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Abstract We evaluate the theoretical uncertainties in next-
to-leading order plus parton shower predictions for top quark
pair production and decay in hadronic collisions. Our work is
carried out using the HERWIG 7 event generator and presents
an in-depth study of variations in matching schemes with
two systematically different shower algorithms, the tradi-
tional angular-ordered and alternative dipole shower. We also
present all of the required extensions of the HERWIG dipole
shower algorithm to properly take into account quark mass
effects, as well as its ability to perform top quark decays. The
predictions are compared at parton level as well as to Large
Hadron Collider data, including in the boosted regime. We
find that the regions where predictions with a non-top-quark-
specific tune differ drastically from data are plagued by large
uncertainties which are consistent between our two shower
and matching algorithms.

1 Introduction

Top quark pair production is an extremely important process
at the Large Hadron Collider (LHC) due to its significant
cross section. As the top quark decays before it can hadronize,
top quark pair production provides us with a unique oppor-
tunity to study Quantum Chromodynamics (QCD) radiation
and corrections involving massive particles. This includes
measurements of the top quark mass, which is important
to constrain the higher-order corrections in the electroweak
sector of the Standard Model. Top quark pair production
at hadron colliders has become a ‘standard candle’ due to
the accurate calculation [1] and measurement of the total
cross section. However, the large production rate also allows
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the measurement of an ever increasing range of kinematic
quantities. This means that different kinematic reconstruc-
tion strategies for the top quark, and its mass in particular,
including in the boosted regime, can be evaluated. It also
means that we can study QCD in detail by comparing with
less inclusive calculations and Monte Carlo event genera-
tors. The large production rate also means that top quark pair
production, particularly with the presence of extra jets from
QCD radiation, is often the main background to searches for
physics Beyond the Standard Model. A number of measure-
ments are available both extracting the top quark mass [2,3],
as well as a number of kinematic properties, e.g. [4].

Monte Carlo event generators [5—7] used for predictions
of top quark pair production have seen several improvements,
which mainly concentrated on combining next-to-leading
order QCD corrections with subsequent parton shower algo-
rithms [8—11], and the production of additional jets using
multi-jet merging algorithms, e.g. unitarized schemes [12—
15] as employed inside HERWIG 7, or approaches which share
a similar spirit [16]. Some of the matching algorithms have
addressed off-shell effects in the calculation of the hard pro-
cess [17], though none of the event generators yet features
shower algorithms which properly take into account the effect
of the finite width of the top quark and its interplay with the
parton shower infrared cutoff.

As compared to indirect approaches based on total cross
section measurements, these state-of-the-art simulations pro-
vide a very sophisticated description of kinematic proper-
ties and thus allow to extract the top quark mass from kine-
matic properties with an unprecedented precision through
template fits. These fits determine the top quark mass param-
eter used by the event generator simulation. The question in
what scheme this mass parameter needs to be interpreted,
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and what uncertainties need to be taken into account, is still
subject to ongoing research [18-20], and for coherent par-
ton shower evolution in eTe™ collisions first analytic and
numeric insights have been gained on the role of the mass
parameter, including measurements of the top quark mass
from reconstruction of its decay products [21]. In Ref. [22]
the authors consider predictions of observables that are sen-
sitive to the top quark mass, including an evaluation of uncer-
tainties due to scale variations similar to those considered in
this paper. Some aspects of the hadronization effects in such
observables have also recently been evaluated [23], how-
ever a comprehensive analysis of variations in parton shower
evolution, and the impact of different paradigms to include
higher order corrections has not yet been performed.

The present work is centred around a thorough investiga-
tion of how reliable predictions by established paradigms,
namely scale variations in matched predictions, are across
phase space. This question has not yet been answered by
an in-depth comparison of similar, yet algorithmically very
different, predictions and their associated variations which
can be established to constitute a set of uncertainties when
meeting well-defined constraints [24]. We do this particu-
larly in the light of event generator predictions which are
highly specialized in their parameter choices and thus might
generate a wrong impression of how well theoretical under-
standing is under control, and the associated question of what
improvements, specifically concerning multi-jet merging, are
required.

We also use this study to introduce some improvements to
both radiation from heavy quarks and the handling of their
decays in the HERWIG dipole shower module. These changes
enable us to perform this study between different matching
and shower algorithms in a consistent way, using the same
hadronization and underlying event models and with con-
trol over shower starting scales and resummation in the hard
emission region.

2 Outline of this work

In this study we use the most recent version, 7.1.4, of
the HERWIG event generator to make use of the various
improvements to the simulation of heavy quarks in produc-
tion, shower emissions and decays. The modelling of this
physics will be discussed in detail in the following sections.
In the version considered HERWIG sets up the next-to-leading
order (NLO) QCD corrections to the top quark pair pro-
duction process using the automated facilities outlined in
Ref. [10], using external libraries [25,26] to evaluate the
required amplitudes on a phase-space point by phase-space
point basis. The production of top quark pairs has been vali-
dated against MCFM [27-30]. NLO corrections to the decays
are included within a NLO matched parton shower simula-
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tion, while we neglect non-factorizable corrections which are
beyond the leading contribution in the narrow-width approx-
imation.

Matching the production process to the parton shower
is possible within both the subtractive (MC@NLO-type
[8]) and the multiplicative (Powheg-type [31]) matching
paradigms, using the matching subtractions obtained by
the MATCHBOX module along with the QCD corrections
required. The matching of the decay to the parton shower
is available within the multiplicative paradigm in both the
QTilde1 (angular-ordered) [32] and Dipole (Catani—Seymour
[33,34] dipole-type) [35] shower modules.

The details of the simulation inputs including the scale
choices, parton distribution functions (PDFs), strong cou-
pling running and analyses used to obtain results are included
in the subsequent sections. The default electroweak param-
eters of HERWIG 7.1 are used in all runs and for the decay
corrections the top mass is used as the renormalization scale.

The remainder of this work is organized as follows. In
Sect. 3 we consider QCD radiation from the top quark pair
production process. In Sect. 4 the parton shower simulation
of the decay stage is discussed in detail. We then proceed
with an in-depth discussion of the NLO matching in Sect. 5.
In Sect. 6 we discuss the parton shower hard scale. We use
the framework to assess phenomenologically relevant uncer-
tainties in the matched NLO+PS predictions, and present
benchmarks and data comparisons together with a detailed
analysis of our findings in Sect. 7. Finally we summarize and
give an outlook in Sect. 8.

3 Radiation in production of heavy quarks
3.1 Generalities

For both parton shower algorithms used in the HERWIG event
generator, a colour flow is assigned to the hard process on
the basis of the tree-level colour sub-amplitudes sq. This is
a consequence of evaluating the colour correlations relevant
to the soft radiation pattern in the limit of a large number of
colour charges, N. — oo. The chosen colour flow is used
to set the initial conditions in both parton shower modules,
in particular identifying which ‘dipole’-type systems radiate
coherently. Radiation in both parton showers is also subject
to a veto on hard emissions, as set by the hard shower scale,
to be discussed in more detail in Sect. 7.

Since a comprehensive treatment of non-factorizable
QCD effects which connect the production process and the
decay beyond the narrow-width-approximation is not avail-

1 An old-style matrix element correction is used by default in the
angular-ordered shower, which is formally equivalent to the Powheg
method.
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able both parton shower algorithms evolve the production
process down to the infrared cutoff which, in the current
version, is a cutoff on the relative transverse momentum of
the emissions. Once the cutoff has been reached by the evo-
lution of the hard process, the decay of the top quark(s) is
performed, and further showering of the decay system is sim-
ulated as discussed in Sect. 4.

3.2 Angular-ordered shower

The improved angular-ordered shower used by default in
HERWIG is described in detail in Refs. [6,32]. Here we
will only summarize the important details relevant for heavy
quark production together with recent improvements not
described in Refs. [6,32]. The momenta of the partons pro-
duced in the parton shower are decomposed in terms of the
4-momentum of the parton initiating the jet, p (p> = m?, the
on-shell parton mass-squared), a light-like reference vector,
n, in the direction of the colour partner of the parton initiat-
ing the jet and the momentum transverse to the direction of
p and n. The four momentum of any parton produced in the
evolution of the jet can be decomposed as

gi =oip+ Bin+qui, (D

where «; and B; are coefficients and g ; is the transverse
four momentum of the parton (¢1; - p = q1; -n = 0). If we
consider the branching of a final-state parton i to two partons
jand k,i.e.i — jk, the evolution variable is

2 2
~ q; —m;
G = ——-~, )

zi(l —zi)

where ‘11‘2 is the square of the virtual mass developed by the
parton i in the branching, m; is the physical mass of parton
i, and z; is the momentum fraction of the parton j defined
such that
aj =z, o = (1—z)a. (3)
The transverse momenta of the partons produced in the
branching are
q1j =7ziqLi +kii, quk = —z)qui — ki, 4
where k; is the transverse momentum generated in the
branching. In this case the virtuality of the parton i is

2
gt = LT
oz(1=2)

) )

2
il
Z

where pr; is the magnitude of the transverse momentum
produced in the branching defined such that kii =— p%i.

In this case the probability for a single branching to occur
is

_ 947 as dos

dP— dP*) -7~5 6
qlz 27 o Zi I jk(z q) (6)

where P;_, jx(z, §) is the quasi-collinear splitting function
and ¢; is the azimuthal angle of the transverse momentum
k1 ; generated in the splitting.

As described in Ref. [32] this choice of evolution vari-
able, including the mass of the radiating parton, together with
the use of the quasi-collinear splitting functions gives a bet-
ter treatment of radiation from the parton in the small-angle
region. In this region we expect a suppression of soft radiation
for angles 6 < m/E, where 6 is the angle of emission, m and
E the mass and energy of the radiating parton, respectively.
The choices used in HERWIG 7 give the expected smooth
turn-off of soft radiation rather than the ‘dead-cone’* [36]
used in HERWIG 6 [37].

The angular-ordered shower is simulated as a series of
individual emissions, and only the shower variables (g, z, ¢)
are calculated for each emission. Once the evolution has ter-
minated, i.e. there is no phase space available for further
emissions, the external particles are taken to be on-shell and
the physical momenta reconstructed.

Ifweseta; = 1 for final-state progenitors’ and ;; = x, the
light-cone momentum fraction, for initial-state progenitors
then using Eq. (3) and the momentum conservation relation
a; = aj + ay, all the o values can be iteratively calculated,
starting from the hard process and working outward to the
external legs. For final-state radiation the transverse momenta
can be calculated in the same way using Eq. (4), whereas for
initial-state radiation the transverse momentum is calculated
iteratively assuming that the parton extracted from the proton
as a result of the backward evolution has zero transverse
momentum.* The B variables for the external partons can
then be calculated using the on-shell condition and those for
radiating partons using momentum conservation, i.e. f; =
Bj + Br. The latter step may be iterated until the progenitor
is reached giving all the 8 coefficients.

As a result of the shower evolution all the progenitor par-
tons, /, produced in the hard process gain a virtual mass, i.e.
the progenitor partons, which initiated the jets, are no longer
on mass shell, q% 7+~ m% We need to restore momentum con-
servation in a way that disturbs the internal structure of the
jet as little as possible. The easiest way to achieve this is
by boosting each jet along its axis so that their momenta are
rescaled, i.e. for every jet a Lorentz boost is applied such that

2 j.e. radiation was forbidden for 6 < m/E.

3 The partons from the hard process which initiate the parton shower.

4 Or a non-perturbative ‘infrinsic’ transverse momentum.

@ Springer
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b
q1 = (qz; Va? +q,2> g = (kzpl; NI +fﬁ)v
@)

where kj is the rescaling factor. The rescaling factors, and
the choice of frame in which to apply the boosts, are deter-
mined by the choice of which kinematic variables we wish
to preserve in the rescaling process. In Ref. [32] an approach
was suggested based on the colour connections between the
partons initiating the jets:

e for colour-connected final-state partons the reconstruc-
tion was performed in the centre-of-mass frame of the
partons and the momenta rescaled such that the centre-
of-mass energy was conserved, i.e.

n
Y kP + 43 =5, ®)

I1=1

where /s is the centre-of-mass energy and the same
rescaling factor & is used for all the jets;

e for colour-connected initial-state partons the reconstruc-
tion is performed in the hadronic centre-of-mass frame
and the partonic centre-of-mass energy is preserved. In
order to fully specify the kinematics an additional con-
straint is required which in Ref. [32] was chosen such
that the rapidity of the partonic collision was preserved,;

e for partons with a colour connection between the initial
and final state, such as Deep Inelastic scattering (DIS), the
system is reconstructed in the Breit frame of the partons
such that the virtuality of the system is preserved.

As the majority of hadronic collisions cannot be decom-
posed into separate colour-singlet systems in early versions
of HERWIG++ hadronic collisions were all reconstructed by
first using the procedure for colour-connected initial-state
partons and then that for final-state partons. This was changed
such that if possible the hard process was decomposed into
separate colour-singlet systems,> for example in gg — 17,
then the separate colour-singlet systems were reconstructed
as described above.

In HERWIG 7 we have adopted an approach which attempts
to use as much information as possible on the colour struc-
ture of the hard process when performing the reconstruction.
In order to achieve this we now consider all the partons in
the hard process and commence the reconstruction with the
parton which had the hardest, i.e. largest pr, emission in
the parton shower. The system formed by this parton and
its colour partner is then reconstructed, with either a full
reconstruction of the jet produced by the colour partner, the
default, or optionally just using the partner to absorb the

3 In the large number of colours, N¢ limit.
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recoil leaving it on its partonic mass shell and not performing
the reconstruction of the full jet. This procedure is repeated
for the parton with the hardest shower emission which has
not been reconstructed until all the kinematics of all the jets
have been reconstructed. Together with an additional option
of preserving the momentum fraction of the softer incom-
ing parton in the hard process, for systems with colour con-
nections between initial-state partons, this means that for a
single emission the kinematics reduce to those of the Catani—
Seymour [33,34] dipoles making matching in the MC@NLO
approach simpler.

