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The direct detection of gravitational waves crowns decades of efforts in the modeling of sources and of
increasing detectors’ sensitivity. With future third-generation Earth-based detectors or space-based
observatories, gravitational-wave astronomy will be at its full bloom. Previously brushed-aside questions
on environmental or other systematic effects in the generation and propagation of gravitational waves are
now begging for a systematic treatment. Here, we study how electromagnetic and gravitational radiation is
scattered by a binary system. Scattering cross sections, resonances and the effect of an impinging wave on a
gravitational-bound binary are worked out for the first time. The ratio between the scattered-wave
amplitude and the incident wave can be of order 10~> for known pulsars, bringing this into the realm of
future gravitational-wave observatories. For currently realistic distribution of compact-object binaries, the
interaction cross section is too small to be of relevance.
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I. INTRODUCTION

A. Precision gravitational-wave physics

The direct detection of gravitational waves (GWs) [1] is
the first step on a long road to a new understanding of the
gravitational universe [2]. Future, higher-precision obser-
vations of inspiraling black holes or neutron stars, will
inform us about the number and origin of these objects,
their nature and provide new information about strong-field
gravity [3,4]. Among others, the observation of inspiraling
compact objects will determine their mass and spin to levels
which are all but incredible by astronomy standards [5,6]; it
will impose strong constraints on nontrivial radiation
channels [7-10], and it may bring information on the
local dark matter density where the process is taking place
[11-13]. Precise measurements of the gravitational wave-
form can tell us if the objects have nonzero tidal Love
numbers, potentially discriminating black holes from other
hypothetic compact objects [14—17]. The final, ringdown,
phase will allow us to test general relativity [18-20], and
even to perform tests of the “black hole” nature of the
object [16,17,21]. For a review see the recent roadmap [2].
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The possibility to extend our knowledge in such funda-
mental questions can only be realized via precision GW
physics. This enormous potential for new science requires
the careful control of any systematic factors. Environmental
effects, such as accretion disks, nearby stars, electric or
magnetic fields, a cosmological constant or even dark
matter, all can possible contribute to blur what is otherwise
a clear picture of compact binaries. The effects of such
environment on the generation of GWs was investigated
recently [12,13].

B. Scattering

The effects of the environment on the propagation of
GWs are usually believed to be negligible.1 If the medium
is modeled as a perfect fluid, then GWs do not couple to it
and are therefore neither absorbed nor dispersed by such an
environment [27,28]. These calculations have been redone
for viscous fluids and very recently for some particle dark
matter models [29,30]. See also [31,32] for more promising
results for dark matter models beyond the WIMP paradigm.

Here, we wish to investigate the scattering of radiation by
individual obstacles, in particular a gravitationally bound
binary such as the one depicted in Fig. 1. This subject

'An important counterexample are some models of dark
energy. In fact, the recent observation of [22] has been used to
rule out many candidates [23-26].
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FIG. 1. Scattering of an incoming GW by a binary. The GW
affects the motion of the binary, which in turn reradiates and
contributes to a nontrivial scattered wave.
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remains largely unexplored, but is the gravitational counter-
part of well-known and observed electromagnetic (EM)
scattering phenomena (such as the Rayleigh scattering of
light responsible for blue skies). GW scattering is sup-
pressed by the small value of the gravitational coupling
constant. However, our ability to do precision measure-
ments has increased to unforeseen levels and will continue
to do so in the next decades. Pulsar timing, for instance,
holds the promise to overcome the smallness of this
coupling and detect minor variations in the time of arrival
of the radio-wave from a background of GWs [33]. On the
other hand, resonances between the impinging GWs and a
binary system may enhance the effects to measurable
levels. This motivated a few studies in the past [34,35],
both focusing on resonant interaction between a passing
GW and a binary.2 An analysis for secular effects of a
stochastic background of GWs was performed in [38].
Here, we will take the program a step further, by computing
the binary contribution to the reradiated field, thereby truly
calculating the scattered wave.

C. Executive summary

For the sake of clarity, we outline here our main results.
We start by working out how an incoming EM wave affects
a rotating dipole. This is a classical treatment that only
requires linear perturbation theory. We use the change in
the dipole moment induced by the incoming EM wave to

Our work was also motivated by a study suggesting that the
modes of oscillation of stars could be excited by passing GWs
[36]. The master differential equation that rules these excitations
is akin to our radial displacement in the binary, due to the
incoming GW. In fact, in both cases one gets resonances induced
by the scattering process. Also, in the single star case there are
reasons to expect that the GW signal can be the source of
measurable deviations in the acoustic oscillations of the stars
[37]. Moreover in the case of a binary made of two stars, if the
frequency of the excited mode is comparable with the proper
orbital frequency, the scattering process can leave a signature
both on the binary as a whole and on the single compact bodies in
the couple. However, this topic needs further investigation to be
properly clarified.

compute the scattered radiation and the total scattering
cross section. All these quantities are evaluated for an EM
wave propagating along the direction of the observer and
with the electric field oscillating in the plane of the orbit. In
the high frequency limit, we recover classical results
concerning scattering off oscillators.

The equations of motion for two pointlike masses on a
bound orbit, (94), are found encapsulating the GW pertur-
bation within a PN framework. This procedure highlights
the nonlinear character of the Einstein equations. For GWs
which are homogeneous on length scales larger than the
characteristic orbital distance between the masses, we find
the same equations of motion as those described by Turner
[34] and Mashhoon [35]. Using an angle-action formalism
to treat the variation of the orbital parameters, we find that
the changes in the orbital parameters are linear in the
incoming GW. Likewise, resonances between the binary
and the incoming GW happen at certain discrete GW
frequencies (integer multiples of the proper orbital fre-
quency), in agreement with previous literature [34,35].

We extend previous results in an important direction, by
including dissipative terms and evaluating the scattered
GW (C1), (C2) and the scattering cross section (144) for
two physical configurations: (i) for GWs propagating along
the direction of the angular momentum of the system (i.e.,
oscillating in the orbital plane), and (ii) for GWs propa-
gating perpendicularly to the angular momentum vector
(i.e., GW traveling parallel to the orbital plane).

