conjecture, which was recently put into question
by an analysis of the linearized equations in the exterior of charged black holes in an expanding universe.
Here, we numerically evolve the nonlinear Einstein-Maxwell-scalar field equations with a positive
cosmological constant, under spherical symmetry, and provide strong evidence that mass inflation indeed
does not occur in the near extremal regime. This shows that nonlinear effects might not suffice to save the
strong cosmic censorship conjecture.

DOI: 10.1103/PhysRevD.99.064014

I. INTRODUCTION

The strong cosmic censorship (SCC) conjecture
embodies the expectation that general relativity is a deter-
ministic theory. It does so by predicting that Cauchy
horizons (CH)—the boundaries of the maximal evolution
of initial data via the Einstein field equations—are
unstable and give rise, upon perturbation, to singular
boundaries, beyond which the field equations cease to
make sense.
Quite surprisingly, recent results [1–8] put into ques-

tion the validity of SCC in the context of highly charged
black holes (BHs) immersed in a spacetime with a positive
cosmological constant.1 More precisely, these results
provide evidence for the existence of stable (charged de
Sitter) BH configurations containing a CH in their interior,
along which the Misner-Sharp mass, a scalar invariant

measuring the energy content of symmetry spheres,
remains bounded—a no-mass-inflation scenario. In particu-
lar, the CH should then retain enough regularity to allow
evolving the spacetime metric across it using the Einstein
equations. However, such evolution is not unique, condemn-
ing determinism (and the SCC conjecture) to failure.
This is particularly disturbing in view of the fact that a

positive cosmological constant provides the standard
mechanism to model the observed accelerated expansion
of our Universe. Nonetheless, the results mentioned above
are restricted to either the linear setting or to the nonlinear
analysis of the geometry of the BH interior starting from
an already completely formed event horizon—i.e., the
corresponding (horizon) data are put in “by hand”.
These results provide clear expectations concerning the
stability/instability of Cauchy horizons within de Sitter
BHs, but are not enough to cast a final verdict on SCC for
the following reasons: first, the parameter ranges identified
in [4] as potentially problematic for SCC are very narrow,
and therefore even small nonlinear deviation from these
might be enough to save SCC; secondly the (nonlinear)
results in [1] do not take into account the oscillatory
behavior of the scalar field along the event horizon,2

which was identified in [4] for the first time. Moreover,Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

1These results appeared almost two decades after the pioneer-
ing work in [9,10], which made contradicting claims; see Sec. 2.2
in [6] for a clarification of the implications of these papers
regarding SCC.

2In [1] it is only considered the case where the (real) scalar
field satisfies ϕ;v ∼ e−kv, along the event horizon.
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our numerical simulations will allow us to gain further
information concerning the behavior of various relevant
quantities near the Cauchy horizon, as for instance a
quantitative understanding of tidal deformations.
To go beyond the previous studies we perform a full

nonlinear numerical evolution of both massless and massive
minimally coupled self-gravitating scalar fields, in a space-
time with a Maxwell field and a positive cosmological
constant. For technical reasons we will restrict ourselves to
the spherically symmetric setting, but we should stress that,
according to the results in [4], the spherically symmetricmode
plays a key role in the linear stability/instability of Cauchy
horizons for near extremalReissner-NordströmdeSitterBHs.
All the nonlinear simulations we will be discussing evolve

from characteristic initial data whose outgoing component is
located in the BH exterior; in particular, the data along the
event horizon arises dynamically in this framework. Our
numerical code also allows us to probe the BH interior
region and to derive a detailed description of the behavior of
fundamental quantities, such as the radius function, scalar
field, (Misner-Sharp) mass, and curvature. By examining the
vicinity of the BH parameters identified as potentially
problematic for SCC in [4], we find stable no-mass-inflation
scenarios arising from a full nonlinear evolution (of exterior
data). These are, to the best of our knowledge, the first results
of this kind. They show, in particular, that nonlinear effects
are apparently not strong enough to save SCC in the context
of highly charged de Sitter BHs.3

Our setup also allows the inclusion of a scalar field mass,
and so we take the opportunity to investigate the possibility,
raised in [5,6], that the curvature might be bounded up to
the Cauchy horizon for certain choices of this mass. This
scenario is disproved in the cases that we analyze.