3.3 Dipole shower

The dipole shower algorithm evolves singlet systems of
colour connected dipoles, referred to chains [10], based on
the colour flow information assigned to the hard process.
For the massless case the details of the dipole shower algo-
rithm in HERWIG have been discussed in Refs. [10,35]. In
this paper we focus on the generalization of the algorithm
to radiation from heavy quarks, and radiation in the decays
of coloured objects, to be covered in detail in Sect. 4. While
the heavy quark treatment in Ref. [38] has previously been
based on Ref. [39], an improved description is presented
here which is in one-to-one correspondence to the massless
case, and in particular adopts the transverse momentum rele-
vant in the quasi-collinear limit [34], with a smooth massless
limit. Throughout this work we use the terminology ‘massive
dipole’ to refer to a dipole that includes at least one massive
parton and/or splits to produce at least one massive parton.

Splittings involving massive incoming partons are not
currently implemented in the HERWIG dipole shower. This
means that there are three possible dipole configurations
involving massive partons. These are shown diagrammati-
cally in Fig. 1. Massive final-final (FF) dipoles, with final-
state emitter and spectator, Fig. 1c, must include at least one
massive outgoing parton before or after the splitting. Mas-
sive final-initial (FI) dipoles, Fig. 1a, consist of a massless
incoming spectator and an outgoing emitter. At least one of
the outgoing partons before or after the splitting must be mas-
sive. Massive initial-final (IF) dipoles, Fig. 1b, consist of a
massless incoming emitter and massive final-state spectator.

Due to its large mass, parton shower emissions from top
quarks are highly suppressed. This means that emissions
from massive FI dipoles do not make a significant contri-
bution in the parton shower. Similarly emissions from FF
dipoles with a top quark emitter are highly suppressed, how-
ever emissions from FF dipoles with a massless emitter and
top quark spectator are not suppressed in this way. Therefore
both massive FF and IF dipole splittings make a significant
contribution in the parton shower.

A detailed understanding of these radiation processes with
full mass effects is therefore mandatory, and the main goal of
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(a) Final-initial dipole.

(b) Initial-final dipole.

(¢) Final-final dipole.

Fig. 1 Diagrams of the massive dipoles

this work is to formulate the relevant kinematic parametriza-
tion and evolution quantities in a similar way to the mass-
less case, with emphasis on a covariant formulation and an
evolution variable which reflects the transverse momentum
relevant to the enhancements present for collinear radiation.
We present the kinematics used for splittings of all massive
dipoles in the following sections. The kernels used to describe
the splittings are those given in Ref. [34].

For each dipole the kernels and kinematics used to
describe a splitting are parametrized by two splitting vari-
ables and an azimuthal angle. In HERWIG 7.1 we use spin-

averaged dipole splitting kernels, therefore we randomly gen-
erate the azimuthal angle for each splitting according to a uni-
form distribution. The splitting variables used to parametrize
the splitting for each dipole are those used in Ref. [34] and
are given for each dipole in the following sections.

In the dipole shower in HERWIG we actually generate the
transverse momentum, p, and the light-cone momentum
fraction, z, as used in the standard quasi-collinear Sudakov
parametrization of the momenta following a splitting. This
is the parametrization used in the angular-ordered shower
[32], see Sect.3.2. We choose a light-like vector n to define
the collinear direction and for a splitting from a final-state
emitter with momentum p;; we write the momentum, ¢, of
the emitted parton as

2 2.2 2
mj_(l_Z) mij-l-PJ_

qj =0 —2)pij + n—ky, 9

2[5,‘1' -I’l(l - Z)

where m is the mass of the emitted parton and m;; is the mass
of the emitter. The space-like vector k satisfies k - p;; =
ki-n=0andk} = —p? .

Similarly for a splitting from a massless incoming parton
we write the momentum of the emitted parton as

rl

——n—k, 10
2o n(1—2) (10)

qj =1 —-2)qq +

where g, is the momentum of the parton incoming from the
proton following the splitting and k| - g, = k1 -n = 0.

In view of these parametrizations, which are the ones rel-
evant in the (quasi-)collinear limit, we choose to set up kine-
matic mappings for a dipole splitting including momentum
conservation in a way that we express the resulting kinemat-
ics in terms of these physical variables, p, and z, rather than
the ones which most conveniently allow the separation and
integration over the phase space. This has been done in the
massless case, and the mappings below generalize this to the
massive case with a smooth massless limit.

3.3.1 Final—final dipoles

We consider the splitting process p;;, px — qi, q;, gk Where
all momenta before and after the splitting are on-shell, ﬁizj =

2 0= 2 2 2 2 ;
mi, pi = qi = myp, q; ; = m; ; and satisfy momentum

conservation for the dipole considered, i.e. O = p;; + px =
qi +qj + qr with s = Q2. Splittings from FF dipoles are
conveniently parametrized by the splitting variables z; and
¥ij,x Which are defined in terms of the physical momenta as

Gk
(@it ag)

qi * qj
gi-q; +4i-qk + 4 - ak

(11a)

Zi

Yijk = (11b)

@ Springer
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A fully consistent mapping from p;;, px — g; j x Written in
terms of z; and y;; is presented in Appendix A.1, how-
ever we do not consider it further here. This is because,
while this mapping and the corresponding mapping from
gi,jk —> Dij» Pr defined in Ref. [34] are formulated for
arbitrary particle masses, the identification of the physical
degrees of freedom relevant in the quasi-collinear limit [40]
is not directly obvious.

For a massless spectator the relevant direction can be
directly identified, however for a massive spectator we first
need to map both of the massive dipole momenta prior to
emission into light-like momenta 7;; and ny, which in gen-
eral have n;; + ny # Q. We therefore define
(nij +ni)* = 2nij - i = sijk - (12)
We can write these light-like vectors in terms of the emitter
and spectator momenta as

2 2
T s i s
hij=—5—" 55 |\Pij— rPk ,
Sije — MMy ij.k

2
Sijk - mi -
ng=——"—-—5—\pk——nij |
2 — m2ml Siin
ijk p ij,

ij

(13a)

(13b)

which gives

Sijk = 2nij - ni

1
:—(s—mizj—m%—f-\/(s—m.z.—m,%)2—4mi2.m£).

2 ij J
(14)

The scaled emitter and spectator momenta can be parametrized
as

2
ms;
qij = Xijnij + g,
XijSij.k
m
qk = xkni + nij . (15)
XkSij.k

The emitter and spectator momenta relevant in the quasi-
collinear limit for the definition of z and p, are expressed
as

2 2.2 2
m; —z ml.j—kL

XijSij Kz

2 2.2 2
mj—(l—z) ms;; — ki

qi = zqij +

q;j = —12)qij + ng —ki. (16)

xijsij k(1 —2)

Notice that the limit my — 0 smoothly reproduces the
parametrization where one works with a light-like collinear
direction along the spectator. Comparison to Eq. (9) allows us
to identify the physical branching variables p and z, which
relate to the propagator involved in the splitting as

@ Springer

pl+ami+ (1 —m —z(1— z)m%j>

1
z(1 —2) (

=@ +ap* = m]. (17)

The remaining details of this formulation, including
expressions for the scaling variables x;; and x; and expres-
sions for z; and y;; x in terms of the variables p and z, are
provided in Appendix A.2. A formulation similar to that pre-
sented here is described in Ref. [41], however it differs in the
definition of the momenta of the splitting products and the
variables used.

The probability for a single branching to occur from a
final-final dipole is

1
dPpranching = ) (Vijk (zis yijx))dgj , (18)
ij

(qi +qj)*> —m;

where (V;; « (z,-, Vi j,k)> is the spin-averaged dipole splitting
kernel used to describe the branching of a final-state emitter
into partons i and j with final-state spectator, k. The single-
particle emission phase space, discussed in more detail in
Appendix A.2, is denoted by dg;.

Finally, we show that this formulation of the splitting
momenta is consistent with the definitions of the kernels
and requirements in Ref. [34]. Following the splitting there
are three momenta that must be determined, (g;, g}, gi),
with no considerations this system contains twelve degrees-
of-freedom. Given that we know the identity and therefore
the mass of each parton, we can immediately remove three
degrees-of-freedom. We are now left with nine degrees-
of-freedom, namely the energy, E,, polar angle, 6,, and
azimuthal angle, ¢,,, for each parton n, i.e.

qi :{Ei, 6, ¢i},
qj {Ej. 0. ;},
gk : {Ek, Ok, ¢i}.

We choose to work in the rest frame of the dipole with p;;
along the positive z-axis. Implicitly py mustlie along the neg-
ative z-axis and the mapping from g; j x — pij, px defined
in Ref. [34] requires that, in this frame, the spectator only
absorbs longitudinal momentum in the splitting. Therefore
Or = ¢r = 0 which eliminates two degrees-of-freedom. Fur-
thermore we require that the momentum Q is conserved in
the splitting which eliminates a further four degrees of free-
dom. Finally we generate the azimuthal angle of the splitting
¢ = ¢i = —¢;, where the second equality follows from
momentum conservation, according to a uniform distribu-
tion. We are now left with two degrees-of-freedom.

It is important to note that the above constraints on the
degrees-of-freedom follow from the requirement of momen-
tum conservation in the splitting and the requirements in Ref.
[34]. We have also chosen to simplify the picture by working

(19)
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in a convenient frame which additionally defines the meaning
of the azimuthal angle ¢. Therefore, given ¢, the momenta
following the splitting must be fully constrained by two inde-
pendent variables. Hence for a given z; and y;; x the momenta
are fully constrained. Therefore regardless of the variables we
generate and the explicit covariant expressions that we use,
so long as z; and y;; x can be uniquely expressed in terms of
the generated variables, the splitting momenta are uniquely
defined. Importantly, we can use the splitting kernels and
phase-space limits given in Ref. [34] with our covariant for-
mulation of the splitting kinematics.

3.3.2 Final-initial dipoles

As the spectator in a FI dipole is necessarily massless, one
can use the standard quasi-collinear parametrization of the
kinematics to describe splittings from massive FI dipoles. In
order to be consistent with the formulation used to describe
splittings from IF dipoles, Sect. 3.3.3, we instead choose
to provide a parametrization in terms of the dipole splitting
variables. The four-momenta of the spectator and emitter
prior to the splitting are p, and p;;, respectively. The four-
momenta of the spectator, emitter and emission following
the splitting are g, g; and g, respectively. The mass of the
emitter prior to the splitting and the masses of the emitter
and emitted partons following the splitting are m;;, m; and
m j, respectively.

Splittings from FI dipoles are parametrized by the split-
ting variables z; and x;; , which are defined in terms of the
physical momenta as

qi - qb
= ——, (20)
g+ a)

(Qi+CIj)'qb_CIi'Qj+%(mi2j_mi2_m§)
(@i +4qj) - q» '

Xij,b =
(2D

As the spectator is incoming and therefore massless, z; is
identical to the generated variable z. We define the conserved
momentum transfer

OQ=pij—Pb=9qi +9; —qb, (22)
and for convenience the invariant

Sij.b = 2Pij - Db - (23)

The momenta prior to the splitting are written in terms of
the momenta following the splitting as

Pb = Xijbqb » (24)
pij=aqi +q; — (1 = Xijp)qp - (25)

These expressions are satisfied by writing the momenta fol-
lowing the splitting as

. I —xijp
qgi =zipij+ki+|(0—-2z)| ——
Xijb
1
+— (m —m?+ (1 = 2z)m?, } (26a)
Sij.b
s — Xij.b
CIj:(l_Zi)Pij_kL‘i‘[Zi( ik )
Xij,b
1
+—( m? +m% — (1 = 2z)m? )] (26b)
Sij.b
|
qp = ——Db - (26¢)
xij,b

We obtain an expression for the splitting variable x;;, in
terms of the generated variables p; and z by comparison
with Eq. (9), giving

Xijb = |:1 +

The probability for a single branching to occur from a FI
dipole is given by

pl 4+ (L= 2mf +zm% —z(1 = 2m}; |~
sijpz(1 —z2)
(27

AProrancting = 1 L fo(xs/xijp)
ranching (gi + qj)z _ m12] Xijb fp(xs)
(V7 (2. xij.0))dg;j (28)
where (Vil;. (zi, xij,b)) is the spin-averaged dipole splitting

kernel used to describe the branching of a final-state emitter
into the partons i and j with an initial-state spectator, b. The
parton density function of the incoming spectator is fj(x)
and x; is the proton momentum fraction carried by the spec-
tator prior to the splitting, and dg ; denotes the single-particle
emission phase space. A detailed description of the emission
phase space is given in Appendix A.3.

3.3.3 Initial-final dipoles

The momenta of the incoming emitter and outgoing spec-
tator prior to the splitting are p,; and py, respectively. The
new emitter following the splitting is defined to be the par-
ton incoming from the proton while the emitted particle is
the emitted final-state parton. The momenta of the emitter,
emitted particle and spectator following the splitting are g,
qj and gy, respectively. The mass of the spectator is .

Splittings from IF dipoles are parametrized by the split-
ting variables x j; , and u; which are defined in terms of the
physical momenta as

9a - 4qj +49a -9k — 4 - Gk
(gj + qr) - qa

; (29)

Xjka =
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We define the conserved momentum transfer

Q= Pk = Paj =9qj +qk — qa (€2
and the invariant

Sajk = 2Paj * Pk - (32)

The momenta prior to the splitting are written in terms of
the momenta following the splitting as

(33a)
(33b)

p~aj = Xjk,a4a >
Pk =9q; tqx — (1 — Xjka)qa -
These expressions are satisfied by writing the momenta fol-
lowing the splitting as
1

qa = ﬁaj s (34a)
Xjk,a
1= xi, 2]
qj = <#) (I —uj)—uj k] Paj
i Xjk.a Saj,k
+ujpr—ki, (34b)
i 1 — xji, 2m? B
gk = <#)u,‘+u,~ ki|Paj
L Xjk,a Saj.k
+ (0 —uj)pr+ki. (34c)

We need to write the splitting variables in terms of the vari-
ables generated in the parton shower, p; and z. We set
n = pr— (m%/saj’k)ﬁaj in Eq. (10) and equate this to
Eq. (34b) giving

Saj,k

Xjka = (I—z+4r)

2
2r (Sqjk — my)

2
% 1_\/1_4r(saj,k_mk) z(1 —2)

Saj .k (1—z+7r)?
r
I,tj :xjk,a I_—Z s

where we have defined r = pi /Saj k- These expressions
again relate the backward-evolution, dipole picture recoil to
the quantities involved in the physical forward branching pro-
cess, Eq. 10.