D. Geometrical conventions

Our calculations and description of the problem involve
specific but different frames. To avoid confusing the reader,
we summarize here all the frames that we are going to use
through all the paper. Consider an observer located in a
direction N, whose basis is (P,Q,N). This will be called
the frame of the observer, and it is fixed with respect to the
observer itself. We refer the reader to Fig. 2. We will study
binaries, in which the motion of the individual bodies under
central forces (EM or Newtonian) are described by ellipses.
We choose as unit vector P the one that points toward the
direction of the ascending node A/. In the presence of a
perturbation, this freedom to choose the ascending node no
longer exists and we choose to keep the basis (P, Q,N) in
its unperturbed configuration. Furthermore, we define y as
the angle between P and the ascending node NV, ¢ the angle
between the ascending node and the direction 7 and 1 the
angle between N and L, where L is the angular momentum
vector of the binary. The second frame will be the one that
describes the motion of the reduced mass with respect to the
center of mass. This frame is defined with respect to the
following directions: n is the radial direction with respect to
the orbital motion, A is the tangent one, while [ is directed
along the angular momentum direction L. From classical
mechanics, the following relations between the binary
center of mass basis and the observer basis hold [39]:
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FIG. 2. Plane of the orbit with respect to the fixed observer
basis (P,Q,N). The angle { is the polar angle describing the
motion of the reduced mass y in the orbital plane, while L and :
are respectively the total angular momentum and the angle
between this vector and the direction N. The total mass is
denoted m.

n = (cosy cos{ —siny cosisin ()P

+ (siny cos{ + cosycosisind)Q + sinesin{N, (1)

A = —(cosy sin{ + siny cosicos )P
+ (cosy cosicos ¢ —siny sin)Q + sinzcos¢N, (2)

I = siny sin P — cos y sin1Q + cos V. (3)

Note that the unperturbed case corresponds to the con-
figuration = 0 and : = cst. In this configuration, the
velocity in the center-of-mass frame is

v =i+ r({ +ycost)A+ r(ising —yrsinicos ), (4)

where r is the relative position. The frame (n, 4,1), called
CM frame in the rest of the paper, has time-varying basis
with respect to the fixed observer frame. Lastly, we also
introduce the proper frame of the wave (e,, e, e.), useful
for the definition of the polarizations in both the EM and in
the GR case. We denote a the angle between the P-axis and
the ascending node N\, § the angle between the ascending
node and e, and k the angle between e, and N. We then
have the following relations between the observer basis and
the incoming GW basis:

e, = (cosacosf — sinacosk sin )P

(sinacosf + cosacosksinf)Q + sinksin SN, (5)

e, = (cosasinf} + sinacos k cos f)P

(sinasin f# — cosacoskcos f)Q — sinkcos fN,  (6)

e, = —sinasinkP + cos asinkQ — coskN. (7)

Figure 2 sketches the frame of the observer and of the CM.

Finally, we will use the Keplerian parametrization of the
orbit, and we perform an expansion for small eccentricities.
Despite this, we will mostly concentrate on the zeroth order.
Here are the parametrizations we use,

r=a(l - ecos(u)), (8)
{ = v =_2arctan [(g) " an @ﬂ ©)
[=n(t—1)) = u—esinu, (10)

where a is the semimajor axis, e is the eccentricity, # and v
are respectively the eccentric and true anomaly, [ is the
mean anomaly, z is the mean motion and 7, is the instant of
passage at the perihelion. At Newtonian order we have that
n = g, where m, is the orbital frequency of the binary
system.

E. Acronyms and notation

Here we summarize the recurrent acronyms that will be
used in this paper:

GR general relativity

GW gravitational wave

EM electromagnetism

CM center of mass

SW scalar wave

2p dipole

PN post Newtonian

TT transverse traceless

LL Landau Lifshitz

LW Liénard Wiechert

We will also often abbreviate the following trigonometric
functions:

cos(a+f) = cpip and  sin(a + f) = 5444

Furthermore, variables in bold are to be intended as vectors,
while the corresponding normal ones are their correspond-
ing magnitude. We use Greek letters to represent space-
time indices and Latin letters for three-dimensional spatial
indices. As the spatial indices are moved with the delta

metric §;;, we indifferently write them in a lower or upper
position.

jo

II. SCATTERING OF
ELECTROMAGNETIC WAVES

We will start with an old and venerable problem, that of
scattering of EM waves off obstacles [40]. This incursion
will set the stage for both the scalar and gravitational case,
while sharing some (many) features in common. We want
to evaluate the effect of an incoming EM wave on a binary
system of two electric charges orbiting at a frequency .
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The monochromatic EM wave propagates along the z
direction and has a frequency €.

A. Unperturbed dipole physics

Consider a system of two charged particles, of mass
m; and m,, that interact through the product between
the electromagnetic potential A# = (®/c,A) and four-
current J, = (cp.j), where p is the charge density
[p = q;6°(x —x;)] and j=pv is the current density.
We take these charges to interact only through the
Coulomb force in Minkowski flat spacetime with metric
Mo = diag(—=1,1,1,1).  Using x* = (x%,x', %%, x%) =
(ct,x,v,7) as coordinates, where ¢ is the speed of light
in vacuum, the action that describes this system is

F, Fw
S= [ &xdr|————AlJ2 — A2)]
4uq H up

—cz/dr(ml +my), (11)

in which g is the magnetic vacuum permeability, F,, the
antisymmetric electromagnetic tensor defined as F,, =

9,A, —8,A, and dr =dr\/1—v*/c?, where v* is the
square of the three-velocity v = dx'/dz. From now on,
we restrict ourselves to the small velocities case, dropping
all the special-relativistic terms. With all these assumptions,
the ith component of the equations of motion for each
particles is

- i 511612("2—"1)i
, = 12
s \"z—r1\3 12)

where i = (1,2,3), ry(y) represents the position vector of
particle 1(2), q,, g, are the electric charges and the double
dot sign means a second derivative with respect to time 7. In
the center-of-mass frame, the center of mass vector position
has zero second time derivative (R = 0), while, defining
the relative position vector with respect to the radial
direction defined in Sec. ID as r=r; —r, = rn, the
equations for the relative motion become

. lagiq
r:——n, 13
p r? 13)

where p is the reduced mass of the system,

__mmy (14)
nmy +m2‘

We define the total mass as m = m; + m,. Since the
Coulomb force is central, the total angular momentum
of the system is conserved and the motion happens on a
fixed plane. The solution to the equations of motion, in
analogy with the Newtonian ones, have the characteristic

shape of a conic section, depending on the energy of the
particles. Since we are interested in bound systems, we
assume that the energy will be the one associated with
bound orbits.

We focus on the case in which the dipole is composed of
two particles with equal and opposite charge and equal
mass,

—42 =41 =4,
my :mzzM. (15)

From Egs. (12), we find that the center of mass is fixed, the
angular momentum of the system is constant and the
motion lies in the orbital plane. The orbit of the binary
can be directly obtained from

412 24?

f_M2r3 = T2 (16)

where L = Mr2¢/2 is the magnitude of the angular
momentum vector of the system and ¢ is the angle
describing the motion of the reduced mass in the plane
of the orbit (polar angle). Defining the dipole vector (d) as

79 q
d=qr\+qr, = M<m—'l——2>r, (17)

my

where r is the proper radius of the system (relative position
vector in the dipole case). Introducing the vector between
the CM and the observer, of magnitude R, and unit
direction RO, the generated EM wave has a vector potential,
electric field and magnetic one given by

1 . 1 . . 1 . . A
A=—d, H=——dxR,, E=——(d xXR;) XR,.
CR() C2R0 0 62R0< 0) 0
(18)

This is a well-known result, a dipole emits only if it is
accelerated. Finally, the expression for the intensity of the
emitted energy is given by [40],

3

H? 2 .
dl = CER(Z)dO - 1= 3Td2, (19)

where we averaged over one period of the orbit and do is
the solid angle in the R, direction.