II. SETUP

We consider here an evolving, electrically charged
spacetime, modeled by the Einstein-Maxwell action with
a cosmological constant Λ, minimally coupled to a massive
scalar field Φ with mass parameter μ,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − 2Λ − F2 − 2Φ;αΦ;α − 2μ2Φ2Þ;

where F2 ¼ FαβFαβ and Fαβ is the Maxwell tensor. The
equations of motion reduce to

Gμν þ Λgμν ¼ 2FμαFν
α −

1

2
gμνF2 þ 2Φ;μΦ;ν

− gμνðΦ;αΦ;α þ μ2Φ2Þ; ð1Þ

□Φ ¼ μ2Φ; dF ¼ d⋆F ¼ 0; ð2Þ

where ⋆ is the Hodge dual.
We focus on spherically symmetric spacetimes, written

in double null coordinates as

ds2 ¼ −2e2σðu;vÞdudvþ r2ðu; vÞdΩ2; ð3Þ

F ¼ Fuvðu; vÞdu ∧ dv; Φ ¼ Φðu; vÞ; ð4Þ

where u and v are ingoing and outgoing coordinates,
respectively. In this framework, Maxwell’s equations
decouple and imply that

Fuvr2e−2σ ¼ constant ¼ Q; ð5Þ

with Q a conserved (electric) charge.

III. NUMERICAL EVOLUTIONS

To numerically evolve the field equations, we specify
initial conditions along two null segments, u ¼ ui and
v ¼ vi. We fix the residual gauge freedom as follows:

rðui; vÞ ¼ v; rðu; viÞ ¼ r0 þ uru0; ð6Þ

where ru0 is a constant and r0 ¼ vi. The profile of the scalar
field is set as purely ingoing,

Φðui; vÞ ¼ Ae−ð
v−vc
w Þ2 ; ð7Þ

with the outgoing flux being set to zero,Φ;uðu; viÞ ¼ 0. See
Appendix A for more information about the integration
procedure.
To interpret our results it will be convenient to consider

the following alternative outgoing null coordinates: v
∘
,

an Eddington-Finkelstein type coordinate, defined by
integrating

�
1 −

2M
r

þQ2

r2
−
Λ
3
r2
�
dv
∘ ¼ r;vdv ð8Þ

along the event horizon (EH), and t, the affine parameter of
an outgoing null geodesic, obtained by integrating

�
1 −

2M
r

þQ2

r2
−
Λ
3
r2
�
dt ¼ −r;ur;vdv ð9Þ

along a constant u line. In these expressions M stands for
the Misner-Sharp mass function, which we also closely
monitor during the integration, given by

3It should be noted that, in view of recent developments
[11–16], the situation concerning SCC in the context of asymp-
totically flat (Λ ¼ 0) BHs is far more clear.

LUNA, ZILHÃO, CARDOSO, COSTA, and NATÁRIO PHYS. REV. D 99, 064014 (2019)

064014-2



Mðu; vÞ ¼ r
2

�
1þQ2

r2
−
Λ
3
r2 þ 2e−2σr;ur;v

�
: ð10Þ

The constant ru0 is thus related to the initial BH mass,
M0 ≡Mðui; viÞ. Recall that the blowup of this scalar
signals the breakdown of the field equations [17] (compare
with [12,13]).
To estimate the curvature we compute the

Kretschmann scalar K computed from the field equa-
tions (a direct evaluation of this scalar in terms of the
metric was found to lead to important round-off error-
related problems).
According to the results in Refs. [1,4], concerning the

massless case, we expect the curvature to blow up for all
nontrivial initial data throughout the entire subextremal
parameter range. Although it is a potentially interesting
nonlinear effect, we recall that the blowup ofK, per se, is of
little significance: it implies neither the breakdown of the
field equations [18] nor the destruction of macroscopic
observers [19]. Recall that the results in Refs. [5,6] suggest
that the introduction of scalar mass could lead, for
appropriate choices of BH parameters, to solutions with
bounded curvature. As we will see below, our results
contradict this expectation.