The probability for a single branching to occur from an IF
dipole is

(35a)
(35b)

1 1 fa(xe/xjk,a)
qu “qa Xjk,a faj(xe)
x (Vi (uj, xjka))dgj, (36)

dpbranching =
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where (V' J (. Xjk.q)) is the spin-averaged dipole splitting
kernel used to describe the branching of an initial-state emit-
ter aNj into an initial-state parton a and a final-state parton j
with a final-state spectator k. The parton density function of
the incoming partons a~j and a are fa j (x) and f,(x), respec-
tively. The proton-momentum fraction carried by the parton
c;;' is x, and dg; denotes the single-particle emission phase
space. A detailed description of the emission phase space is
given in Appendix A.4.

4 Radiation in the decays of heavy quarks

In both HERWIG parton showers the production and decay
processes are showered independently, following a factorized
approach. In the case of top quark pair production, the hard
process, e.g. pp — 11, is first evolved down to the IR cutoff
HUIR ~ 1GeV,0 as described in Sect. 3. This involves radiation
from both the initial- and final-state partons, including the
top quarks. When simulating predictions with unstable top
quarks, these then undergo a perturbative decay, and further
shower evolution from the decaying system, and possible fur-
ther decay products, e.g. those originating form a hadronic W
decay. The hard scale relevant for emissions from the decay-
ing top quark is the mass of the top quark, and the evolution
will preserve its four-momentum including the virtuality.

Matchbox is currently limited to generating hard processes
with on-shell outgoing particles, because in the factorized
approach a smearing of the mass with some input distribution
consistently is only possible at leading order (LO), and poses
major challenges at next-to-leading order unless one resorts
to a complete off-shell calculation, which can in principle be
handled by the framework. While the angular-ordered shower
can handle off-shell coloured particles, the dipole shower can
currently only deal with on-shell coloured particles, such that
we do not consider a reconstructed resonance hierarchy from
afull calculation as an input to the showers. This also implies
that in the hard process the top width is set to zero, as we could
otherwise not treat it as an on-shell particle at the level of the
hard process. In this paper we therefore use a strict narrow-
width-approximation, i.e. no mass smearing is applied and
the top quark decay width is not included as a scale in the
showering.

In HERWIG by default top quarks, ¢, are decayed according
to the 3-body matrix element to a bottom quark, b, and two
fermions, f and f ’_via an intermediate W-boson in order that
off-shell effects are included for the W-boson. The decay
system is then showered as described in Sect. 4.1 for the

6 A complete physical description, beyond the narrow-width-

approximation, would include a separate treatment of radiation above
and below the top quark decay width. Such a treatment of particle decays
in parton showers is an area for future development in HERWIG.
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angular-ordered shower and Sect. 4.2 for the dipole shower,
which presents a new development which we cover in detail.

In both cases we first shower the top-bottom-W-boson,
tbW, system followed by the W-boson-fermion-antifermion,
Wff, system. In the shower the tbW and Wf f! systems
are considered to be colour isolated from each other and
the rest of the process. In this sense each decay system is
showered independently from the rest of the process. This
pattern of evolving ‘down’ decay trees, i.e. from the hard
process towards the final-state particles, is true for all decays
in HERWIG 7.

In both parton showers we have the option of perform-
ing the first emission from the decay system according to
the real-emission matrix element using the builtin Powheg
decay correction [42] for all SM decay processes, including
both the top quark and W-boson decay. In practice this is
sufficient as the NLO virtual corrections only effect the cal-
culation of the width and not the physical distributions. This
is switched on by default in the dipole shower whereas the
angular-ordered shower uses a matrix-element correction by
default. The dipole shower does not currently include QED
radiation. In the case of SM decays involving no coloured
particles, for example a leptonic W-boson decay, QED radi-
ation can be generated using the SOPHTY implementation in
HERWIG [43] which is switched on by default when the dipole
shower is used. The angular-ordered shower does include
QED radiation and the SOPHTY implementation is not used
in this case.

4.1 Angular ordered shower

The improved angular-ordered shower used in HERWIG pro-
ceeds in much the same way for decays as for hard pro-
cesses. The main difference is the handling of radiation with
a coloured decaying particle connected to one of the decay
products, e.g. 1 — bW . In order to cover the full soft phase-
space region we must have radiation from both the decaying
particle and the decay product [32].” This can be seen in
Fig.2 where in order to cover the full phase-space region
for soft emission, i.e. x, — 0, we need radiation in both
the upper region, from b — bg branchings, and the lower
region from ¢+ — tg branchings. As can be seen in Fig. 2 the
shower approximation overestimates the leading-order real
emission matrix element over all the filled phase space and
the two results agree in the soft x, — 0 and collinear limit
where xy tens to its maximum value. The angular-ordered
shower has a ‘dead-zone’ where there is no emission from
the parton shower, and a region at large x, which could in
principle be filled by the parton shower. In this region the

7 The original angular-ordered shower in HERWIG 6 [44] did not have
radiation from the decaying particle and therefore did not cover the full
soft phase-space region.
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Fig. 2 Dalitz plot for t — bW g where the gluon is emitted by the
angular-ordered parton shower. The energy fractions of the gluon and
W boson are xg = 2Eg/mop and xw = 2Ew /myop, espectively. In
the regions of allowed emission in the angular-ordered parton shower
the plot shows the ratio of the leading-order matrix element result over
the parton-shower approximation. The red region, the ‘dead-zone’, is
not filled by the parton shower while the empty region for large x, could
be filled by the parton shower, in practice the the shower provides a poor
approximation in this region and it and the ‘dead-zone’ are filled using
a hard matrix-element correction

parton shower significantly underestimates the real emission
matrix element and therefore as this region contains to soft
or collinear enhancements we choose not to generate par-
ton shower emissions in it. As described in detail in Refs.
[6,32] the recoil from any shower emissions in this case is
absorbed such that any recoil perpendicular to the direction
of the W boson in the top rest frame is absorbed by the bot-
tom quark, while the remaining component parallel to the W
boson direction is absorbed by the W boson.

As with HERWIG 6 [44] in HERWIG 7 we apply both a hard
matrix-element correction, to fill the ‘dead-zone’ and unfilled
shower region as well as a soft matrix element to correct the
hardest-so-far emission in the parton shower regions, this
is described in more detail in Ref. [45]. This is the default
option, however there is also an option to apply a Powheg
correction to the decay [42] including the truncated shower.

4.2 Dipole shower

In a top quark decay a dipole is formed by the decaying
top quark and the outgoing bottom quark. During shower-
ing the incoming top quark can also form dipoles with other
partons outgoing from the decay. In the current implementa-
tion of the dipole shower in HERWIG we include emissions
from final-initial decay (FI-decay) dipoles only and do not
include initial-final decay (IF-decay) dipoles. In other words
we explicitly consider emissions from outgoing emitter par-
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tons only and do not explicitly include emissions from the
incoming top quark. This choice is justified in Sect. 4.2.3.

The dipole splitting kernels for radiation from FI-decay
dipoles including only massless final-state particles are given
in Refs. [46,47]. In Ref. [48] the dipole splitting kernel for
photon radiation from a massive outgoing quark in a FI-decay
dipole is presented. The extension to QCD radiation is used
to produce the numerical results presented in that paper, how-
ever they do not give the explicit form of the splitting kernels
used. In all of these works, the authors also decide to include
emissions from FI-decay dipoles only.

In this section we describe in detail the treatment of
coloured particle decays in the HERWIG 7 dipole shower.
The simulation of top quark decays is the primary motiva-
tion behind the new developments outlined in this section,
therefore we follow the example of top quark decays through-
out. These developments have been implemented such that
they are applicable to general decays, including BSM pro-
cesses. In particular the new technical developments in the
implementation of the dipole shower, Sect. 4.2.1, and the
kinematics for splittings from decay dipoles, Sect. 4.2.2, are
independent of the identity of the particles involved.

4.2.1 Implementation

In each decay system the colour chains and dipoles are con-
structed and updated following each splitting using exactly
the same procedure as for the showering of hard production
processes [10]. The shower starting scale for each decay sys-
tem is chosen to be the mass of the incoming decayed particle.

In the case of a top quark decay, with the default POWHEG
correction, we attempt to produce the first emission from the
tbW system using the exponentiated real-emission matrix
element. Following this corrected real emission we shower
the system starting from a scale equal to the transverse
momentum of the emission. In the rare case that there is no
POWHEG emission above the IR cutoff, we do not shower
the system.

The Wf f’ system is a FF dipole, therefore we require
no new kinematics or kernels to shower the system. On-the-
other-hand the top quark decay introduces new complica-
tions. The momentum of the top quark is set, prior to its
decay, in the production process and we must not change its
momentum following its decay. Therefore in dipoles with the
top quark as spectator we cannot use the top quark to absorb
the recoil from the splitting. Instead we choose to apply a
boost to the rest of the outgoing particles in the decay sys-
tem to absorb the recoil. This is discussed in more detail in
Sect. 4.2.2.

The tbW system is showered until no further emission
above the IR cutoff can be generated. This is followed by a
‘reshuffling’ of the momenta of the particles outgoing from
the decay in order to put all partons on their constituent mass-
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shell as required for hadronization. Momentum conservation
is enforced in each splitting in the dipole shower and we must
ensure that, following the reshuffling procedure, the sum of
the outgoing momenta remains equal to the four-momentum
of the decayed particle.

In the case where there are two or more outgoing partons,
we simply rescale the masses and 3-momenta of each parton
such that all partons are put on their constituent mass shell. In
the rare case of no emission from a tbW system, we rescale
the mass and 3-momentum of the bottom quark and the 3-
momentum of the W-boson while keeping the virtuality of
the W-boson unchanged.

Splittings from decay dipoles and the reshuffling proce-
dure can modify the momentum of the W-boson from the
value set in the 3-body decay of the top-quark. Therefore fol-
lowing the showering of the tbW system and the subsequent
reshuffling, we must apply a boost to the decay products of
the W-boson to ensure that momentum is conserved in the
W-boson decay. This boost is applied prior to showering the
W f/ system. In longer decay trees, following the shower-
ing of each decay, we work down the decay tree updating the
momenta of decay products as appropriate.

4.2.2 Kinematics

As a colour partner of the emitter we refer to the incoming
top quark as the ‘spectator’, however we wish to preserve the
4-momentum of the top quark as its momentum has been set,
before its decay, in the showering of the production process.
Therefore the top quark is not used to absorb the recoil in
splittings. Instead the recoil is absorbed by all outgoing par-
ticles from the top decay system, except for the emitter and
the new emission.

Figure 3 shows a diagram of a decay dipole. The momenta
of the incoming decayed parton and the outgoing emitter
prior to the splitting are g, and p;;, respectively. The total
momentum of all other outgoing particles in the decay sys-
tem is py. Following the splitting the momenta of the new
outgoing emitter and emission are ¢; and g, respectively
and the total momentum of all other outgoing particles in the
decay system is gy. It is implicit from our definition of the
recoil system as all particles outgoing from the decay except
the emitter that the incoming parton momentum g, is the
conserved dipole momentum

O=qpy=pij+Pk=0qi +q; +qx. 37

The splitting kinematics then exactly follow those for a split-
ting from a massive final-final dipole given in Sect. 3.3.1.
The only difference is that for splittings from a decay dipole
the recoil, pr — g, is absorbed through the application
of an appropriate Lorentz transformation to the recoil sys-
tem rather than by a single spectator parton. We note that the
treatment described here is the same as that used in Ref. [48].
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Fig. 3 The final-initial decay dipole

4.2.3 Decay Kernels

As stated in Sect. 4.2 we do not include explicit splittings
from IF-decay dipoles. This is because the kernel for a gluon
emission from the incoming top quark contains a negative
term proportional to the top quark mass-squared which gives
rise to a kernel that is almost always negative. We have there-
fore chosen to include the IF-decay splitting kernels in the
Fl-decay splitting kernels which are usually large enough
to remain positive following the inclusion of the negative
mass-squared term. With these considerations there are two
possible dipoles and three possible splittings we must con-
sider: the + — ¢ dipole where the final state quark emits a
gluon and the + — g dipole where the final state gluon can
split into either a gg-pair or a pair of gluons.

Following the discussion in Sect. 4.2.2 the notation used
to express the kernels follows that used for splittings from
FF dipoles given in Sect. 3.3.1. We denote the mass of the
incoming decayed parton as my,.

There is only one possible splitting from the + — g FI-
decay dipole, g — qg, therefore we must include the entire
contribution from the corresponding r — tg splitting in this
kernel. We have used some discretion with regard to which
finite pieces are included in the kernels. The kernel, V. 4,
used to describe splittings from a r — g Fl-decay dipole in
HERWIG 7.1 is given in Eq. (38a). Note that following the
conventions of Ref. [34] there is a propagator factor of 1/¢; -
q; taken out of the kernel. This is the origin of the factor
Yijk/(1 — zi(1 — yijx)) in front of the t — g piece of
the kernel and correctly reproduces the eikonal formula that
would otherwise be obtained by summing over all possible
splittings and configurations for each dipole.

In order to be consistent with the kernels used for splittings
from other massive dipoles, we follow the convention from
Ref. [34] of multiplying certain terms in the kernels by a
finite ratio of relative velocities. The explicit forms of these
terms are given in Eq. (39a).

The t — g dipole is more complicated because there are
two possible splittings, g — gg and g — ¢q. The splitting
kernels Vg g0 and V,_, 47 used to describe the g — gg and
g — qq splittings in HERWIG 7.1 are given in Eq. (38b) and
Eq. (38¢), respectively.

The limits on z;, z; 4+, and the relative velocity term
v;j,i required to express these kernels are given explicitly
in Eq. (39c) and Eq. (39d) respectively. We have followed
the convention of Ref. [34] and used a parameter « to dis-
tribute finite pieces between the two kernels. In HERWIG 7.1,
K is set to zero in all dipole shower splitting kernels.

We include divergences arising from the IR limits of both
gi and g in Vg, oo such that V,_, . is symmetric with regard
to ¢; and g ;. This is because this splitting produces indistin-
guishable final-state gluons and it is consistent with the other
g — gg kernels used in the parton shower.?