B. Scattering from a rotating dipole

1. Initial considerations

The binary above is now hit by an EM wave described by
a vector potential Af,. For definiteness, the wave propagates
along the e, axis, parallel to the direction of the observer N
and to the angular momentum of the system L. In this way,
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the x-y plane of the orbital frame, of the observer and also
of the wave are all parallel between each other and
perpendicular to the z direction of the observer.

The action (11) needs to be complemented by adding
both the scalar and the vector potentials of the perturbation,

o D

D, @
Al AR A = (72+79,A2+AQ>. (21)

Using the definitions of EM fields® and potentials,

E:—VQJ—%A and B=VXxA, (22)
one finds
ma, = q,E, + q1Eq + q1vi X By + q1vi X Bg,  (23a)
myay = qE| + qEq + q2vy X By + qav, X Bg. (23b)

Dropping the last two terms of Eqgs. (23) by assumptions
of small internal velocities compared to the speed of light,
we get

ma, = q,E, + q,Eq, (24a)
mya, = @;E| + q,Eq. (24b)
Finally, in the CM frame we have
q1+q>

=1 - (F , 25
en = (Bg)ey 25)

. lqiq (Cll 612)
F=—2, (AL BV E) 26
L (= ) Eaews (6)

where (Eq )y, means that the quantity under consideration
has to be properly expressed in the CM frame. Using the
equations of motion (24) and transforming all the quantities
in the CM frame, we find the total angular momentum
variation in time,

dL 2q

T (Eq)cm- (27)

Here, we used already the specific setup described
by Eq. (15).

*In order to pass to the old vectorial picture, in this section
B = poH is the magnetic field in vacuum.

2. Equations of motion

As we have shown in Eq. (27), the time variation of
the angular momentum is given by the cross product of
the relative position vector and the external perturbing
force Fg,

LerszQ. (28)

An electric field on the plane of the orbit changes the
magnitude of the angular momentum, but not its direction.
We should highlight that this simplification still captures
the dynamics of the scattering, allowing us to give an
analytic treatment of the process. In order to further
simplify our calculations, we consider the unperturbed
motion happening in circular orbits. Therefore, the equa-
tions that describe the perturbation of such kind of
trajectory are given by

: 2q*  qE
Y Q
F=r¢ :_W+7(0y—9r—¢(1) +Cpiai-pn)s  (29a)
. . qE
2rp+rep = ko (sy—Qt—cﬁ(t) + Sy—&-Qt—qS(t))? (29b)

M

where y is the angle between the direction of polarization of
the electric field and the P direction, in the plane of the
orbit. Here, and in this section only, ¢ is the polar angle
describing the orbital motion in the x-y plane. The constant
Eg, is the amplitude of the electric field. The presence of the
perturbation in the right-hand side of the second equation
spoils the constancy of the angular momentum but, at first
order in Eq, one can find the relation between (,/) and L. Let
us write

. . 21d /M . 21d
Vdtrd=—-S (5 r2¢> =——2L(1). (30)

where L(t) is the angular momentum magnitude. Since
without any external perturbation the angular momentum is
conserved (and equal to a constant L), we can expand L(¢)
in powers of the electric field,

L(t) = L, + EqL(t) + O(E%). (31)

Making use of this, a similar expansion for (z) and for ¢(¢)
can be found,

r(1) = r. + Eqg(t) + O(E), (32)

¢(1) = ¢(0) + 1 = $(0) + t(wg + EaZ, + O(ER)),
(33)
where r, is the orbital radius of the unperturbed motion,

$(0) = ¢y is the initial angular position of the reduced
mass in the x-y plane and Z, is the first order correction in
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the orbital frequency due to the external perturbation. Using
Egs. (29) we find

. qro
Li(t) = B3 (Sy0—po—t@—twy + Syo—pot1@-tay)>  (34)

where we kept only the zero order in the ¢(z) expansion
because L; is already a first order quantity. For the

unperturbed circular motion, ¢ = w, is constant. Thus,
integrating Eq. (34) with ¢(f) = wyt, one finds

Ld0=lﬁﬂLWH

DoCy—g,
_qr°< i 2t
Q" — wyp

Cy—po+1Q—1a
2(wy — Q)

67—450—’9—’070)

Finally, the total angular momentum to first order in the
external field is

L(t) = L.+ EqL(1)

_ LO n E‘quoﬂl)o(f‘},_qg0

Q-
Eaqr. |Crprio-wy | Cry-imion | (35)
2 wy — @ + €

From the definition of angular momentum, from Egs. (32)
and (33) and up to O(E3),

L(1) = (o))
M

M
= E rga)o + (? rc(roZp + 20)09(2‘))>EQ- (36)

We can compare with Eq. (35) order by order, to get
|

3 4 3.2
2riwyCyg,  T205(R = 300)C)_ 4 11010,

M
LO = ?rga)o, (37)

at order zero, and

7 — q 2w0c7—¢0 Cy—gpo+1Q-twy | Cy—dy—1Q-tey
P Mr, \ Q2 — W} (wy — Q) (wy + Q)
2 t
_ wog(t) ) (38)
rO

Now that we have used the Keplerian polar equation to get
the angular perturbation due to the incoming wave, we

substitute this result in 4;72 in the radial equation (29a) in
order to find the equation governing ¢(t). Then substituting
the expansions given by Eqgs. (32)—(33),

§(1) = ro(wg + EqZ,)?
S
M(r, + Eqq(t))

qEq
+ 7 (Cy—Qt—(/)O—mOt + CerQt—(/)o—(nOt)? (39)

we get, at zero order in Eq, the relation between the
Newtonian orbital frequency and the characteristics of the
binary,

2 2

Wy = .
0 M3

(40)

Substituting M obtained by the equation above in the first
order expansion of Eq. (39), we find a differential equation

for g(1),

rg’a)(z)(Q + 3w0)cy—¢0—l§2—two

g(t) + w%g(t) + q(w(z) — Qz) =

2q(Q - ay)

2q(Q + wy) (41)

The equation above represents a driven harmonic oscillator with multiple resonant frequencies, whose solution is given by

3 2
r [2wp Cr—y

2
g (Q - 3600) Cy—go+1Q—1a,

a)(% (Q + 30)0) Cy—(/)(,—tQ—lwo

g(1) = ky cos(twy) + ky sin(tawy) + Jlo-n _

in which k; and k, are integration constants. We set in the
following the two constants of integration to zero. Finally,
we can evaluate Z, considering the explicit solution for
g(t) given by Eq. (42) with k; = k, =0,
; r 3w3C,—g, _ w§(Q — 4Qwgy + 6W5) ¢y py 1191w,

Pg |l - Q2 2Q(Q = 2m)) (Q — )

a)(z)(g22 + 4Qw0 + 6w(2))cy—(/)0—t£2—tw0
2Q(Q + 2wy (Q + wy)

(43)

2Q(Q* - 3Qa, + 20?)