IV. INITIAL CONDITIONS

The physical problem is then fully determined upon
specifying Q, Λ, μ, M0, A, vc, and w. Since our purpose
here is to determine whether the linearized predictions of
Refs. [4,5] hold in the full nonlinear regime, we focus on
M0 ¼ 1;Λ ¼ 0.06 and use the following configurations:
(A) Q¼0.9000, μ¼0, corresponding to Q¼0.890Qmax.

In this case, the results in Ref. [4] (lower left panel of
Fig. 3) predict mass inflation.

(B) Q¼1.0068, μ¼0, corresponding to Q¼0.996Qmax.
Linearized studies provide evidence in favor of a
no-mass-inflation scenario [4].

(C) Q ¼ 1.0068, μ ¼ 1.0. The results of Ref. [4] to-
gether with those of Ref. [5] (see Fig. 2) also
provide evidence in favor of a no-mass-inflation
scenario. Here we are considering the superposi-
tion of both neutral massless scalar perturbations
[4] and charged massive scalar perturbations [5]
as being the most predictive of the full nonlinear
evolution. If we just take into account massive
scalar perturbations, then the results in Ref. [5]
(see Fig. 2) and [6] (p. 22) suggest that curvature
might also be bounded.

To test the dependence of our results on initial data, we
use the following initial profiles for the scalar field:
(1) A ¼ 0.04, w ¼ 0.1, and vc ¼ 3.0;
(2) A ¼ 0.08, w ¼ 0.5, and vc ¼ 3.0.
We have evolved the relevant system of equations using

the DONUTS code. It is based on the formulation presented
in Refs. [20–22], but the integration technique makes it

spectrally accurate in the v-direction and, correspondingly,
runs with trivial memory requirements and orders of
magnitude faster than previously reported codes.

V. RESULTS

It is important to start by noticing that, as widely
expected [1,11], our numerics show that all solutions
contain a nonempty CH in their BH interior. This can be
attested by monitoring the radius function (shown in Fig. 1)
along null lines u ¼ u1, for u1 > uEH, where u ¼ uEH is the
event horizon. In fact, for u1 larger but close to uEH, the
radius converges, in v, to a nonvanishing constant. It is also
interesting to note that, for some initial configurations and
large enough u1, the radius does converge to zero, signaling
(in that region) a singularity beyond which the metric
cannot be extended [23].
As is well known, the behavior of the scalar field along

the event horizon is of great significance for the structure
of the BH interior region. The first noteworthy feature of
our results is that, as expected, the field decays exponen-
tially (in v

∘
). More surprisingly, we also clearly observe an

oscillatory profile; this might seem odd at first, since it is
in contrast with what happens for Λ ¼ 0 and with the
expectation created by the study of sufficiently subextremal
BHs with 0 < M2Λ ≪ 1 [24]. However, it turns out that
such behavior should be expected from the linearized
analysis of Refs. [4,5], where it is shown that, for a
configuration resembling our configuration B, there are
two modes which dominate the response: a nonoscillatory
“near extremal” (NE) mode with characteristic frequency
ωNE ∼ −0.081i and a “photon sphere” (PS) mode with