(38a)

2mi2
ys

Vi—qg = 8masCg
2 (2m? + 2y;j 5 +3) Uij k
(I +yij)s —zi(l = Yij)s  vijk

((1 +zi)+

Vijk 2 (2m? + 2y k5 +5)
I —zi(A = yij) | A+ i85 — 2 (1= yiji)s

()
Vijk (1= zi(1 = yija)) 5
Ve ge = 16masCx
= 1+ 2yij«
I+ yijx) —zi(1 = yijx)
n 1+ 2yij«
I+ yij) — (I —z) (L — yijx)
[2:(1 —z) — (1 = K)zigzi— — 2]}
ijk

+871;05Sc[:

(38b)

—+

Vijk [ 201 4+ 2yi5.%)
I—zi(I=yij) LA+ yijxe) —zi (1= yijr)

~ 2 2
_ Uijk 2y mj _
Vijk (I =z (1 = yij))s

n Vijk [ 2(1 + 2yi.%)
= —=z)(M=yiju) LA+ yije) — A =z)A = yijr)

_ﬁij,k 2+ Zm%
Vijk (= =z = yij ) ’

Vgﬁqq = 87T(xsTR (38C)
1—2 (-2 -1 —x km}
2|z =-z)—0-0)zi42- — —5———
* 2mi2 + SYijk
(38d)

8 The g — gg splitting can be adjusted to contain only one soft sin-
gularity as a means of selecting from the two possible colour flows in
that splitting, if a different option has not been pursued, see also the
discussions in [49,50].
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Viik = , 39a
lj,k s _mlzj _m]% ( )
Vijk
\/I:Zm]%—}- (s —ml2 —m? —mk) (l = Yij k)] —4m%
(s—m?—m?—m,%)(l—yuk)
(39b)
2mi2 + (s — ml2 — m? — m%) Vij.k
Zi’izz 224 (s —m2 —m2 —m2) v,
m; +m; s —mj—m5;—mp) ijk
(1 % vij,iviji) - (390)
2
2 2 2 2 2.2
\/<s —m; —m; —mk) Viik —4mimj
Vij,i 2 5 ) 2 (39d)
(s —m; —m; — mk) Yijk +2m;

Finally we include a symmetry factor of 1. which is not
written explicitly here, in front of the g — gg pieces of
Vg ¢¢. With the inclusion of this symmetry factor the factors
in front of the eikonal parts from the g — gg and ¢ — ¢qg
pieces are consistent in the large-N¢ limit and we reproduce
the correct eikonal expression.

4.2.4 Validation

We present results to validate the new decay kernels and
kinematics in the dipole shower. We consider observables
which depend primarily on the first, hardest, emission from
the decay system and we compare results obtained with and
without the real emission decay correction. This comparison
directly evaluates how well V,_. ¢, Eq. (38a), reproduces
the full real emission correction. As can be seen in Fig. 4 the
kernel overestimates the leading-order matrix element over
most of the phase space, apart from a small region near the
lower phase-space boundary for 0.1 < x, < 0.4.

Our procedure for the following tests exactly follows that
used in Refs. [44,45,51]. We generate eTe™ — tf events at
LO at a collision energy of 360 GeV. This collision energy
is chosen to be close to the threshold energy for the process,
i.e. 2myop, in order to reduce radiation from the production
process. We work at parton level and include only dileptonic
processes. All final-state quarks and gluons are clustered into
three jets using the k algorithm [52] implemented in FastJet
[53] and we exclude events containing a jet with transverse
energy less than 10 GeV. We additionally exclude events in
which the minimum jet separation is less than AR = 0.7
where AR> = An* + A¢?, where  and ¢ denote pseudo-
rapidity and azimuthal angle respectively.

We present results for two observables; the separation
ARnin of the closest pair of jets in the event and the jet
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Fig. 4 Dalitz plot for t — bW™Tg where the gluon is showing the
ratio of the leading-order matrix element result over the dipole-shower
approximation. The energy fractions of the gluon and W boson are
Xg =2E4/mop and xw = 2Ew /myop, respectively

measure y3, defined as the value of the jet resolution param-
eter at which the three jet event would be identified as a two
jet event. This is given by

y3 = %mini ; (min (E?, Ejz) (1 = cos 6; ,)) , (40)
where s is the centre-of-mass energy squared of the collision,
E; and E; are the energy of jets i and j respectively and 0;;
is the angular separation of jets i and j.

Figure 5 shows the distribution of the minimum jet sep-
aration for events showered with and without the real emis-
sion decay correction. In general a harder first emission will
produce a greater separation of the two closest jets. There-
fore, as we expect, the shower with the real emission decay
correction produces more events with a larger minimum jet
separation. We see that the results with and without the real
emission decay correction agree well (~ 10%) at small jet
separations. Furthermore even at large minimum jet separa-
tions, where we do not expect the splitting kernel alone to
give a good description of the emission, the results agree to
within roughly 30%.

Figure 5 also shows the distribution of y3 for events show-
ered with and without the real emission decay correction.
Again, a harder first emission will in general lead to a larger
separation of the two closest jets and thus such 2-jet events
can be resolved into 3-jet events at a larger value of y3. As we
would expect there is a skew towards larger values of y3 for
the results with the real emission-corrected decay versus the
results without the correction. We see that the results at low
y3, corresponding to a softer first emission, are well described
by the shower without the real emission decay correction. The
log scale used for y3 in Fig. 5 emphasises the limitations of
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Fig. 5 The distribution of (upper) the minimum jet separation and
(lower) the jet measure y3 in 3-jet ete™ — tf events. The distribu-
tions are shown for events showered using the dipole shower with (DS-
PowhegCorr) and without (DS-NoCorr) the real emission decay correc-
tion. In addition we show the distributions obtained using the angular-
ordered shower (QS) with the full matrix-element decay correction

the splitting kernel in describing hard emissions. This is evi-
dent from the increasing disagreement between the results
with and without the real emission decay correction at larger
values of y3.

These results show that the kernel V., behaves well
in the IR region as we require. It also performs reasonably
well in the case of harder emissions but its limitations are
apparent in the distribution of y3 in Fig. 5. There is a major
limitation to these tests in that they only directly probe the
q — qg splitting kernel. The effects of subsequent emissions
are small and it is difficult to create a test to probe g — gg
and g — ¢g emissions from decay dipoles directly.

As a further comparison we have also included the results
from showering with the angular-ordered shower with the
appropriate full matrix element correction to the decay in
both figures. In all except the lowest bins we see a good
agreement between the dipole shower with the real emis-
sion decay correction and the angular-ordered shower. This
verifies that the corrections in the two showers produce the
same behaviour, as we would expect. The disagreement in
the lower bins is not a concern as there are numerous differ-
ences between the showers and we do not expect agreement
to be exact in all regions of phase space.

5 NLO matching and scale choices

A major improvement to the simulation of top quark pro-
duction and decay in the HERWIG 7 event generator is the
inclusion of NLO QCD corrections consistently combined
with the subsequent parton shower evolution. NLO match-
ing paradigms are typically less ambiguous than their merg-
ing counterparts and entirely driven by solving a matching
condition such that the combination of a NLO cross section
with a parton-shower evolution reproduces the NLO cross
section exactly, plus higher-order terms. In the following we
will elaborate on the basic matching algorithms available in
HERWIG 7 and their implementation, and will consider in
detail the sources of uncertainty involved in matched predic-
tions.

5.1 Hard process setup and NLO subtraction

The partonic cross section for the hard process at leading
order can be written as

orolu] = /d03(¢n)df u(@n), (41)

where dop is the Born cross section, d f denotes the par-
tonic luminosity (parton distribution functions), and u(¢;,)
represents a generic observable defined on the Born phase-
space point ¢, = {pa, P» — P1, ---s Pn}. The HERWIG 7
MATCHBOX module [10] identifies the possible subprocesses
contributing to the cross section, and sets up a multi-channel
phase-space generator to map the phase-space measure d¢;,,
which includes the momentum conserving §-function as well
as mass-shell constraints.

For a NLO calculation, which we carry out in the dipole
subtraction formalism based on Catani—Seymour dipole sub-
traction [33,34], real emission processes including an addi-
tional jet are then identified in the same way as for the leading-
order cross section, and the NLO cross section is calculated
as

onLolu] = orolul + oviarclul +or—alul, (42)
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with
or-alud = [ [dort@ninu@,in
=Y o Guiu@ P @ue) Jdf @)

The first two terms in Eq. (42) contain the leading-order
cross section, as well as the finite combination oy 4+44¢c =
ov4+1+p+x of virtual corrections, analytically integrated
subtraction terms, as well as collinear counterterms, which
are all defined over the Born phase-space point ¢,, and han-
dled accordingly. We have further introduced the dipole sub-
traction terms do 4 (¢, + D@ and the real-emission contribu-
tions dog (¢,+1) which are all functions of the real-emission
phase-space point ¢,,41, and the index i runs over the possi-
ble dipole configurations, each of which is associated with a
particular kinematic mapping (D,(,’) (¢pn+1) onto the so-called
‘tilde’ or underlying Born kinematics. The phase-space map-
pings trigger phase-space convolutions which can be cast into
phase-space factorizations upon introducing suitably adapted
parton distribution functions

. — 70 (@)
A0r10fly o 5y = T @n )0 f O (44)

@)
where @, 1

@n(i)(¢n+1), and r here refers to the collection of variables
required to describe the additional emission, i.e. a scale of the
emission, a momentum fraction, and an azimuthal variable.
We can also associate the respective definitions as functions
of the real emission variables, R (¢, 1), such that

1 (¢, 1) is the inverse mapping to the mapping

& (@ (pui). R (Gui1) = Pus1. (45)

MATCHBOX uses diagrammatic information to deduce which
subtraction terms need to be included, and automatically sets
up a cross section in the form above.

5.2 Parton-shower action and matching

The parton-shower action can conveniently be described as
olu] — o[PS, lull, (46)
where the parton-shower operator up to the first emission is
PS,u [ul(@) = [ [ AV Gn, mir)u(gn)

i
+ > dPD (g, QP (@n), pL)OG(r) — i)
i

< [1AY (@n. pir)u(@)) | (pn. 7). 47)

J

Here g(r) is the evolution variable which we have singled
out only in the phase-space limits on the evolution, starting
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at a hard scale Q(i)(¢,,) and ending at the infrared cutoff
uir- The differential splitting probability is the combination
of the respective phase-space factors and a ratio of parton
luminosities, and the Sudakov form factor starting at the hard
configuration is

—1In AD (¢, ir)
= / AP (@, I (QV (@), pL(r)O(G(r) — pIR).
(48)

Notice that the constraint on the hard scale is in general not a
sharp cutoff, but might be imposed in different ways, see [24]
and the discussion below in Sects. 6.1 and 6.2. We have, not
accidentally, chosen the same kinematic mapping as has been
used for the dipole subtraction terms. Indeed, the kinematic
reconstruction algorithm, and not least the kinematics used
in the dipole shower and the Powheg correction to be dis-
cussed below, resemble, for one emission, exactly the dipole
subtraction kinematics, such that we do not need to consider
any additional Jacobian factors.

At this point we can expand the shower action to first
order in g and subtract this contribution from the NLO cross
section to set up the matched cross section. To this extent it
is worth noting that we can recast both, the integrand of the
Sudakov exponent as well as the emission rate multiplied by
the Born cross section into another approximate cross section
using the inverse of the kinematic mapping,

Aoy nd f = [dopd fOPD (g, )

x (0 (gn). p1(r))] (49)

$u=®Y @) r=RO(P11)

We have explicitly left out the infrared cutoff in this expres-
sion for reasons which will soon become clear. The NLO
matching subtraction term is then

of st = Y [ o @ninas

%0 @nt) = ) (4(@a) = u(@ @)
(50)

with the shorthand q(i)(¢,,+1) = q(R(i)(¢n+1)). The NLO
matched cross section is

matched
ONLO

[u] = onLolul — ok 4[ul, (51)
such that o%¢hed[PS , - [u]] = onrolu] + h.o. This can be
conveniently combined with the dipole book keeping already
employed for the fixed-order NLO calculation to yield two
contributions to the NLO matched cross section:

matched

onLo  lul =oslul +onlul, (52)
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with
oslu]l = orolul + ovyr+p+xlul

+ Z/ (dolﬁg)(¢,,+1)9(q(i)(¢n+1) — UIR)

= 4o @uin) df u (@ Gni1) (53)

which constitutes Born-type configurations, also referred to
as S events, as well as

ontu) = [ (dout@)
=Y ot @n 0@ Gu) = ) ) 1),

(54)

to provide real-emission type configurations, also referred to
as H events. We stress that these contributions cannot yet be
used to generate events with finite weights owing to the pres-
ence of the infrared cutoff, which allows for configurations
with divergent weights, even if the parton-shower approxi-
mated cross section would be able to reproduce the full sin-
gularity structure of the real emission. Instead, an additional
auxiliary cross section

oxlu] = Z/da§j>(¢n+1)df

x0(u = 40 @rs1) (1@ @ri) = u@nin))
(55)

can be added to the matched cross section to eventually yield
modified versions of og and oy, which can be employed to
generate events. In practice, we use the dipole subtraction
terms themselves to facilitate this, i.e. dox = do4. Note
that, for infrared-safe observables u, oy only adds power
corrections below the infrared cutoff.

5.3 Matching variants

Both the angular-ordered and the dipole showers fit into the
framework outlined above, which constitutes the subtractive,
or MC@NLO-type, matching in HERWIG 7, and the sole
task is to determine the shower matching subtraction da};i A
which we have implemented in a process-independent way
in the MATCHBOX module. These subtractions are indeed
very similar to the dipole subtraction terms, but averaged
over azimuthal orientation and for colour correlators eval-
uated in the large-N, limit. With the recent development
of spin-correlation algorithms in both shower modules [54],
spin correlations can be restored in these subtractions, and
full colour correlations can be justified when using colour
matrix-element corrections [50,55], at least for the dipole
shower algorithm.

Another choice is a multiplicative, or Powheg-type,
matching for which we employ a hardest emission gener-
ator, which performs a shower emission using a modified
splitting function, or matrix-element correction, determined
from the real-emission and Born matrix elements as

w®(@) | (¢, 1))
Y wD (@) (¢a. 1))

IMg@) (¢, 1)I?
IMp(p)l>

for which no complications arise as the full divergent
behaviour is reproduced by construction. An additional trun-
cated, vetoed shower needs to be included if the hardest
emission generated this way is not the first one to occur. In
practice, for the w®) we use dipole-type partitioned Eikonal
factors to perform the weighting into the different singular
channels i and use the ExSample library [56] to generate
emissions according to the Sudakov form factor obtained
from the matrix-element correction defined above.