- , (42
2Q(Q% + 3Qwy + 2w}) (42)

[
The roots of the denominators in the solution for
g(t) are

{—20)0, —y, 0, @, 2(1)0}

The negative values are a solution because of the symmetry
of the problem, but they are not adding any physics to the
positive ones, so we will consider only 0, @y, 2w,. Let us
evaluate the limit of r(z) for these roots,
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2Eqric,_ Eqrl
limr(t) = r, — QoTr=h | af

7
4 Cr—gpo—tay

Q-0 q q
EQ 7’% 3
- (E ta)Os},_(/)O_t(l,()) R (443.)
. EQI’E 1
dim r(r) =r, —— = <§ Cy—¢o—2two>
Eqr?
+ 22 (1wgs, g, ) (44b)
lim r(t) = . (44c¢)

Q—2my

In the high-frequency limit, the reasoning described before
does not hold because the effect of the external field lives
on a time scale much shorter than the one associated with
the proper rotation of the binary, such that we can neglect
the free motion of the system during one (or few) period of
oscillation of the external electric field. So, we can just
consider that

(45)

51_1)20 r(t) =r,.
From these results we see that resonant phenomena appear
depending on the ratio between the incoming and the
orbital frequency. Especially, in the Q = O limit the radial
motion of the reduced mass has a secular instability given
by the last term of Eq. (44). This term can be understood
thinking that the low frequency limit of our scattering
corresponds to a perfect dipole inside a capacitor: in the
large time limit, the two particles are dragged away from
each other. In the Q = w, case there is also such a secular
term, but it can be set to zero with an appropriate choice of
the initial condition. Finally, the Q = 2®, case corresponds
to a proper resonance, meaning that the amplitude of the
motion for that value is infinite.

3. Scattered fields

Having solved the perturbed equations of motion, we can
find the scattered electrical field, energy and the total cross
section. When the system interacts with the external
perturbation, the total field will contain a perturbed dipole
term. In addition, the CM may contribute to the scattered
field; we denote this contribution Ejy, where LW stands
for Liénard—Wiechert,

E qierea = E2p +Ey. (46)

We express our results in the fixed observer frame, using
Ry = cos8cosEP + sinScos EQ + sinéN,  (47)

n(t) = cos ¢(t)P + sin ¢(1)Q, (48)

Eq(t) = cosyP + sinyQ, (49)

where 6 and £ are the angles that characterize the position of
the unitary vector R, with respect to the CM, in the fixed
observer frame; ¢(¢) is given by Egs. (33) and (43), y is the
direction of the linear polarization of the electric field in the
orbital plane and £, is the unitary vector in the direction of
the external electric field (Eq = Eq€g). Since we are
considering the motion of a dipole in which the total
charge is zero, the contribution from the CM acceleration is
zero, as shown in Appendix A.

The vector potential has contributions from the unper-
turbed dipole and a contribution from the perturbed part,
induced by the incoming EM wave. Particularly, getting the
electric field E from the vector potential A, we find the
same functional expression (18), but containing the accel-
eration of the dipole given by Eq. (25). Therefore, using the
definitions of dipole fields in Eq. (18) and the expression
for the radial separation (42) we find

2 3.2 4.3
= (0 o) o + PR (g ) o+ S () x o) R
E, (1) = n(t) xRy) xR —— = |(EgxRy) xR —— 21 (n(t) xRy) xR
2p (1) R, (1) X Ry o| + R, o X Ko o| + R ( Q2 — a?) (1) X Ro 0
2Eqriwd [ (Q 4 3w0)Cy—p —10—10 Q—3wy)c,_ P . .
_ %r CUO |:( - 0) Y 4)0 1Q l‘20 ( . 0) Y (/)0+IQ t20:| (n(t) XRO) XR0:|’ (50)
Ry [2Q(Q% + 3Qw, +2w5)  2Q(Q° —3Qw, + 2w5)] L
2 3.2 4.3 _
B qrowo[ A ] Egroa)ocg,[ N } AEqwgric,_p, N }
H, (1) = 1) xR — = 2= € X R -2 1n(t) xR
2])( ) CZRO n( ) o| + C2R0 Q o| + c2R0(92 _w(z)) _i’l( ) 0
_ ZE%VEwg ('Q‘ +23w0)cy—(/)0—t9—t(1)20 (Q - SwO)C;f—d)ngtQ—m;(, >n(t) « k0:| ' (51)
Ry [2Q(Q% 4+ 3Quwy + 2w;)  2Q(Q* — 3Qw, + 2wg) | L

The first term describes the unperturbed dipole radi-
ation, as we can see from a quick comparison with
Eq. (18). Once this term is expressed in the observer
frame, n(r) also includes a term linear in the external

|
perturbation, due to the first order Taylor expansion of
the trigonometric functions in Eq. (48). The second term
that does not depend on n(t) is the only one that matters
in the high frequency limit. The third term represents the
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modification to the dipole emission due to the exter-
nal wave.

4. Cross section

The scattering cross section is defined as the ratio
between the energy emitted by the system in any given
direction per unit of time, to the energy flux density of the
incident radiation per unit of time. Considering that d/ is
the energy radiated per second by the binary into the solid
angle do, we can define the differential cross section as

— dIscat
Sq

do (52)

where Sq is the modulus of the Poynting vector of the
incoming wave. Using the relation between intensity and
Poynting vector and considering that the Poynting vector
module is a time-varying quantity, we get

d_O' _ <Sscat>R(2)
do  (Sq) ’ (53)

where the triangle brackets indicate a time average over one
(or more) period and do is the solid angle element given,

with our choice of R, by

do = cosédéds,  with &= [-x/2,7z/2]; &6=[0,2x].