FIG. 1. Radius function for constant-u slices in a configuration
with M0 ¼ 1.0, Q ¼ 0.9, Λ ¼ 0.06, μ ¼ 0, A ¼ 0.4, vc ¼ 3.0,
and w ¼ 0.25. Dashed-dotted green lines reach infinity, full blue
lines hit the CH and red dashed lines hit the singularity at r ¼ 0.
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ωPS ∼ 0.096 − 0.095i (these numbers are given in the
units and time coordinate of Ref. [4]). Here we find very
good agreement with the PS mode (when translated to our
v
∘
coordinate) which is oscillatory in nature. Similar agree-

ment can be found for the remaining configurations A and
C. We also recall that, according to the results in [4], in
the M2Λ ≪ 1 case, the dominant mode is a nonoscillatory
“de Sitter” mode, in agreement with [24].
Our main results (concerning mass and curvature) are

summarized in Figs. 2–4. Figure 2 shows the evolution of
the mass function and the Kretschmann scalar for configu-
rations A: in these cases, mass inflation occurs, and,
consequently, the curvature invariant K diverges. Note that
an observer crossing one such region will be subjected to
physical deformations which are not necessarily infinite
(see discussion below). Nonetheless, because there is mass
inflation, the singularity is strong enough to deserve the
classification of “terminal boundary”, since it corresponds
to a locus where the field equations cease to make sense.
These conclusions are consistent with the linear results in
[4] and the nonlinear results in [1].
The main novel result of this work concerns Fig. 3: there

exist configurations for which no mass inflation occurs.
For configurations B, in the BH interior, after a small
“accretion” stage, the mass settles to a constant value.
Moreover, as recently predicted [1,4], the CH remains a
curvature singularity, since the curvature scalar K diverges.
However, the lack of mass inflation makes the singularity
so “mild” that, in principle, one should be able to continue
the evolution of the space-time metric across it, by solving
the Einstein field equations.

A somewhat unexpected feature (of configuration B) is
the oscillatory way in which the curvature scalar diverges.
In hindsight, such behavior could be expected from the
previously discussed oscillatory behavior of the scalar field
along the event horizon. Note that in a no-mass-inflation
situation it is the blowup of Φ;v=r;v that dominates the
behavior of K. This should be contrasted with what
happens when mass inflation occurs: then it is the mono-
tone divergence of the mass that controls the Kretschmann;
this last fact provides an explanation for the nonoscillatory
behavior observed for configuration A.
Concerning massive scalars, the results presented in

Fig. 4 identify configurationC as another no-mass-inflation
configuration. Once again we find that the corresponding
CH is a “weak” curvature singularity. In fact, the presence
of the scalar mass seems to have no attenuation effect on the
growth of K, in contrast with what might be expected from
the linear analysis in [5,6].
We finish this section with some further remarks concern-

ing the blowup of curvature. In configuration A, our results
indicate that theKretschmann scalar blows up as t−2 (possibly
modulated by logarithmic terms), where t is the affine
parameter defined in (9) with the Cauchy horizon located
at t ¼ 0. This might suggest that the curvature blows up as
t−1, but, as noted in [19,25], there are curvature components
that may blow up even faster. In fact, the quantities that
determine the blowup of the Kretschmann scalar are the
square of the (Misner-Sharp) mass M and the square of the
gradient ofΦ,which is dominated by ðΦ;v=r;vÞ2.However, all
curvature components are controlled by M and ðΦ;v=r;vÞ2
(the origin of the last term can be traced to the energy-
momentum tensor). From the behavior of the Kretschmann

FIG. 2. Mass function (10) and Kretschmann scalar as func-
tions of v

∘
for configurations A1 (red solid line) and A2 (blue

dashed line). Thin lines are evaluated at u ¼ uEH þ 1 and thick
lines are evaluated at u ¼ uEH þ 2. These results are consistent
with the existence of mass inflation leading to a weak singularity.