PO (g, 1) —

(56)

6 Parton shower hard scale
6.1 Profile scale choices

The parton shower hard scale needs to be limited from above
in order to avoid the summation of an unphysical tower of
logarithms in the Sudakov exponent. To this extent, we have
not chosen a fixed starting scale, but a profile scale func-
tion k (QV(¢y), p1(r)) [c.f. Egs. (47) to (49)]. This func-
tion encodes the possibility that not all of the emission phase
space should be available to the parton shower. From here on
we will generically denote Q) (¢,) = Q. , i.e. we choose
the (upper) hard scale Q") (¢,,) manifest as a scale Q | which
defines an upper limit on the transverse momentum available
to shower emissions.

Several possible parameterizations of the profile scale
choices were investigated for leading-order plus parton-
shower predictions [24]. We first introduce a hard veto scale
Q1 , which defines an upper limit on the transverse momen-
tum available to shower emissions. By default this is chosen
to be the hard process scale, pg, which in turn is typically
set to the factorization and renormalization scale, but may
also be chosen independently in HERWIG 7. The profile scale
choice ¥ (Q 1, p1) is a function of Q) and the transverse
momentum p_ of the splitting. For convenience, we define
the quantity x as the ratio of these scales

_ L
01
The default profile scale choice in HERWIG 7 is the resum-
mation profile

x (57)
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1 , x <1-=2p,
a2
- xed =20 1),
k(Q1,pL) = (1—x)?
oy , x €(l—p, 1],
0 ,ox > 1,

(58)

where p is a parameter which is set in HERWIG 7.1.4 to p =
0.3. The resummation profile is one for p; < (1-2p)Q,
zero for p; > @, and quadratically interpolates between
these regions. It is expected to reproduce the correct towers
of logarithms, and switches off the resummation smoothly
towards the hard region.

We compare the resummation profile to the hfact profile,
which is the damping factor used in POWHEGBOX [57]. The
hfact profile is defined as

k(QuL,p1) = (59)

1+x2°

The hfact profile tends to one in the resummation region,
ie. for p; < QJ, and to zero in the fixed-order region,
ie. for p; > Q.. Unlike the resummation profile the
hfact profile does not produce the desired towers of log-
arithms, as it varies over too broad a range of scales
around the hard veto scale. In particular it is not close
enough to one in the Sudakov region, i.e. p; K Qj,
and does not enforce a sufficiently effective cutoff on
the shower emissions in the hard region, i.e. for p; >

0.

In this paper (see Sect. 7.4.1) we investigate some of the
impacts of the choice of the profile scale on the prediction of
observables using MC @NLO-type matching. For a detailed
discussion of the exact properties of the various profile scale
choices available in HERWIG 7 we refer the reader to Ref.
[241.2

9 As pointed out in Ref. [24] the choice of the profile scale, i.e. how to
approach the boundary of hard emissions, is non-trivial and highly rele-
vant in the context of NLO plus parton-shower matching. The choice of
the profile scale is essentially constrained by consistency conditions on
central predictions (i.e. it should not modify the input distributions of
the hard process) and uncertainties (i.e. large uncertainties are expected
in unreliable regions or regions where hadronization effects are domi-
nant, as well as stable results are expected in the Sudakov region). It was
found in Ref. [24] that the hfact profile does not admit results compat-
ible with these criteria. Instead, using the resummation profile it was
found that the angular-ordered and dipole showers are compatible with
each other, both in central predictions and uncertainties (despite their
very different nature). In addition to studying some of these effects here
for top-quark pair production, we would like to point out that choosing
a profile scale reminiscent of the resummation profile rather than the
hfact profile might also shed some more light on the effects observed
in Higgs-boson pair production in Ref. [58].
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6.2 Hard veto scale choices

Both shower modules require an upper limit on the transverse
momentum of emissions, which s set by a hard veto scale Q |
(see previous section). This hard veto scale coincides with
the starting scale for the p -ordered dipole shower, and is
explicitly implemented as an additional veto for the angular-
ordered shower. By default in HERWIG 7, in leading-order
events, i.e. Born-type events, Q| is chosen to be the hard
process scale (y.

For NLO matched predictions, the generated S and H
events (see Sect. 5.2) separately undergo showering. While
S events constitute Born-type events and are treated as such,
several complications arise for H events.

In MC@NLO-type matching there is no requirement of
exact cancellation between the real-emission matrix element
and the subtraction term in any region of phase space, as it is
possible for the subtracted real-emission cross section still to
contain power corrections in the regions where the real emis-
sion is soft or collinear. Correspondingly we expect to see a
fraction of H events with a soft and/or collinear emission. In
the case of such an H event it is unnatural to choose the hard
veto scale to be of the order of the small transverse momen-
tum of the real emission. Consider for example our case of
t7 production, and say we have an 7{ event in which the real
emission has a transverse momentum of ~ 2 GeV. Given
the high energy scales involved in ¢7 production, it would be
unreasonable to veto all shower emissions with transverse
momentum greater than that of the real emission. Instead we
need to choose a hard veto scale which is more representative
of the scales involved in the process.

In general, as with most scale choices there is no ‘correct’
choice and we have some freedom in choosing the hard veto
scale. By default in HERWIG 7 we choose Q| = upy, for
which we typically choose ug = pur = pur with ur and pur
denoting the factorization and renormalization scale respec-
tively. The hard veto scale and the scale of the hard process
may also be chosen independently. Overall, given our previ-
ous discussion, we desire to choose Q| to be representative
of the scales of the objects outgoing from the hard process. In
the case of a hard real emission, a hard veto scale that reflects
the scale of the real emission should be used. Conversely in
the case of a relatively low-scale real emission, a larger scale
should be chosen.

Assume for now that we use Q | = uy and consider an H
event. Common choices for iy involve the transverse masses
of the top quark and antiquark, often in a linear or quadratic
sum. In the case of a very low-p | real emission, the trans-
verse masses of the top quarks will be largely unaffected
by the emission. Therefore we would shower such an event
from a scale similar to that had there been no emission. Con-
versely ahigh-p | real emission on-average increases the sum
of the transverse masses of the top quarks, and the presence
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of the hard real emission is reflected in the hard veto scale.
There are choices for puy that, while significantly affected
by the scale of the real emission, are relatively large over a
wide range of real emission scales. If uy is large enough, the
actual maximum scale for showering will be the maximum
physically allowed scale, determined from the splitting kine-
matics, for the first shower emission. In this case, while gy
may be directly affected by the scale of the real emission, the
scale of the real emission will have only a small impact on
the subsequent showering.

In the case described above one should consider using
an alternative choice for Q. We have introduced such a
scale, which we denote as (i, in HERWIG 7.1 for use in ¢f
production

(60)

where nqy is the number of particles outgoing from the hard
process prior to showering and the sum is over these outgoing
particles. This is simply the quadratic mean of the transverse
masses of the outgoing particles in the lab frame. In an H
event with a hard real emission, the scale u, is sensitive to
the scale of this real emission. In the case of an H event
with a low-p real emission, u, is much larger than the
scale of the real emission and better reflects the scales in the
process. We note that this scale is not smooth in the limit
of a soft/collinear emission, i.e. the transition from H to S
events. In the case of an H event with alow-p real emission
this returns a scale smaller than that in an S event by a factor
+/2/3 in the soft/collinear limit. We expect the effects of this
discontinuity on results to be very small.

In this paper (see Sect. 7.4.2) we investigate some of the
impacts of the choice of the hard veto scale on the prediction
of observables using MC@NLO-type matching, and how the
effects change depending on the choice for the hard process
scale. To do this we compare, for each of three different
choices for pp, results obtained using Q) = ugand Q| =
Wa. The three choices for uy that we compare are

) = miy .t ‘;mJ_,t_7 (61a)
m +m 5

po = % (61b)

U3 = m;;, (61c)

where m,; is the invariant mass of the ¢7-pair.'°

As always in discussions of scale choices there is no right
or wrong choice. The aim of this discussion is to highlight
that when we use MC @ NLO-type matching we have to make

10 We refer the reader to Ref. [59] for a detailed discussion on dynam-
ical scale choices in top-quark pair production.

a choice for the hard veto scale. We will show that, depend-
ing on the choice for uy, different choices for Q| can have
differing and significant effects on our predictions for observ-
ables.

7 Uncertainty benchmarks and data comparisons

In order to estimate the uncertainty for the event generator
predictions we pursue both, variations of the scales involved
in the hard production process as well as the scales involved
in the subsequent parton showering (see Sect. 7.3). We also
consider the impact of different profile scale choices and of
different choices for the hard veto scale, dependening on
the scale of the hard process (see Sect. 7.4). We consider 17
pair production in proton-proton (pp) collisions using both
‘parton-level’, or ‘production-level’, predictions for stable
top quarks and ‘particle-level’ predictions for unstable top
quarks.

Due to the manifold scale choices and variations in our
study, we discuss the impact on the observable distributions
in some more detail. As mentioned before, in this study we
concentrate our efforst in particular on NLO matched pre-
dictions. Understanding matched predictions, in the context
of systematically disecting the effects of varying all relevant
scales as we do in our study, is a relevant prerequisite to
understanding similarly systematic uncertainty estimates in
more sophisticated setups, like multi-jet merging.'!

7.1 Production level

All parton-level, or production-level, simulations are done for
a centre-of-mass energy of 13 GeV and use the ‘benchmark’
settings of Ref. [24]. Except for the variations of interest
in each section, we use identical input settings for the par-
ton showers and matching schemes in every run. Only QCD
radiation is included in the simulations and the same infrared
cutoff of g = 1 GeV (implemented as the minimum trans-
verse momentum cutoff on shower emissions) is used in both
showers. We use a mass parameter of m; = 174.2 GeV in
the hard process as well as in the subsequent showering algo-
rithms and all other quarks are considered to be massless.

The factorization and renormalization scales are set to the
same value ur = up = uy, where our default for the central
hard process scale choice is

1 As the multi-jet merging in HERWIG 7 [12,15] is paved on the match-
ing paradigm in HERWIG 7 (see Sect. 5) it is important to understand the
details of the variations and also the corrections to the decay in detail
in a matched setup first, which has comparatively less ambiguities. A
multi-jet merged study is then alogical follow up, in the context of future
work, looking into more exclusive observables, but neither intended in
nor within the scope of the current study.
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my+mgy
i = = (62)

i.e. half of the average transverse masses of the top and anti-
top quarks, unless stated otherwise. This scale choice is moti-
vated by the results of Ref. [59]. We use the default choice,
Q1 = uy, for the hard veto scale in all runs apart from those
in which this is the scale of interest. Similarly, the resumma-
tion profile scale is used in all runs unless otherwise stated.

We use the MMHT2014nlo68cl parton distribution
functions (PDFs) along with a two-loop running of «g
with ag(Mz) = 0.12 both in the parton shower and the
hard process.'?> All runs use a four-flavour scheme. All
cross sections are rescaled to the NNLO cross section of
815.96pb 3, calculated using Top++2.0 [60] assuming a top
mass of 173.2GeV and including soft-gluon resummation to
next-to-next-to-leading-log order, as are the variations we
consider and the envelopes resulting from these variations.

We use a purpose-built analysis written in RIVET [61] to
analyse the simulated events. Our analysis considers objects
with pseudo-rapidity |n| < 5, with transverse momentum
ordered jets obtained from the anti-k jet algorithm [53,62]
with a jet radius of R = 0.4.

7.2 Particle level

In contrast to production-level simulations, particle-level
simulations include top quark decays, hadronisation and
hadronic decays, including tau-lepton decays. Particle-level
predictions are used to compare our simulations to experi-
mental data in order to quantify how the different algorithms
and their intrinsic uncertainties compare to existing collider
data. We use existing and publicly available Rivet analyses,
for which the collision energy, /s, at which each experimen-
tal result was measured and the final-states included are sum-
marised in the following text. Specific details of the experi-
mental analyses are available in the references provided. All
of the particle-level measurements presented in this section
are taken in the ‘combined channel’, i.e. including both elec-
tron and muon final states. Unless otherwise stated, the hard
process scale used to generate these events is

mis+my;
i = — =", (63)

12 This refers to an input value which is not used in conjunction with a
CMW correction and is only used for the production-level benchmark
settings considered here. Typically a tuned value will include the CMW
correction numerically. Also, note that in HERWIG 7 we perform the
running of ag ourselves rather than using the running determined by
the PDF set.

13 This is the reference cross section calculated by the CMS and ATLAS
collaborations.
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This scale was chosen because it was found to give rise to
reasonable predictions of several observables sensitive to jet
activity using MC@NLO-type matching. In particular we
compared predictions of several observables included in the
publicly available Rivet analyses for Refs. [4,63] obtained
using ug = (12,3, i.e. the three scales defined in Sect. 6.2.
The resummation profile scale is used in all runs and we
use the default choice, O | = uy, for the hard veto scale in
all runs apart from those in which this is the scale of interest.

The default angular-ordered and dipole shower tunes of
HERWIG 7.1.1 are used in all particle-level runs with the
respective showers. The PDF set used is again
MMHT2014nlo68cl while ag is defined separately by
using the tuned value for each shower. We use a five-
flavour scheme in the runs using the angular-ordered shower,
with massless incoming bottom quarks, and the four-flavour
scheme in runs using the dipole shower, which treats partons
of a given flavour as having the same mass in both the ini-
tial and final states. The masses of the bottom quark and top
quark are set to 4.2 GeV and 174.2 GeV, respectively, while
all other quarks are considered to be massless.

All distributions that are not normalised to their integral
are again scaled to the appropriate next-to-next-to-leading
order cross section. The NNLO cross sections are 173.60 pb
and 247.74 pb for 7 TeV and 8 TeV collisions, respectively.

7.3 Scale variations

In this section we discuss the parton shower and match-
ing scheme uncertainties that arise from scale variations.
We present results for chosen observables that probe vari-
ous aspects of the simulation and compare with existing data
where possible.