(54)

In the high frequency limit, since the incoming wave is a
monochromatic plane wave, its Poynting vector is

C
Sq — (471 Egzcét>N. (55)

Its absolute value, averaged over one period of the EM
wave 2z/Q = Tg), is

Q cE?
So) =— [ Sodt =—2. 56
(Sa) =, | Satt = (56)

To evaluate the Poynting vector of the scattered radiation
we need to use the fields obtained in (50) and (51),

c Q c
(Sscat) = <E (E,, XHzp)> = E/Tﬂamzp x H,,|dt.

(57)

In the high frequency limit we can evaluate the differential
scattering cross section using only the second term in
Eq. (50) and Eq. (51),

do q2 2
& e (CZ—M> (2C2§C}%_5 + CZ(],_(S) - 3) (58)

Cross Section versus incoming frequency

1.8
16 °
1.4

1+ .
120 %
10 ...‘o- eesc0sccccccc00cccsc000 0

5 10 15 20
o}
FIG. 3. Total scattering cross section for a dipolar wave as a

function of the external frequency. Here, 6 = ¢/ (Ar?) is shown as
a function of Q= Q/w,. We set ¢ =1 and the two angles
y = ¢y = 0. As expected, the cross section grows unboundedly
for Q = 2wy For large values of Q we recover the standard high-
frequency classical result (60).

The total high frequency scattering cross section is found
by integrating the above, and yields

327 [ ¢* \?
6:T<c2—M)’ (59)

the standard Thomson result [40]. Notice that ¢>/Mc? is
the classical charge radius. In the case of a circular orbit, the
cross section in (59) can be given as a function of the
unperturbed orbital frequency through (40),

327 (Pwd\?
o= () =an (60

where A = ¥ (@)2 The total cross section for a wave with
a generic frequency € is shown in Fig. 3 at Q 2 ;. From
this plot, we can see that the cross section goes to infinity
when the incoming frequency approaches twice of the
orbital frequency and that in the high frequency limit it
reaches the value given in Eq. (60).

III. SCATTERING OF SCALAR WAVES

For completeness, we now show that the previous results
are straightforward to extend in the presence of a scalar
interaction. Let us suppose that a binary system, made of
two pointlike scalar charges, interacts with a scalar wave
and that is on a circular orbit of frequency .

We consider the following action:

Sz/d“x{—%@"gb@”qﬁ—png +S,.  (61)

where ¢ is the scalar field and p,, is a general scalar charge
density. The action for a free particle §,, is as in (11).
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The scalar field is then governed by the Klein-Gordon
equation

M0y = py. (62)

For a pointlike charge p, = ¢&°(x —x')%, in the non-

relativist limit the static solution is given by the Green’s
function of the Laplace operator,

poy=-2L

CArlx—X/|

. (63)

therefore, a Coulomb-like potential. From the FEuler-
Lagrange equation in a nonrelativistic regime, one finds

j 8¢2> ; <8¢1>
J J
mpay = —611( > mya, = —q» > (64)
! ax/ 1 2 3)(» 2

J

in which the scalar field ¢; is the potential produced by the
particle i.

Let us now consider the case in which a scalar wave
impinges on the system. We call 6¢p = ¢, the perturbation
in the scalar potential. The equations of motion are then
altered to include the interaction of the binary with the

wave,
; O, g
j_ _ _ e

= ql(axj)l B <axj)1’ (65)

; 0 5]
mza]z =9 (a;:;l) . — 9 <ai;?> 2- (66)

J

Using the explicit form of the potential (63), transforming
the equations to the CM frame and assuming that the scalar
field is homogeneous enough to be evaluated directly in the
CM position, we find

s (a1t a4 (Opa
), e

—_lqlq;n_(ﬂ_@) <%) . (68)
ulr my my) \ 0x; ) o

These equations are formally equivalent to the EM counter-
part, and no further calculation is necessary. The existence
of a background of light bosons is motivated by the
problem of dark matter, see e.g., [41]. Their influence in
binary systems was recently described in [42—44]. The
scattering that we described here may be of interest to refine
these studies.

IV. SCATTERING OF GRAVITATIONAL WAVES

We now want to evaluate the effect of an incoming
gravitational wave on a binary system. The binary system

is made of two compact stars modeled by two point
particles of mass m; and m, orbiting at an orbital frequency
@q. We consider an incoming monochromatic GW propa-
gating in the z direction of a fixed basis (ex,ey,ez), at a
frequency Q. In the transverse traceless (TT) gauge, H;
the waveform is

J

Hyj = Pf}{HJr cos (Qr — kz)ej,
+H, sin (Q1 — kz)e}}. (69)

where ¢/, =e, ® e, —e, @e, and ¢, =¢, ®e, +¢, ®
e, are the two polarization states of the GW [45], P, =
PyPj — %Piij, is the TT projection operator, with P;; =
0;j — N;N; the projection onto the plane orthogonal to N.
As the wave is a solution of [1H;; = 0, we have

Q
k= 4+ 7
=, (710)

and H, = cstand H,, = cst. As a consequence, the spatial
derivatives of H;; will be suppressed, 9;H; = O(})
(homogeneity condition), in particular 9;H;; = 0 (trans-
verse), and we can assume that in the near zone of the
compact binary one has H;; ~ (H;;), ~ (Hx)cy- These
conditions will be used in the following when we will

perform a perturbative expansion of the solution.

A. Post-Newtonian formalism

1. Einstein’s equations

We want to solve the Einstein equations

, 381G
G = —

™, (71)
C

where G* is the Einstein tensor and 7/ is the stress-energy
tensor for point particles

H v
UaUa

_A:ZI,Z\/_—Q —(g,), 2t

9po)a c?

T 8 —x,), (72)

where g is the determinant of the metric g, . Defining the
gothic metric ¢ = ,/=g¢” and the tensor H‘*/ =
¥ g — g™ g™, we have the well-known identity [39]

162G

Ot = (-g) (200 + 1504} 9

where # is the Landau-Lifshitz tensor [39]. Next we
define the gravitational field

=g, (74)
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where 7** = diag(—1, 1, 1, 1) is the Minkowski metric and
we impose the harmonicity condition on the metric
perturbation /#,

g, = 0. (75)
Using Eq. (73), we can rewrite the field equations as

162G
A

Om = T 4+ A, (76)

where

162G

N = = L+ O 0,17 = 100,01, (T7)

is at least quadratic in the gravitational field. In our case, /*¥
is formed by two different terms, the perturbation H** due
to the incoming GW that we are superimposing on the
original unperturbed gravitational field #*. Thus, at linear
order we can write

= 4 HI (78)

Since LJH" = 0, the field equations (76) can be rewritten
as a d’Alembertian equation for i#*,

167G
A

+ AR HP) + A [HP | ), (79)

O =

T [m, h, HP) + AW [P, |

The last term in (79) can be neglected when considering
only the dominant, linear order in H*¥ terms.