FIG. 3. Mass function (10) and Kretschmann scalar as func-
tions of v

∘
for configurations B1 (red solid line) and B2 (blue

dashed line). Thin lines are evaluated at u ¼ uEH þ 1 and thick
lines are evaluated at u ¼ uEH þ 2.
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scalar, we can then conclude that the components of the
curvature blow up at most as t−2; we also expect inverse
logarithmic powers [12,13,19] that are hard to detect numeri-
cally.Althoughdivergent, these curvature components should
yield (with the help of the logarithmic terms) a finite “tidal
deformation” when integrated twice with respect to t, in
agreement with the picture in [19].
From the equation (see Ref. [26])

M;v ¼
1

2

�
1 −

2M
r

þQ2

r2
−
Λ
3
r2
��

Φ;v

r;v

�
2

r;v; ð11Þ

we conclude that no mass inflation is essentially equivalent
to the integrability of ðΦ;v=r;vÞ2, with respect to t.4

Moreover, when both occur we immediately see that the
curvature can only give rise to finite “tidal deformations.”
This reasoning is verified by our results concerning
configuration B, for which the mass is bounded, Φ;v=r;v
grows slower than t−1=2, and the Kretschmann scalar and
the curvature components blow up at most as t−1.

VI. DISCUSSION

The main motivation for this study was to understand
whether nonlinear effects could trigger mass inflation,
even when the linearized analysis suggests otherwise [4].
We found that nonlinear effects are not strong enough to
change the picture: in fact, the nonlinear results are in full
agreement with the linearized predictions. The linearized

analysis of Ref. [4] suggests that no mass inflation should
occur for BH charge above a thresholdQ� ≃ 0.95. Within a
nonlinear evolution, the precise linearized results are diffi-
cult to reproduce (for instance, the final spacetime param-
eters depend on the initial parameters and on the size of the
initial data). However, for small scalar amplitudes, our
results are indeed consistent with the previous threshold.
The (numerical) no-mass-inflation solutions presented

here are the first solutions of this kind arising from the full
nonlinear evolution of exterior data. They contain a Cauchy
horizon in their BH interior region that can be seen as
(“weakly”) singular, due to the divergence of curvature
invariants. However, these divergent tidal forces are not
necessarily strong enough to lead to a divergent tidal
deformation and the consequent unequivocal destruction
of all macroscopic objects [19]. Even more problematic, the
lack of mass inflation indicates that these Cauchy horizons
should maintain enough regularity as to allow the field
equations to determine (classically), in a highly nonunique
way, the evolution of the metric to their future. This
corresponds to a potential severe violation of SCC.
Our results concern spherically symmetric spacetimes.

The picture is unlikely to change even with asymmetric
initial conditions [4]. Thus, from the conceptual point of
view [5], our results show that SCC is not enforced by the
field equations. In the meantime, interesting suggestions to
remedy SCC, in the presence of a positive cosmological
constant, have been put forward: these include enlarging
the allowed set of initial data by weakening their regularity
[27] or restricting the scope of SCC to the uncharged BH
setting [28]. It thus seems plausible that the astrophysical
interpretation of SCC remains valid, once other fields and
realistic BH charges are considered.
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Λ
3
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APPENDIX A: NUMERICAL PROCEDURE

1. Algorithm

Our equations of motion have the form

r;uv þ
r;ur;v
r

þ e2σ

2r

�
1 −

Q2

r2
− ðΛþ μ2Φ2Þr2

�
¼ 0; ðA1Þ

σ;uv −
r;ur;v
r2

−
e2σ

2r2

�
1 − 2

Q2

r2

�
þΦ;uΦ;v ¼ 0; ðA2Þ

Φ;uv þ
1

r
ðΦ;ur;v þΦ;vr;uÞ þ

e2σ

2
μ2Φ ¼ 0; ðA3Þ

and are subjected to the following constraints:

r;uu − 2r;uσ;u þ rðΦ;uÞ2 ¼ 0; ðA4Þ

r;vv − 2r;vσ;v þ rðΦ;vÞ2 ¼ 0: ðA5Þ

These equations must be satisfied by the initial data. Then,
by virtue of the Bianchi identities, they will be satisfied in

the whole computational domain provided that the dynami-
cal equations are accurately satisfied.
To integrate these equations, we start by transforming

them into a system of ordinary differential equations
(ODEs). Our procedure is as follows. Let hðu; vÞ be any
evolved quantity rðu; vÞ; σðu; vÞ; and Φðu; vÞ. Defining
fðvÞ ¼ ∂uhðu; vÞ, all dynamical equations, for fixed u,
have the form

f0ðvÞ þ fðvÞpðvÞ ¼ gðvÞ; ðA6Þ

where 0 denotes the derivative with respect to v. These
equations can be solved by introducing the integrating
factor