Following the approach used in Ref. [24], we estimate the
uncertainty on the predictions by considering the variations
of three scales:

e the factorization and renormalization scale in the hard
process, i.e. the hard process scale uy = Ur = UF;

e the boundary on the hardness of emissions in the shower,
i.e. the hard veto scale Q| ;

e the argument of ag and the PDFs in the parton shower,
i.e. the shower scale pg.'*

14 In this study we are concerned only with variations of the arguments
of ag and the PDFs in the parton showers, therefore, even though they
can differ, we use the common terminology ‘shower scale’ for these
scales. In the angular-ordered shower the argument of the strong cou-
pling is related to the transverse momentum of the emitted parton and
differs for initial- and final-state evolution, while the argument of the
PDFs is simply the ordering variable for initial-state evolution [32]. In
the dipole shower the transverse momentum of the emitted parton is
used for both scales.
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We apply multiplicative factors of 0.5, 1 and 2 to each of the
corresponding central scales such that the full set of varia-
tions consists of 27 different scale combinations. The com-
plete uncertainty envelope corresponding to this set of vari-
ations is shown in each plot. In addition, for each result, we
include ratio plots that break down the uncertainties accord-
ing to the individual scale variations. For each of the three
scales considered we separately plot the envelope produced
by the upward and downward variations of that scale about
the central result, i.e. only two variations are included for
each envelope in addition to the central result.

7.3.1 Production level

We first compare results generated with LO matrix elements
plus parton shower simulations, using both the angular-
ordered (PS) and dipole showers (DS). We use LO plus
parton-shower results primarily to compare and contrast the
two showers in addition to discussing the uncertainties on the
predictions. This is followed by a discussion of results pro-
duced by NLO matrix elements matched to a parton shower,
i.e. NLO matched simulations. In this discussion, in addi-
tion to considering the uncertainties, we focus on the differ-
ences between the results obtained using the MC@NLO and
Powheg matching schemes.

Figure 6 shows the LO plus parton-shower predictions
for the transverse momentum distribution of the top quark
(p1 (1)), the transverse momentum distribution of the 7-
pair (p1(rf)) the jet multiplicity (nje), and the separa-
tion between the r7-pair and the hardest jet in the event
(AR(tt, j1))."> We find, as expected, that the two shower
schemes give similar predictions in the infrared and collinear
limits (e.g. at low transverse momentum of the ¢7-pair) but
can diverge in regions of high momentum emissions. For
example the dipole-shower prediction of an increased num-
ber of high jet-multiplicity events can be understood by the
larger phase space available to the dipole shower due to the
fact that there are no angular-ordering restrictions. Nonethe-
less, in all bins the two predictions agree within the pre-
scribed uncertainties. Furthermore the sizes and sources of
uncertainties are similar in all bins for both showers.

The transverse momentum of the ¢7-pair, and the number
of jets in the event are both sensitive to the hardest emission,
and therefore to the cutoff scale used in the shower. The
number of jets is also impacted by the strong coupling used
in the shower emissions and we see some sensitivity to the
shower scale for this observable at high number of jets.

The separation between the ¢7-pair and the leading jet is
entirely driven by the parton shower since no jet is produced

15 The separation is defined as AR(t7, j1) = v/ Ap? + Ay?, where
A¢ and Ay denote the difference in the azimuthal angle and rapidity
respectively of the ¢7-pair and the hardest jet in the event.

by the LO matrix element. With only one jet the separation
must be greater than m, and so the cutoff scale is the domi-
nant source of uncertainty in this region. Separations of less
than 7 are therefore controlled by subsequent jet emissions,
which are impacted both by the scale of the hardest jet and the
shower scale. Additionally the total uncertainty band, partic-
ularly in the region AR < 7, is much larger than the sum in
quadrature of the individual components. This demonstrates
the fact that the various scales can have correlated effects on
the observables which must be taken into account, and sug-
gests the use of the full envelope as done in this paper rather
than separate estimation of each of the component followed
by combination in quadrature.

Figure 7 shows the NLO-matched predictions for the
p1(t) (upper row), and p, (1f) (lower row) distributions
obtained using the angular-ordered (PS, left column) and
dipole showers (DS, right column). In an NLO-matched sam-
ple these observables are formally predicted with NLO and
LO accuracy respectively. Any differences between the the
MC@NLO-type (NLO®®, aka subtractive) and Powheg-type
(NLO®, aka multiplicative) matching schemes are due to
higher-order effects. Accordingly we see good agreement
between the matching schemes for both showers. It should be
noted that in the highest-p, bin, where uncertainties appear
somehwat larger the effect is likely due to statistical uncer-
tainties on the predictions used to construct the uncertainty
envelopes.

In the case of p (tf) we see much smaller uncertainties
in the NLO predictions as compared to the LO predictions in
Fig. 6 now that the hardest jet is described by the matrix ele-
ment calculation. Accordingly, O is no longer the dominant
uncertainty. Instead the scale of the hard process is relevant
for the production of the first jet, playing a significant role
across the entire distribution and dominating the uncertainty
above p (1) ~ 100 GeV.

Figure 8 shows the NLO-matched predictions of the njets,
and AR(tz, ji) distributions using the angular-ordered and
dipole showers. For jet multiplicities above one, and for
AR(tt, j1) < 7 these distributions are still controlled largely
by the shower. Therefore, they do not benefit from the same
magnitude reduction of uncertainties as was seen for p (¢1).
But in both cases uyg now plays a larger role in the overall
uncertainty, being relevant for production of the leading jet.
The effect of terms beyond NLO accuracy is clearly visible
in the jet multiplicity distribution, where the MC@NLO-
type matching predicts more high multiplicity events than
the Powheg-type matching. This is related to the choice of
the hard veto scale as discussed in more depth in Sect. 7.4.
The large impact of the hard veto scale on the MC@NLO
predictions is clearly seen in the uncertainty band ratio plots.
More accurate jet multiplicity distributions can be achieved
through the use of multi-jet merging algorithms. However,
this is beyond the scope of the paper. Both distributions also
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Fig. 6 Scale variations for the inclusive top p -spectrum, the top pair
transverse momentum spectrum, inclusive jet multiplicities and R dis-
tance between the top pair and the hardest jet using LO plus (LO®)
parton shower simulations at 13 TeV. In each plot the upper ratio plot
compares the envelopes of all variations for the angular-ordered (PS)
and dipole (DS) showers, with a ratio to the central prediction of the

clealy show the correlated impact of these scale choices with
total uncertainty envelopes larger than the sum in quadrature
of the individual components.

To summarize this section, for a meaningful uncertainty
estimate one must consider which parts of each distribution
are well predicted by the hard matrix element and which
are filled largely or entirely by the parton shower and one
should not expect identical predictions from different parton
showers away from the soft and collinear limits. In Monte
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angular-ordered shower. The bottom two ratio plots in each plot show,
for the angular-ordered and dipole showers respectively, a breakdown
of all variations into variations of the (factorization and renormaliza-
tion) scale in the hard process (up), of the arguments of the running
coupling and PDFs in the shower (us) and of the hard veto scale (Q )

Carlo studies a thorough evaluation of shower and match-
ing uncertainties is required to account for these differences.
Whereas in this section we only considered the produc-
tion level, in Sect. 7.3.2 we will consider the full particle
level, and investigate the uncertainties due to scale varia-
tions in the prediction of distributions measured from exper-
1ment.
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Fig. 7 Transverse momenta of the top quark (upper row) and the top
quark pair (lower row), comparing variations for NLO matched predic-
tions at 13 TeV for the angular-ordered (PS, left column) and dipole
showers (DS, right column). The top panels in each plot compare the
central prediction and overall variation between the MC@NLO-type
(NLO@) and Powheg-type (NLO®) matching. The first ratio plot in

7.3.2 Farticle level

In Sect. 7.3.1 we discussed the uncertainty on predictions
of distributions in the production-level process due to scale
variations in the simulation. In this section we complete this
discussion by looking at the uncertainty on predictions of
distributions in the full-process, including top quark decays
and hadronization and comparing to available experimental
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each plot allows to directly compare the overall variations in both match-
ing variants, in a ratio to the central MC@NLO-type prediction, while
the lower two ratio plots in each plot show a breakdown of the varia-
tions for both matching variants regarding the hard process scale(itp),
the shower scale (us) as well as the hard veto scale (Q )

data using publicly available Rivet analyses. We perform
the same scale variations as in Sect. 7.3.1 and the reader is
referred to that discussion for details. We highlight that the
veto scale in the showering of decay processes is fixed at the
mass of the decayed particle and is not varied.

We examine three observables to compare and contrast
with the production-level discussion. Namely we consider
the transverse momentum of the hadronic top quark, p (¢),
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Fig. 8 Same as Fig. 7, in this case showing the inclusive jet multiplicities and the R distance between the 77-pair pair and the hardest jet. See the

text for discussion

the jet multiplicity e, and the scalar sum of the transverse
momenta Hr (Figs. 9, 10 and 11 respectively). Here, Hr is
defined as the sum over all jets in the event.

Hr =) pije- (64)

jets

The choice of a different hard process scale [c.f. Eq. (63)]
as compared to Sect. 7.3.1 [c.f. Eq. (62)] leads to two notice-
able differences in the distributions. Firstly, the LO prediction
of the top quark pr is now sensitive to the shower veto scale
variations (comparing Fig. 9 to Figs. 6 and 7). This is because

@ Springer

the hard process scale is also used as the central hard veto
scale. The increase in this scale allows for the emission of
harder jets from the shower which can be hard enough to
alter the top pr distribution. Secondly we note that for this
scale choice the number of extra jets in the event predicted
by the Powheg-type and MC@NLO-type showers display
reasonable agreement for both showers. This is in contrast to
the differences between the matching schemes observed in
Fig. 8. We have checked that these differences arise from the
choice of hard process scale, and not to other differences in
the settings used for the full process simulations.



Eur. Phys. J. C (2019) 79:915

Page 23 of 36 915

% ol
Q 10 —e— Data
"é« —— LO@PS
= 1072 —— LO® DS
10
< 10
N
< Herwig 7
4 +
10 1 1 L l 1 1 1 l 1 1 1 l L 1 1 l 1
—e— Data —— LO®PS
—
- LO‘EBDS | |
L L L
—— LO&PS — Uy
N .
YL 2
—— LO®DS JE——
\‘ \I‘b‘ 1 1 1 ‘ 1 \’ \QL\ 1 ‘ 1 1
200 400 600 800 1000

p1(th) [GeV]

% =
L\D —e— Data
= — NLO&PS
2 —— NLO®PS
=
s
<
~
-8 Herwig 7
PR R U I RS BRI S \
—e— Data —— NLO®PS

-

- —— NLO®PS

0 L L L L ‘ ‘ L L

15 —— NLO&PS HH

1

0.5 . .

GESTSL L, e o
NLO ® PS

200 400 600 800 1000
pi(tn) [GeV]

% E
Q —e— Data
= —— NLO®DS
3 —— NLO® DS
=
0
o
~
-8 Herwig 7
P I I I N
Data —— NLO@ DS
1
NLO ® DS | |
L 1 L 1 1 1
NLO & DS —
- llusl 1 1 1 l 1 1 1’ 1QL1 1 l 1 1 1
NLO ® DS = Uy
JN,
T R e sl SR R
200 400 600 800 1000

p(tn) [GeV]

Fig. 9 The transverse momentum of the reconstructed hadronically
decaying top quark measured by ATLAS in semileptonic 8 TeV pp —
it events [64]. The top plots shows leading-order production with
angular-ordered (PS) and dipole (DS) parton showers, the middle plot
NLO production matched to the angular-ordered parton shower while
the bottom plot shows NLO production matched to the dipole shower.
Two NLO matching schemes, MC@NLO-type (NLO®) and Powheg-
type (NLO®), are used

=
= C Herwig 7
2
& 1
B} E
3 E
) N
“10717 —e— Data
£ — Loors
F —— LO&DS :
1072?\‘\\\\‘\\\\ \\\\‘\\\\‘\\\\‘\\
15§—o— ata —_—
1§ .
05 LO® DS
0:\\\\L(\)\PS\\\\\\\\‘\\\\‘\\\\‘\\
E — ® —-—
15 & H
15 23
E RSO
0.5 = . .
(0 et I P B irlle: P TR
E — LO®DS J—
15 ,
1z
0.5 E- - s o /W
0:\\ \\\\‘\\\\‘\\\\ \\\\‘\\\\‘\\
3 4 5 6 7 8
Mjets(pL > 25GeV)
= =
=) C Herwig 7
& 1F
< E
S E
) L
"'31071 —e— Data
£ — NLO&PS
[ —— NLO®PS
02 Ly b v by v by vy by Iy
15 E —e— Data —— NLO@PsS
12 : :
05 = NLO & PS
0:\\\\\\\\\\\\\\‘\\\\‘\\\\\\
E —— NLO&PS — Uy
15
15 DA
055 .
OE\\ \\’45\\‘\\\\ L1
E —— NLO®DPS
15 &
g
05 E- . .
BRI e SR
3 4 5 6 7 8
Njets(pL > 25GeV)
= E
= r Herwig 7
2 1F
< E
J E
=] F
"310717 —e— Data
E —— NLO®DS
F —— NLO® DS
1072?111111}111111111111111111111
15§—o—Data —— NLO®DSs
05 & NLO % DS
= NLO®DS E—
1.5 =
1E i e XA
05E : I
GEITTMS e R
= NLO®DS —
15 =
1
055 o e
OE\\ \\‘ls\\‘\\\\‘\\\\ \\Q\l\‘\\\\‘\\
3 4 5 6 7 8

Tjets (P > 25GeV)
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Fig. 11 The Hr distribution measured in semileptonic 8 TeV pp — t1

events by CMS [65]. The theoretical predictions are the same as those
described in the caption of Fig. 9

As already noted the less restricted phase-space avail-
able to the dipole-shower leads to differences between the
two algorithms in some regions away from the infrared and

@ Springer

collinear limits. In particular the increased njes prediction as
well as the larger sensitivity of the dipole shower to the hard
veto scale can be understood as coming from the differences
in available phase-space (comparing Fig. 10 to Figs. 6 and
8).

Lastly, we note that the Hy distribution shows sensitiv-
ity to both the choice of showering algorith and match-
ing scheme (Fig. 11). Furthermore differences between the
Powheg-type and MC @ NLO-type matching are pronounced
only for the angular shower. This is an example of the corre-
lations between matching scheme and showering algorithm,
indicating that the effects cannot be perfectly factorized, sim-
ilarly to correlations already observed in the scale choices.

7.4 Profile scale and hard veto scale choices
7.4.1 Impact of profile scales

In this study we restrict ourselves to a simple investigation of
the effects of the profile scale choice on the simulation of 77
production using MC@NLO-type matching. To do this we
compare results obtained using the two profile scale choices
defined above (see Sect. 6.1). This is not intended to be a
complete discussion of profile scales and the uncertainties
that arise due to choosing a specific one. We simply wish
to highlight some of the potential effects of the profile scale
choice and present a small selection of observables in which
these effects are important.