2. Post-Newtonian iteration

We perform the post-Newtonian iteration of the field
equations in harmonic coordinates in the near-zone of the
isolated source. As we are only interested in the effect of
the external perturbation on the binary dynamics, we only
need the lowest order PN expansion. We parametrize the
metric by the usual PN potentials, using the variable
hOOii = hOO + hii,

il — —t—‘; +0(c), (80)
i — ‘42; +O(), (81)
hii = O(c-), (82)

Each potential obeys a flat space-time d’Alembertian
equation sourced by the lowest order potentials and by
some matter energy density components. We get

OV = —4z2GY — H 9, h™" (83)
OV = —42GY! — H® 9,k + —9,H*0,h™",  (84)
C

where we have defined

00 i 0i

T:#, and Ti=L (85)

c c

The first terms in the rhs of Eqs. (83) are of compact
support, while the other terms are of noncompact support.
We solve these equations perturbatively and up to linear
order in H. The zeroth order corresponds to the Newtonian
term, and the equation becomes AV = —4zGY, with

T = m;6, + my5,, and thus,

Gm Gm
VN: 1+—2

86
t (80)

We now decompose V in a Newtonian part and a con-
tribution linear in H, V =V, 4+ V,. Inserting it into
Eq. (83), we find

N R G |

r )
Using the fact that H ~ (H")cy;, we see that the inverse

Laplacian will not act on H. Further commuting it with the
spatial derivatives, we get

. Gml

I H ]+

G .
v, 2 fonind. (88)
ry X

The potential V' can be obtained in a similar way.

3. Geodesic equation

The geodesic equations for point-particles is equivalent
to the conservation of the matter stress-energy tensor,
V,T"* = 0. We express the resulting equations for particle
1 as [46]

d(Py, .
= (F),, 89
=) (89)
with
i H
pi— I (90)
_gpavcg
e
Fi=3 I Y (91)
Gpo * 2

Using the expression of the metric as a function of the
potentials, see Eq. (80), we obtain at linear order in H
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Py = vl —v](HI),, (92)

o1 .
Py = 5”]1 Vi (0;H i), + (9'V);. (93)
Using the relation V =Vy+V,, with V, given by
Eq. (88), we finally obtain the acceleration of particle 1,

i sz 3 i i dHl ;
a) = _? <1 + Eij”Jn”]fz)”lz + d—tj”{ (94)

Here we ignored all higher order post-Newtonian correc-
tions, since they will be subleading in the computation of
the cross section.

4. Lagrangian formulation

The equations of motion (94) can be derived from the
Lagrangian

Gm1m2 1 . : 1
L = " (1 +§Hijnl]2n112> +5m11j%
1 1 2 i)
2m1H v Ul +2m21)2 2m2Hij712712-

Varying the Lagrangian with respect to the velocities, we
obtain the linear momentum

oL

Pl = .
o'
A=1.2 A

=m0} —mH;jv| + myvh —myH v}
It is possible to see that the time-derivative of the
momentum is zero. Then we get the energy associated

with the binary motion,

oL .
EE§:51%—L
A=12904
Gmlmz 1 1
=— 2 <1 + 2ijn12n12> + 2m1v%

1 1
~mH;jv 111-1-

) 2 mz”%

1 o
2m2H,»jU’21)§. (95)

Similarly the angular momentum J' is given by

Ji= sz A51)A

= €ijk[m1(xJ1”1 — Hyx|v}) + my(xjvh — Hyxjvh)],

where €j~k is the Levi-Civita tensor. Finally, we define the
center-of-mass integral
-mH ;x]l +

G' = mx} 1< 2]. (96)

The conservation laws associated with all these quantities
are

dPi
T 0, (97)
dG’ . S e
dr =P —mlHjx{ - mijXé, (98)
de 1 1
N 2m1H ! Ul +2m2H v2v2
Gmymy - .
- 2r112 HijnlszIZ’ (99)

(100)

Unlike the Newtonian result, these quantities are not
conserved, due to the incoming GW; the only conserved
quantity here is the momentum P'.

We now wish to work in the center-of-mass coordinates.
We define the total mass m, the symmetric mass ratio v and
the relative position x’ and velocity v’ as

m = my + my, (101)
Ko mpm,

_ K _mmy 102
YT T T (102)
xi=xi—xi, r= (103)
v =0t =), d=d-d} (104)

The center of mass coordinates are obtained by solving the
equation
G =0. (105)

It implies the well-known Newtonian results, that are still

valid at linear order in H;,

. m2 . ml .

x! = —x, X = ——x, 106
LeM T 2.CM m (106)
. m2 . . m1 .

v} =—9 v} = ——0". 107
Lem = U 2.CM m (107)

In the center of mass coordinates, the relative acceleration
is given by

G 3 S
ai = -1 <1 +>Hyn'n >n’ +H;jv/,  (108)
r?

2

and the conservation laws are now
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dpi

” =0, (109)
dE 1 o Gm®v . P

EZEmUHi'iU v/ — H;n'n’, (110)
dJ m . ” . ”
Ezé'ijkml/ Ti’l/Hkml’l —UijmU . (111)

B. Hamiltonian formulation and
angle-action variables

To understand the gravitational problem, we will follow
a different route from that we used in the electromagnetic
example. We will use an approach based on angle-action
variables. The dynamics of a Keplerian orbit in Delaunay
variables is well known, and we will use the powerful tool
of perturbation theory in angle-action variables to describe
the evolution of the perturbed system [47]. The advantages
of such an approach is that the calculations are simpler,
notably because they capture the symmetries of the system.
By promoting the integrals of motion to coordinate
variables in the phase space, the dynamics of the system
become very simple, as we will see. In particular, it allows a
simple treatment of generic orbits and of the resonances
that occur in such systems. However, in this work we will
focus mostly on circular orbits and resonances will be
absent from the final result. In Appendix B, we review the
Hamiltonian in the Delaunay variables and explain the
basics of perturbation theory in angle-action variables.