λðvÞ ¼ exp

�Z
v

vi

pðv0Þdv0
�
; λ0ðvÞ ¼ pðvÞλðvÞ:

Multiplying Eq. (A6) by λðvÞ, we get

f0ðvÞλðvÞ þ fðvÞλ0ðvÞ ¼ ½fðvÞλðvÞ�0 ¼ gðvÞλðvÞ

⇔ fðvÞ≡∂uhðvÞ ¼
1

λðvÞ
�
fðviÞ þ

Z
v

vi

gðv0Þλðv0Þdv0
�
;

which are ODEs in u for all values of v. Given initial
conditions in the two null segments u ¼ ui, hðui; vÞ∀ v
and v ¼ vi, fðviÞ≡ ∂uhðu; viÞ∀ u, we can integrate
the equations in a rectangular region ui < u < uf and
vi < v < vf.
For our three functions in Eqs. (A1)–(A3), pðvÞ and gðvÞ

are the following:

FIG. 5. Massless scalar field along the event horizon with corresponding “local power” for a configuration withM0 ¼ 1.0, Q ¼ 0.95,
Λ ¼ 0, μ ¼ 0, A ¼ 0.01, vc ¼ 6.0, and w ¼ 0.25. The power-law decay Φ ∼ v−3 matches to a very good precision the one expected
from linearized analysis [32] and reproduces well previous nonlinear results [20].
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prðvÞ ¼
r;v
r
;

grðvÞ ¼ −
e2σ

2r

�
1 −

Q2

r2
− ðΛþ μ2Φ2Þr2

�
;

pΦðvÞ ¼
r;v
r
;

gΦðvÞ ¼ −
r;uΦ;v

r
−
e2σ

2
μ2Φ;

pσðvÞ ¼ 0;

gσðvÞ ¼
r;ur;v
r2

þ e2σ

2r2

�
1 − 2

Q2

r2

�
−Φ;uΦ;v:

We integrate these equations using the Double Null
Through Spectral Methods (DONUTS) code written in
Julia [29]. To integrate the system within DONUTS, all
functions are expanded in a Chebyshev basis in the v
direction (where all v derivatives and integrations can be
readily performed), and the remaining ODEs in the u
direction are integrated using an adaptive step integrator
through the DifferentialEquations.jl Julia package [30].

2. Adaptive gauge

When using the initial gauge, r;u becomes extremely
large around the apparent horizon for large v. Therefore, in
order to explore the near-horizon region at late times, it is
convenient to use an adaptive gauge in u during the
numerical evolution.
Since the change u→ ũðuÞ together with σ→σ−1

2
logðdũduÞ

leaves the equations invariant, we can change the gauge in
u along the integration by choosing appropriately the initial
condition σ;uðu; viÞ at each value of u.
To explore the near-horizon geometry, we can choose an

Eddington-like gauge for u, i.e., a gauge that brings the
event horizon to u → ∞. A good way to do so, as described
in [31], is to set σðu; vfÞ ¼ log ð2r;vðu; vfÞÞ þ C, where C
can be any constant. In the DONUTS code, this is achieved
by picking the initial condition for σ;uðu; viÞ:

σ;uðu; viÞ ¼ −
�
σðu; vfÞ − log ð2r;vðu; vfÞÞ þ

3

2
log 2

�
:

ðA7Þ

The term 3
2
log 2 is chosen so that σ;uðui; viÞ is small when

σðui; vfÞ ≈ − 1
2
log 2. With this condition, σðu; vfÞ is

damped towards the desired value log ð2r;vðu; vfÞÞ −
3
2
log 2 along the evolution in u. Additionally, in order to

satisfy the constraint equation (A4), we must introduce an
additional ODE for the initial condition r;uðu; viÞ at v ¼ vi,

FIG. 6. δN;64ðKÞ at u ¼ 18.2 for configuration B1. 20
domains were employed in the v direction, where each
domain has N points. The plot clearly shows exponential
convergence until N ≈ 40.