In Fig. 12 we present production-level results obtained
with both the angular-ordered (PS) and dipole showers (DS)
using the resummation and hfact profiles. The results
shown are the transverse momentum distribution of the hard-
estjet, p1 (j1), in the upper-left plot, the jet multiplicity, njet,
distributions with a minimum jet-p, cut of 25 GeV and 80
GeV in the upper-right and lower-left plots, respectively, and
the distribution of the azimuthal separation of the 77 pair and
the hardest jet, A¢(¢1, j1), in the lower-right plot. For clar-
ity we include a separate ratio plot for each shower which,
for each bin, shows the ratio of the result obtained using the
hfact profile to the result obtained using the resummation
profile.

While the hfact profile suppresses hard shower emissions,
itdoes not apply a hard cut on such emissions as in the resum-
mation profile. We therefore expect to see an increase in both
the hardness of the hardest jets and in the number of high-p |
jets in events.

Most of the results in Fig. 12 clearly display the expected
behaviour, however the jet multiplicity with a minimum jet-
p. cut of 25 GeV requires some interpretation. We find that
the rate of events with high jet-multiplicities predicted using
the hfact profile in the angular-ordered shower is lower than
that predicted using the resummation profile. The opposite
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Fig. 12 The effect of different profile scale choices for the two shower
algorithms, angular ordered (PS) and dipole (DS), respectively when
using MC@NLO-type (NLO&) matching. We compare predictions for
the default resummation profile versus the broader hfact profile. From

trend is observed in the results obtained using the dipole
shower.

The requirement of angular-ordering in the angular-
ordered shower effectively puts a cut on the hardness of
shower emissions. Through this the hfact profile can increase
the emission phase space only up to a maximum possi-
ble value such that the effects of the change from the
resummation to hfact profile are expected to be some-
what less pronounced for the angular-ordered shower than
the dipole shower. In the case of the angular-ordered shower
the angular-ordering restriction and the suppression of soft
emissions by the hfact profile lead to a reduction in the num-
ber of low-p jets.
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left to right, top to bottom, we present the p; spectrum of the hardest
jet, the inclusive jet multiplicity at a threshold of 25 GeV and 80 GeV,
respectively, as well as the azimuthal angle distance between the top
pair and the hardest jet

7.4.2 Impact of hard veto scales

Next we consider the effect of the choice for the hard veto
scale, O | , on results obtained using MC @ NLO-type match-
ing. The role of the hard veto scale in MC @ NLO-type match-
ing was discussed in Sect. 6.2. In the following we discuss
the predictions produced using each of the three options (11,
W2, u3) for py separately, the three options being

1w = miy ¢ ‘;mL,t_’ (652)
1y = my .t :mLt_* (65b)
U3 = My, (65¢)

where m,; is the invariant mass of the #7-pair.
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Fig. 13 The effect of different choices of the hard veto scale Q | for the
two shower algorithms, angular ordered (PS) and dipole (DS), respec-
tively when using MC @NLO-type matching. We compare predictions
for different choices of the resummation and factorization scale choice
ILH, using two choices for the hard veto scale in each case. The scales

Given that Q) directly affects the showering of the
production-level process, we expect to see the largest effects
due to the choice of Q| (which is either Q| = upg or
Q1 = l,) in distributions that reflect the jet activity in each
event. In particular an increase in Q | should increase the jet
activity in events.

Figure 13 shows the transverse momentum distributions
of the hardest jet, p; (j1), and second hardest jet, p (j»), in
production-level events showered using the angular-ordered
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are specified in the format (uy, Q) ) and each of the scale choices is
defined in the text. From top to bottom, left to right, we present the
p. spectra of the hardest and second hardest jets, produced with the
angular-ordered and dipole shower respectively

and dipole showers. These distributions are very sensitive to
the hard veto scale as it sets the upper limit on the scale of the
first shower emission and affects the available phase space
for subsequent emissions. An increase in Q| should produce
an increase in the p (j1) distribution, however above some
scale we expect all distributions to agree regardless of the
choice of Q) as the very hardest jets are produced as a NLO
real emission in H events. The scale choices are specified in
the format (uyg, Q).
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Fig. 14 Top: ti-pair transverse momentum measured by ATLAS in
semileptonic 8 TeV pp — tf events [64] and predicted using the
angular-ordered (PS) and dipole (DS) parton showers, respectively. Bot-

In Figs. 14 and 15 we show predictions of several observ-
ables measured in particle-level events obtained using the
angular-ordered and dipole showers. We highlight that the
hard veto scale is applied in the showering of the production
process only. The veto scale applied in the showering of the
decay process is simply the mass of the decayed particle, i.e.
the top quark, and is not varied. We therefore expect the pre-
dictions that show the largest change due to the choice of Q |
to be those for observables that have a direct dependence on
radiation from the production process.
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tom: The multiplicity distribution of jets with p; > 25 GeV measured
by ATLAS in semileptonic 7TeV pp — tf events [63] and predicted
using the angular-ordered and dipole parton showers, respectively

In Fig. 14 the two upper plots show the transverse momen-
tum distribution of the ¢7-pair, p (¢7), measured by ATLAS
[64] in semileptonic ¢7-events at /s = 8 TeV while the two
lower plots show the jet-multiplicity distribution measured
by ATLAS [63] in semileptonic ¢7 events at /s = 7 TeV.
The p, (¢7) distribution should closely reflect the behaviour
observed in the p, (ji) distribution while we expect an
increase in Q) to produce an increase in the rate of events
with high jet multiplicity.

The two upper plots in Fig. 15 show predictions of the gap
fraction, f(Qgsm), measured by ATLAS [66] in dileptonic
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Fig. 15 Top: the gap fraction measured by ATLAS in dileptonic 7 TeV
pp —> tt events [66], in veto region |y| < 2.1, and predicted using
the angular-ordered (PS) and dipole (DS) parton showers, respectively.

ti-events at /s = 7 TeV. The gap fraction is a measure
of additional jet activity in zz-events, i.e. jets which origi-
nate from quark and gluon radiation in the event as opposed
to the decay products themselves. The analysis used selects
only events in the dilepton decay channel so that additional
jets can be easily distinguished from the decay products, i.e.
two leptons and two bottom-tagged jets. The gap fraction is
defined as

n(Qsum)

N (66)

f(qum) =
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Bottom: combined lepton channel measurement of the Hr distribution
by CMS in semileptonic 8 TeV pp — ¢t events [65] and predicted
using the angular-ordered and dipole parton showers, respectively

where N is the number of ¢7 events that pass the analysis cuts
and n(Qgum) is the number of these events in which the sum
of the scalar transverse momenta of the additional jets in a
given rapidity range is less than the scale Qgup,. In particular
we present results for additional jets in the rapidity range
|y] < 2.1. A decrease in the gap fraction corresponds to an
increase in jet activity.

Finally, the two lower plots in Fig. 15 show the Hr dis-
tribution, as defined in Eq. (64), measured by CMS [65] in
semileptonic t7-events at /s = 8 TeV. Ht, which measures
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the number and hardness of the jets outgoing from an event,
is a sensitive probe of the jet activity in events.

We first consider the choice uy = w1 and compare the
results for Q| = u; to those for Q| = w,. In S-events g
is identical to p, and it is only in H-events with the very
hardest NLO emissions that u, is significantly larger than
1. It follows from the similarity of the two scales in most
events that most of the distributions in Figs. 13, 14 and 15
indicate very limited difference in the jet activity due to the
choice for Q| . The change in the p (j») distribution is due
to the difference between | and u, in those H-events with
the very hardest NLO emissions.

Next we consider ug = up for which u, > upg in all
events. In S-events we have p, = 22 and in H-events with
a low-p, NLO first emission we have , ~ +/8/3 u,. All
of the results indicate an increase in the predicted jet activity
using Q] = u, compared to using Q) = p» which agrees
with our expectation.

As expected the pj (j1) distribution displays a differ-
ence up to some scale, above which the distributions pre-
dicted using both choices for Q) come into agreement.
The jet multiplicity distribution predicted using the angular-
ordered shower displays a more limited difference due to the
choice for Q | than the distribution predicted using the dipole
shower. This is again due to the additional angular-ordering
requirement in the angular-ordered shower.

Finally, we consider the results for uyg = w3, the invariant
mass of the ¢ pair, which is a large scale compared to x| and
w2 and is larger than p, in the vast majority of events. All
of the results, other than the jet multiplicity distribution pre-
dicted using the angular-ordered shower, indicate a decrease
in the jet activity predicted in events using Q] = p, com-
pared to using Q | = p3. The difference in the jet multiplic-
ity distribution is again due to the additional angular-ordering
requirement in the angular-ordered shower.

To summarize this section, we have compared the effect
of using Q| = uy and Q| = u, for three different choices
of 1. We use u, to reflect the transverse momenta of the
objects outgoing from the hard process. As there is no first
principles choice for the hard veto scale Q |, the aim of this
discussion is to highlight that when we use MC@NLO-type
matching we have to make a choice for this scale. We have
demonstrated that the choice of the hard veto scale used in
MC@NLO-type matching can have a significant effect on
the prediction of observables of interest in ¢7 production at
the LHC. We have shown that, in general, using a smaller
hard veto scale reduces the predicted jet activity in an event,
whereas using a larger hard veto scale generally increases
the predicted jet activity. We leave further investigation of
potential scale choices to future work.

As far as the corrections to the decay and similar varia-
tions therein are considered we cannot find any significant

impact on the observables considered here, which are mostly
insensitive to changes in the decay system.

7.5 Observables sensitive to the decay process

While the production of top quarks is sensitive to the three
scales (g, 1s, Q1) investigated in this paper, the decay of
a given top quark is only directly impacted by the choice
of shower scale. The other scales are fixed at the mass of
the decaying particle for the decay process. While there is
always some interplay between the production and decay
process we consider here observables sensitive to the decay
process. For these observables we use the same settings as for
comparisons to data, including the full process simulation.
First we consider jet substructure in boosted tops, followed
by an examination of the separation of b-jets in ttbar events.

The energy and luminosity provided at the LHC allow
studies of top quarks with transverse momenta much higher
than the top mass. In such cases the decay products of the
top quark are generally not well separated. The b quark,
and decay products from the W boson are often collimated,
forming a single large jet referred to as a ‘boosted’ top jet.
This topology has several distinct difficulties compared to
the lower momentum cases.

Firstly, large-radius jets originating from top quarks need
to be discriminated from large-radius jets originating from
other coloured particles or from the decays of W and Z
bosons. This discrimination, referred to as tagging, typically
makes use of the substructure of the large jet. The three
pronged nature of the top-quark decay leaves a character-
istically three-pronged structure within the large jet which is
not usually found in boson decays or pure QCD jets. In prac-
tice many different techniques are used to tag large jets as
originating from a top quark. Whether it is through machine
learning applied directly to jet-algorithm inputs or techniques
based directly on high-level observables designed to provide
substructure information, these taggers all ultimately make
use of the distribution of energy within a jet to perform tag-
ging. The performance of taggers is often estimated from
simulation and it is therefore important to understand the
impact of the various choices made in the Monte Carlo sim-
ulation on the description of the substructure of large jets
originating from boosted top quarks.

As a probe of the sensitivity of jet substructure to the
Monte Carlo approach we examined the N-subjettiness
[67] of boosted top quarks produced with HERWIG 7. N-
subjettiness measures the degree to which the constituents
of a subjet are collimated along its N primary axes. Ratios
of N-subjettiness values for different values of N are often
used to tag large-radius jets. The ratios of 2-subjettiness to
1-subjettiness (721) and 3-subjettiness to 2-subjettiness (732)
were compared using different HERWIG 7 settings as shown
in Fig. 16. Variation of the shower scale, i, is found to
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make the largest contribution to the uncertainty envelope,
whereas the contributions from the other scale variations are
negligible as we expect for an observable mostly sensitive
to the top-quark decay. The choice of matching scheme is
also found to have very little impact, except for the lowest
737 bin. On the other hand, comparing the dipole shower
and angular-ordered shower algorithms shows more signif-
icant differences, comparable to the uncertainty envelopes
produced by scale variations.

In Fig. 17 we show predictions of the separation of the
two hardest b-tagged jets in semi-leptonic pp — ff events
at a centre-of-collision energy of 8 TeV. The separation is
defined as AR(jpy, joo) = v A¢2 + Anz, where A¢ and
An denote the difference in the azimuthal angle and pseu-
dorapidity respectively of the hardest and second-hardest
bottom-tagged jets. This observable is sensitive to both the
simulation of the decay and to the direction of the top quarks
that decay to produce the bottom quarks. We measure this dis-
tribution using a purpose-built analysis in which we require
at least one final-state dressed lepton, electron or muon, with
p1 > 30GeV and || < 4.2. Dressed leptons are created
by clustering each bare lepton with any photons within a
cone of AR = 0.1 around the lepton. We also require at
least two light-flavour jets and two bottom-tagged jets with
p1 > 30GeV and |n| < 4.2. Additionally we implement a
minimum missing transverse energy cut of 30 GeV, where the
transverse energy of each visible outgoing particle is defined
as E| = Esin(f) where E and 6 denote the energy and
polar angle of the particle respectively, measured in the lab
frame.

The dominant source of uncertainty on the LO predictions
in the region AR < 7 is the variation of Q | . This is because
the relative orientation of the top quarks, and hence the sepa-
ration of the bottom-tagged jets, is sensitive to hard radiation
from the production process. The uncertainty envelopes on
the NLO-matched predictions are in general smaller than
those on the LO predictions, and there is no single domi-
nant source of uncertainty. This is because the the hardest jet
from the production process is simulated to LO, rather than
parton-shower, accuracy. As we do not use the benchmark
settings for the full-process simulation, which is intended
for comparison to data, any conclusions about the effects of
different shower or matching algorithms on these plots must
be made with care. The uncertainty on this prediction due to
scale variations is small and our findings suggest that most
of the uncertainty is due to the sensitivity to the production
process.