1. Hamiltonian in the modified Delaunay variables

The first step is to determine the Hamiltonian from the
perturbed Lagrangian, and then to express it as a function of
the modified Delaunay variables (6;,3,J1,3) (see
Appendix B 1). We start from the reduced perturbed
Lagrangian in the center-of-mass coordinates, in spherical
coordinates,

. G 1 o 1. .
L :Tm |:1 —|—§H,»jn’nf] +§r2[1 —H,»jn’n/}

1 .. . 1 5. . P,
+5 r0*(1 — H,0'0'] + 5 rsin?06%[1 = Hijo'¢/]
- I"réHUI’lng - rsin9f¢Hijni¢j

—2sin6 ¢ H;;6'¢/; (112)

we derive the conjugate momenta p, = OL/0x,
p,=Fl —Hn'nl] - ré?HijniQ-f — rsin@pH;n'ep/,
po = r20[1 — H;;0'0/] — riH;in'6’ — r*sin 0gH,;0'¢/,
p, = r’sin*0p[l — H;;¢'¢’] — rsin07H in'p/

— 2 sin00H,; ;0'¢/, (113)

and then the reduced perturbed Hamiltonian

7:(Ep,f+p99+p,p¢—l~,
G 1 o 1 o
_on [1 —I—EHijn’nJ} —l—ip%[l + Hjn'n/]

’
1 . o
+ﬁpﬁ[1 + H;;0'0] +mpi[1 + Hijp'¢/]
+prp6 H,’jl’ligj + pr-p(p Hijni(ﬂj
rsin@

p?sin@

The perturbed Hamiltonian depends explicitly on time
through the perturbation H;;, given by Eq. (69).

The next step is to write the Hamiltonian as a function of
the modified Delaunay variables. This can only be achieved
with an expansion in the eccentricity e. In the following we
will only consider the perturbation of a circular orbit. At
this order we have that J, = 0 and 6, is not defined. Our
new set of variables is thus {0,3,J; 3}, and the relations
between the old canonical variables and the angle-action
ones are

2
rzﬁ, g:f—arccos l—ﬁ,
Gm 2 I3
@ = —0; + 05,

pr=0.  py=0, p,=J3-J. (115)

The Hamiltonian that arises out of this procedure is

G*m?
272

Tu

- [+ (Hynind) — (H20)) + QT (116)

where we have introduced a new variable 7 and its
conjugate 7 to absorb the explicit dependence in time,
cf. Appendix B. In particular it depends not only on the
actions but also on the angle variables. The dependence on
the variable 7 is only through the incoming GW and the
only modes that contribute to the Fourier expansion are

k, = 1. Then, as Q,(J) = %” = (0,0,%22 Q), we can

’ J: ’

see that the resonance occurs when

Q = +kyn, (117)

G*m?
I3

where n =

and k3 € N.

We can also use the new set of angle-action variables
(@',J"), as constructed in Appendix B 2. The Hamiltonian
for this set of variables is

is the orbital frequency of the binary
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» GZ 2
HJ) = - J,'f LT (118)
3
The Hamilton equations are then
J =0, (119)
. - G*m? .
g =0, 0, = J—’:‘ and 7 =Q. (120)
3

2. Variation of the orbit elements

We now relate the new set of variables to the orbit
elements and obtain their evolution. From J; = /Gma,

we get
/ dJ /s / 87-(1
(121
m 005 )

From J; = J5(1 — cos1) we get, using the previous rela-
tion,

di cosz—llda

— 122
dr~ sint adt (122)
We also have
d de
v_ & d—w:—d—yj, and ﬂ:%
dr dr dr dt dr dr

To obtain explicit results we specify to some specific
configurations.

a. Parallel to the orbital plane: a =0, p=rx/2,
k=nm/2+1

We compute the variation of the energy, defined as
E=H, and get

J: dE H, . .
(;273295 === sin(21) cos(Q1) sin(2¢)
H,
+ gsm(ﬂt)(cos(h) —17)cos(2¢). (123)
The variation of the semimajor axis is given by
a da H, .
| —— = — "L cos(Q 41) — 1 2
Gm di 3 cos(Qr)(cos(41) — 17) sin(2{)
+ 2H, sin(21) sin(Q1) cos(27), (124)

while the variation of the inclination angle is
a? di

——=2H (1
vGmdt (

— cos1) cos 1sin(Q¢) cos(2)

- %cos(gt) (cos(41) — 17) tan <é> sin(2¢).
(125)

b. Perpendicular to the orbital plane: a« =0, p = /2,
k =1 The variation of the energy is

J3 dE_H
Wng =- l—gsin(Qt)(cos(h) +3)% cos(2¢)
— H, cos(Qt)cos?1sin(2¢). (126)
The variation of the semimajor axis is given by
- da = 4H  sin(Qt)cos*1cos(2¢)
G dr ’
H
+ fcos(Qt) (cos(21) + 3)?sin(20),
(127)

and the variation of the inclination angle is

a’? di

i = 2H, cos?itan <;> sin(Qr) cos(2¢)

+ %COS(QZ‘) (cos(21) + 3)* tan (%) sin(2¢).
(128)

3. Scattered gravitational wave

The asymptotic waveform is given by [46],

= 1

2G
TT _
lkm - ﬁpijkm ll'

{NL 2Uz]L 2<T R/C)
21 |
_mNaL—Zgab(iVj)bL_z(T— R/C)} + O(F) ’

(129)

where (7, R) are the radiative coordinates. We recall that
Pijjkm 1s the TT projection and the radiative moments Uy,
and V; are related to the mass-type and current-type
moments of the source. Here we suppose that the same
relation still holds at linear order in H;;, that is,

U, (T) :M(LZ)(T). The waveform is then given at our
order by

2G
1T = {17 4 4RP”kmM +(’)( ) (130)

The contribution from the incoming GW, H'T, has to be

17 ’
expanded at future null infinity, i.e., when R — 4o0
keeping 7 — & constant. We get’

“We did not prove this expression and only consider the
general structure of a gravitational wave at infinity
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2QR . R
TH;I;T - Pijkl |:H+€;; S |:Q<T - ;>:|

oo [a(r-2)]].

Then, we have to link the canonical moments M; and S; to
the real source moments /; and J;, and then to figure out
the expression of these source moments. We have the
relation

M (£) =1,.(1)+ 61, (1). (131)

In our case we are only interested by M;;, for which
ol;; = 0. The source dipole moment is given by the usual

formula,

10 =FPaco [ @bl [ azou(0,200] + 0
(132)

where FP is the finite part [46]. After some calculation we
obtain

1

(ij)

Iij — mlyl <l./>

m .. i g a
+ myy$ = L (HD Y2 4H Yy

7

m . i) oa
=S (HYY + 4HI Y ). (134)

The second term in the gravitational waveform (130) is
given by

2G (2)

The projection onto the plus and cross polarizations gives

G

h+ = 7p (Pin - Qin)Igjz')v (136)
c'R
_ G )
h, = 7R (P,»Qi,' + Ql-P.,-)Il-j . (137)

The explicit expression of the polarizations is given in the
Appendix C. We can see that the amplitude of the scattered

-4/3
wave scales as w, ' .