FIG. 7. Constraint violations during our evolutions of configurations B.
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r;uuðu; viÞ ¼ 2r;uðu; viÞσ;uðu; viÞ ðA8Þ

with r;uðui; viÞ ¼ ru0 obtained using the expression for the
Misner-Sharp mass in the main text. By solving this ODE
along with all the others, we get the initial conditions at
v ¼ vi at each value of u along the integration.

3. Code tests

As a test of our numerical implementation we have
reproduced the late-time decay of an asymptotically flat
configuration with a massless scalar field. For this, it was
crucial to employ the gauge conditions (A7) and (A8). We
also compute the “local power” of the scalar field decay,
defined as −vΦ;v=Φ. These are shown in Fig. 5 and are
consistent with expected results.
To further test the code, we have analyzed its conver-

gence properties. We thus evaluate the quantity

δn;mðFÞ≡max j1 − Fn=Fmj ðA9Þ

for a given function FN obtained with resolution N at a
fixed u coordinate, and where the maximum is evaluated
for all values of v. Here, the index m refers to a reference
solution obtained using a large number m of grid points
while n denotes test solutions using a coarser resolution,
n < m.
In Fig. 6 we show the convergence properties of the

Kretschmann scalar for configurations B1. The plots show
exponential convergence up to N ≈ 40.
Finally, since we use a free-evolution scheme, we have

checked that the constraint equations (A4) and (A5) remain
satisfied throughout our evolution. We show typical plots
for the corresponding constraint violation in Fig. 7.

APPENDIX B: THE KRETSCHMANN SCALAR

To avoid round-off errors we use the expression for the
Kretschmann scalar in [26] (adapted to include a scalar
field mass), instead of computing it directly in terms of
the metric:

K ≡ RαβγδRαβγδ ¼ 16

r6

��
M −

3Q2

2r
þ Λ

6
r3
�
þ r
2

�
1 −

2M
r

þQ2

r2
−
Λ
3
r2
��

rΦ;u

r;u

��
rΦ;v

r;v

��
2

þ 16

r6

�
M −

Q2

2r
þ Λ

6
r3
�

2

þ 16

r6

�
M −

Q2

r
−
r3

3
ðΛþ μ2Φ2Þ

�
2

þ 4

r4

�
1 −

2M
r

þQ2

r2
−
Λ
3
r2
�

2
�
rΦ;u

r;u

�
2
�
rΦ;v

r;v

�
2

;

where M is the Misner-Sharp mass.

APPENDIX C: THE SCALAR FIELD ALONG THE EH

The scalar field along the event horizon is shown in Fig. 8 (contrast with the asymptotically flat example of Fig. 5).
The late-time behavior is described by ringing exponential falloff of the signal, well described by the lowest quasinormal
modes of the spacetime [4].

FIG. 8. Scalar field derivative ∂Φ=∂v∘ as a function of v∘ for configurations A (left plot), B (middle plot), and C (right plot) with initial
profiles 1 (red solid lines) and 2 (blue dashed lines). ∂Φ=∂v∘ evaluated at u ¼ uEH.

LUNA, ZILHÃO, CARDOSO, COSTA, and NATÁRIO PHYS. REV. D 99, 064014 (2019)

064014-8



[1] J. L. Costa, P. M. Girão, J. Natário, and J. D. Silva,
Commun. Math. Phys. 361, 289 (2018).

[2] J. L. Costa and A. T. Franzen, Ann. Inst. Henri Poincaré 18,
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