With relatively few experimental analyses that measure
decay-process sensitive observables currently available, the
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Fig. 17 The AR(b1,b2) = A¢2 + An2 distribution, described in
the text, simulated for semileptonic 8 TeV pp — 11 events

evaluation of the uncertainty on predictions of such observ-
ables is an area for future investigation.'6

8 Summary and outlook

In this work we have presented a detailed study of NLO
plus parton shower matched predictions for top pair pro-
duction at the LHC in the HERWIG 7 event generator. We
have considered various sources of uncertainty, including
the matching algorithms themselves for which two options,
a subtractive (MC @NLO-type) and multiplicative (Powheg-
type) paradigm can be used within HERWIG 7, as well as all
scale choices involved. We have not only considered NLO
corrections to the production process, but also in the decay
process. Both shower modules in HERWIG 7 are now able
to handle radiation in both the production and the decay of
top quarks, and we have used this paper as an opportunity to
present a new treatment for radiation from heavy quarks in
the dipole shower.

We have found that no single scale variation encompasses
the entire set of independent variations, therefore all sources
need to be considered to obtain a reliable estimate of the
uncertainty on predictions. We have explicitly shown that
NLO matching provides improvements over a LO plus par-
ton shower simulation where expected. Higher jet multiplic-
ities, however, do suffer from large uncertainties, even using
NLO matching, a fact which should be considered when
using tuned predictions. We have further considered boosted
topologies, looking at observables that are sensitive to the
decay process, focusing on N-subjettiness ratios which high-
light the internal structure of the jets.

Particular attention has been paid to the choice of the hard
veto scale and the profile scale. This is an ambiguity in match-
ing algorithms which has not been addressed extensively in
the literature (with some investigations presented in Ref. [11],
and a more elaborate leading-order analysis presented in Ref.
[24]) but plays an important role in the handling of real-
emission corrections present in the NLO matching. Inappro-
priate choices can lead to artificially suppressed or enhanced
radiation, and we have found that scales which identify the
hard objects in the process provide the most reliable results.

The main purpose of this work is to highlight the uncer-
tainties and ambiguities associated with NLO matching,
which need to be compared between different shower and

16 In Sect. 4.2.4 we use the process ete~ — 17 at production threshold
to validate the new decay kernels in the dipole shower, where the reduced
radiation in the production process allows us to construct analyses that
are very sensitive to the treatment of the top quark decay (see Fig. 5).
For pp — tt we found the ability to assess the impact of the matrix
element correction to the first emission from top quark decays is limited
by the increased sensitivity to the production process which dominates
most observables.
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matching algorithms. The HERWIG 7 event generator pro-
vides unique capabilities to quantify the differences between
predictions obtained using different setups and to benchmark
variations against each other. These sources of uncertainty
should be taken into account when comparing predictions
against data, also in view of an improved simulation based
on multi-jet merging, which can more reliably predict higher
jet multiplicities. Being beyond the scope of this paper, a
multi-jet merged study, considering a similar set of varia-
tions, would thus be a logical follow-up for future work.
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A Dipole shower kinematics

A.1 Alternative formulation for the final-final dipole
kinematics

The physical momenta of the partons following a splitting
from a massive final-final dipole, written in terms of the

splitting variables z; and y;; x, are

qgi = A;Q+ki + By, (67a)

@ Springer

qi =A;0 —ki + Bjv, (67b)
qr = A Q + By, (67¢)
where
17 s
A = < |mi + 3 (vijk +zi (1= yij0) |, (68a)
If, s
Aj = 8 _m] + > 1=z —=yij0) |, (68b)
If, s
A= —|mi+ (= yijie) |, (68¢)
s L 2
1 s
B; = B sA;jAg — Ezi(l = Yijk) | (68d)
1 s
Bj = —sAjAr— -0 =z = yij0) ), (68e)
By, 2
1/, 5 SR
By = 3 mk+§(l = Yijk) | —mg, (68f)
and the 4-vector
V| = (69)
is expressed using the Kallen function
Ax,y,2) = x>+ 97 + 22 —2xy — 2xz — 2yz7. (70)

Note that while it is trivial to write an expression p| =
p1(zi, yij k), this expression is cubic in y;; x which leads to
a complicated analytic equation for y;; x = yijk(PL, Zi)-

A.2 Final-final dipole kinematics
A.2.1 Completing the formulation

In order to complete our formulation of the splitting kine-
matics in Sect. 3.3.1 we require expressions for the scaling
parameters x; and x;; in terms of the variables p and z. We
first write an expression for the virtuality of the emitter and
emission produced in the splitting

2 _ (. N2 1 2 2 2
Q= (¢ +4;)" = -2 [PL‘*‘(l —2)m; +zmj].
(71)
Defining the variables A;; and A as
2
m,% m;;
Me=14—, dij=1+—, (72)
Sijk Sij.k

we derive the following expressions for the scaling parame-
ters
2
my (1 —xi)

xij=1— L (73)
Sijk Xk
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2
m3 Q,Zj mi
+ )Lij)uk—i-f—— —4)»,']')»/(3
ij,

(74)

Finally we require expressions for the splitting variables
z; and y;; x in terms of the variables p | and z. We write y;; i
as
[Pi + (1 —2)*m? + zsz] , (75)

1
Yk =570 =2

where the invariant quantity § is

§=s—m,~2—m;—m%. (76)

In order to express z; in terms of p; and z we write

20; -
4= Ik (77)
(1 = yijr)s
where the denominator can be written as
(1 )S o
v )5 =
Yij.k =2
2.2 2.2 2
[Z(l—z)—(l—z) mi —z°m; —pL],
(78)
and the numerator is given by the expression
ml% 2 2
2q; - qk = ZXijXkSijk + ———— (Pl + m,») . (79)
XXk Sij k

A.2.2 Phase-space limits

In order to allow us to efficiently generate values for p; and
z according to the splitting kernels we need to express the
single-particle emission phase space and the limits on it in
terms of these variables.

The limits on the dipole splitting variables z; and y;; x are
given in Ref. [34] and we include them here to provide a
complete reference,

2m,~mj
Yijk,— = 5 (80)
2my (/s — mg)
Yijk,+ = 1 - f , (81)
2m? + SYijk
ziaVijk) = i (£ vijivije), (82)

2 2 <
2 [ml- +m; +syij,k]

where the relative velocities v;; x and v;;,; are expressed as
functions of y;; «,

- 2
\/[Zm,% +5(1 — yij,k)] — 4m1%s
s = yijx)

242 2.2
S<YViik 4’"[’”,’

Vijk = , (83)

(84)

Viji = - 3
SYijk + 2m;

The limits on p, and z follow from the inequality y;; x <
Yijk,+s

— ! 2 .2
PLmax = m\/x (m2.m2 (5 =mi2) . (85)

1
2 (V5 = mi)’

:t\/k (mlz, m?, (s — mk)z)

4 = [mlz - m? + (Vs — my)? (86)

. &7

A.2.3 The single-particle emission phase space

The single-particle emission phase space required to express
the branching probability in Eq. (18) is written as

-2
s d¢
(1 = yijx) d)’ij,kdzig .

dg; =
1= Ton? T
)»(s,mij,mk)

(88)

As we consider only spin-averaged kernels the azimuthal
angle, ¢, is averaged over in the phase-space integration and
we do not consider it explicitly in the following discussion.

Using the above expression for the single-particle phase
space we express the branching probability as

1 1
dPbranching = m(vij,k (zis yijk)) ( )
1 L J L )

SYijk
5 dyij,k
x (1 — yiju) —2=dz;,
2 2 Yijk
A (s, mi, mk)

(89)

where we can express the phase-space integration in terms
of the generated variables using the replacement

dyijk pi
Vir dzi — | — — 2.2, 2.2
ij.k PJ_+(1 Z) m; +z mj
212 2
1 mz Q5 d
x| 122 U 1L 90
S(L = yijx) XijXesijk | pl
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A.3 Final-initial dipole kinematics
A.3.1 Phase-space limits

The upper limit on x;; 5 is,

Sijb
2 . VAN
Sij.b — My + (m; +mj)

Xij b+ = oD

We can derive a lower limit on x;; ;. We first write the
momentum of the incoming proton as P and the proton
momentum-fraction carried by the spectator prior to the split-
ting as x;. We can write

1

Xij.b

- 1
Pb = (xsP) < P, 92)
Xijb

qp =
hence we require
xij,;, > Xg . (93)

From the inequality in Eq. (93) we derive the following
limits on the variables p and z

s 2 m2
b m;
pi,max:%)‘ 1’ /l ’ /] ’ (94)
Sijb Sijb
[ omem
=1+ ;
2 Sijb
2 2 2
m;  m;
+ a2 L) - (95)
Sijb Sijb P71 max

where A is the standard Kallen function and for convenience
we have defined the modified invariant

1—x
Stin :sij,,,< S) +m} (96)
Xs
A.3.2 The single-particle emission phase space

The single-particle emission phase space required to express
the branching probability in Eq. (28) is written as

| d¢
dgj = @2171‘/ 'deZidxij,bg . 97)
As we consider only spin-averaged kernels the azimuthal
angle is averaged over in the phase space integration.

Using the above expression for the single-particle phase
space we express the branching probability as

L fo(xs/xijp)
1672 fb(xs)

dPbranching = <Vz}j) (Zi’ xij,b))
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1
X ——————dzidxij . (98)
xijp(L=xijp)

Noting that z; = z we can express the phase-space integration
in terms of the generated variables using the replacement

1

—dZid.xl' ib
Js
xijb (1 = Xij,p)

a1 dp?
|2 2 2 2 5 dz.
pL+(l—z)mi+zmj—z(l—z)mij Pl

99)
A.4 Initial-final dipole kinematics
A.4.1 Phase-space limits
The lower and upper limits on u ; are
uj+=0 (100)
1-— xjk a
wjp = ’ : (101)
T = kel = mi/sajp0)
and the upper limit on x jx 4 is
Xjka+ = 1. (102)

Following an analogous argument to that used to derive the
inequality in Eq. (93) we derive a lower limit for x jx 4
Xjka > Xe (103)
where x, is the proton momentum-fraction carried by the
emitter prior to the splitting.

From the inequality in Eq. (103) we derive the following
limits on the variables p and z

s kz 1
2 aj,
ax = , 104
pJ_,mdx 4 |:m£ +s[;j’ki| ( )
1 p2
ze =5 | U+x)E (1 —x) | . (105)
1 ,max

where for convenience we have defined the rescaled invariant

r_ 1 —x,
saj,k = Saj,k X .
e

A.4.2 The single-particle emission phase space

(106)

The single-particle emission phase space required to express
the branching probability in Eq. (36) is written as

3 do
dg; Ga - prdujdxjias— - (107)

T 1672
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As we consider only spin-averaged kernels the azimuthal
angle is averaged over in the phase-space integration.

Using the above expression for the single-particle phase
space we express the branching probability as

1 fa(Xe/Xjka) | aj .
677y k(b))

1 1
X_
uj x]'k,a

deranching =

dujdx]-k’a s (108)

where we can express the phase-space integration in terms
of the generated variables using the replacement

1 1

dujdek’a —

Uj Xjk,a
1
2 2
m dp
uj + Xjka = Uj¥jka [ 1= —F —5tdz . (109)
Saj.k )2t

B Generation cut for boosted top analyses

A difficulty for high momentum top quark simulation is that
of CPU time required to populate the high-p | region of phase
space targeted by these analyses. Given the steeply falling
tf cross-section as a function of the transverse momentum
of the top quark, analyses targeting boosted topologies are
typically targeting ~ 1% of the total phase space or less.
Simulating the inclusive phase-space can therefore be very
inefficient, requiring orders of magnitude more events to be
fully simulated than are actually of interest. In order to reduce
the resources required for simulation a simple cut mechanism
is available in the MATCHBOX framework of HERWIG 7. This
mechanism makes several options available to improve the
efficiency of producing high-p | top quarks.

We can use the existing cut infrastructure in HERWIG 7
to implement a generation cut to enhance the production of
events that include a boosted top quark or antiquark. We
create a ‘MatchboxFactoryMatcher’ thatidentifies top quarks
and antiquarks and associate this with the existing ‘JetFinder’
and ‘JetCuts’ objets. Then we assign the existing ‘FirstJet’
and ‘SecondJet’ objects to the ‘JetRegions’ of the ‘JetCuts’
object. As we have assigned the matcher of the ‘JetCuts’
object to be our new top quark matcher, the ‘FirstJet’ and
‘SecondJet’ actually identify top quarks. Therefore we can
set transverse momentum and rapidity cuts on the top quarks
by setting the cuts on the ‘FirstJet’ and ‘SecondJet’. The code
snippet required to do this is included below.

Example runs with cuts on the transverse momentum of
the leading top quark of 200, 300 and 600 GeV were per-
formed to test the efficiency. They showed no significant
change in the distributions of weights. For a centre-of-mass
energy of 13 TeV kinematic bins well beyond the cut val-
ues increased their overall statistics by factors of ~ 5, ~ 20

and ~ 500 respectively for the same total number of events,
and relative errors were reduced accordingly. No appreciable
impact on the computing time per event was found, allowing
a significant reduction in computing power to achieve the
same or better statistical power.

A code snippet of an input card to produce similar cuts is
given below.

HEHHHSHAH SRR AR AR AR H R R
## Cut for boosted top analyses

HHHSHAHA R R
cd /Herwig/MatrixElements/Matchbox

# Create a new particle group consisting of top
# quarks and antiquarks

do Factory:StartParticleGroup ttbar

insert Factory:ParticleGroup 0 /Herwig/
Particles/t

insert Factory:ParticleGroup 0 /Herwig/
Particles/tbar

do Factory:EndParticleGroup

# Create a new matcher and associate it with the
# top quark particle group

create Herwig::MatchboxFactoryMatcher
TopAntiTopMatcher

set TopAntiTopMatcher:Factory /Herwig/
MatrixElements/Matchbox/Factory

set TopAntiTopMatcher:Group ttbar

# Set the matcher of the JetFinder and JetCuts
# to the new top quark matcher

set /Herwig/Cuts/JetFinder:UnresolvedMatcher
TopAntiTopMatcher

set /Herwig/Cuts/JetCuts:UnresolvedMatcher
TopAntiTopMatcher

cd /Herwig/Cuts

# This snippet sets up JetFinder and JetCuts
read Matchbox/DefaultPPJets.in

# Set up the JetRegions and cuts

# Note: FirstJet and SecondJet are actually top
# quarks/antiquarks

insert JetCuts:JetRegions 0 FirstJet

insert JetCuts:JetRegions 1 SecondJet

set FirstJet:PtMin 0.*GeV
do FirstJet:YRange -5.0 5.0

set SecondJet:PtMin 0.*GeV
do SecondJet:YRange -5.0 5.0
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