C. The energy balance equation

Before going further, we want to check that the energy
balance equation is verified,

() =15

(138)

where the brackets stand for the angular average over one
orbital period and the left-hand side has been computed in
Eqgs. (123)-(126). The gravitational flux is defined as

Fee / (=) ds,
S

c -
=— H;:0.h R*dZ, 139
o Lo, (139)

where dS; = N'R?dX is the surface element of the two-
dimensional surface S. Inserting the expressions for HZ.T}T

and A" we get for the first configuration,

128a’vmw§H , sin’ (£2) cos (Z2)
F) = —TETIAN ST
1529Q(Q2 — 4a?)

and for the second configuration,

 8alumaysin® (52) cos(52)(14H g — SH,Q)

F) = 152Q(Q? — 4w})

(141)

After averaging over one orbital period the variation of
the energy (123)—(126), we can see that the quadrupole
formula is respected,

dE’
— ) =—(F), 142
< dt> (F) (142)
where we have defined the modified energy
, Gm?v . P
E = E—’-T(Hul’l n ) +§ml/(Hl‘j'U v )
Gm*v 1 o 1
=- 1 —=(H;n'n’ —mv?. 14
5 { 2( ,]nn)}—i—zmv (143)

D. The cross section

Using the previous results, the scattering cross section
can be computed generically for any binary orientation and
any incoming gravitational wave. We find that, for a +-
polarized wave, for instance, the scattering cross section
depends on the angle with which the wave hits the binary.
However, in the limit when ©Q — oo, the cross section for
either edge- or head-on configurations is the same,

2 4 6
a:%(% - (144)
c) Asw
where we have introduced the orbital radius of the binary
system, a = wio, as well as the wavelength of the incoming

GW, Agw = g From this formula we can see that at equal
total mass, the effect is larger the slower the system. Also, it
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highlights a structure similar to that of Rayleigh scattering
of light.

Note that the cross section is not allowed to grow
unboundedly, since that would take us away from the
perturbative regime we work in. In particular, we must
require that the scattered wave is always of much smaller
amplitude than the incoming GW. Evaluating the scattered
wave a wavelength away from the scatterer, we find that the
cross section can be expressed as

, 114087a*

- 145
=M 005 (145)

with C; < 1 the ratio between scattered and incident GWs.
In addition, we must require that C, = HQ/wy, < 1, to
ensure that the backreaction on the binary is small. This
condition prevents the cross section from getting arbitrarily
large for weakly bound binaries.

V. CONCLUSIONS

After a period of consolidation of the detection of
gravitational waves, it is likely that we will enter a period
of precision gravitational wave physics. This will require a
better control on the possible effects that affect the
production and propagation of gravitational waves. This
will also be essential to use gravitational waves as an
ultimate prove of the constituents of the Universe. In this
work, we have extended previous calculations of propa-
gation of gravitational waves by studying an important
scattering system: a binary of compact objects.

Our results show that gravitationally bound binaries are
able to scatter incoming gravitational radiation. We have
computed the scattered field for general configurations, two
special cases are shown in Appendix C. Consider now the
binary neutron-star systems: PSR J1411 42551 [48]
(orbital period 2.6 days, total mass 2.5M) and the ultra-
relativistic pulsar PSR J1946 + 2052 [49] (orbital period
0.078 days, total mass 2.5Mg). For a GW incoming at a
frequency f = Q/(2z) = 200 Hz, we find from the expres-
sions in Appendix C that the order of magnitude of the
correction in the amplitude—due to scattering—is, for the
first binary pulsar &, , ~107H, ,, while for the ultra-
relativistic pulsar we have h, , ~ 1077H, ,.. As expected
from Eq. (145) the effect is larger for slowly rotating
pulsars. We also find that the effect is slightly stronger for
the configuration of an incoming gravitational wave paral-
lel to the orbital plane.

The numbers above are small, but not desperately small
as to be discouraging. However, how likely is such an
event? The magnitude of the scattered wave is insensitive
(to this order) to the structure of the compact objects
forming the binary. Thus, stellar mass black hole binaries of
similar periods will give rise to similar scattered ampli-
tudes. The number of stellar mass black holes in the central
parsec of our own Galactic nucleus was recently reported to

be significant, of order N = O(10*) [50]. If this finding
generalizes to other supermassive black holes in galactic
nuclei, this implies that there exists a substantial screen of
potential scatterers around supermassive black holes. Such
screen may give rise to detectable levels of scattered
radiation, either from binaries (the object of the current
study) or from isolated objects (e.g., Ref. [36]). For
example, consider GWs generated by stellar-mass black
hole binaries in the last stages of the inspiral and merger,
and (barely) detectable by LIGO, f = Q/(2x) ~ 20 Hz.
The emitting-binary is close to the galactic center, and the
emitted GWs will now cross a screen of binaries, which we
assume have parameters close to the binary pulsar above
(orbital period 2.6 days, total mass 2.5Mg). Using the
scattering cross-section (144), and the number density
found in the Galactic center n, the mean free path of the
GW is ~1/(no) ~ 100 Mpc, a number which is clearly too
big to be of relevance. These estimates assume quasicir-
cular motion, we do not expect any qualitatively important
change to occur when eccentricity is included.
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APPENDIX A: RADIATION FROM THE CM

The scalar and vector potentials produced by one
accelerated particle are given by the Liénard—Wiechert
potentials,

I S I LA
(Ro _ (v.feg)RO) ’ B (Ro _ (vfig)R()) )

We can then find the electric and magnetic field for the
accelerated charge in a relativistic context. For small
velocities we get

P = (A1)

E=T Ry+-L Ryx(Ryx), (A2)
Iy

Ry R
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1

H=—R,xE. (A3)
R
Using Eq. (25), we find
2
Eq 4 N
E w = MRO x (Ryx E).  (A4)

(my + my)c’Ry
Finally, in the observer frame, one finds

_ (g1 + 42)*Eqcq,
(my + my)c’Ry

+ (s,(=c3)c + ¢, 55¢5¢2 — 5,57)Q

[(=c,s5¢2 + s,85¢5¢F = ¢, s7)P

+ (cycs8:ce + 5,855:c£)N|. (A5)
As we can see from Eq. (A4), this term is due to a nonzero
acceleration of the CM, that, naturally, depends on the wave
perturbation. For two particles with opposite charge, the
CM radiation is zero because of ¢; + ¢, =0, and the
electric field will be only the one produced by the perturbed
dipole.

APPENDIX B: ANGLE-ACTION VARIABLES

1. Newtonian dynamics in the Delaunay variables

From the reduced Newtonian Lagrangian in the center-
of-mass coordinates, using spherical coordinates (r, 6, ¢),

. L Gm 1 1,
L="=""y 24 120 +sin0¢?),
= p

v 2 2 (BI)

we determine the conjugate momenta p, = JL/0x,

p, =T, po = 120, p, = r’sin’6p, (B2)
and, performing a Legendre transformation, the reduced
Hamiltonian,

Ho = p, i+ ped+ p,¢— L
Gm 1 1 1

_ m L s
r + pr+2r2p9+2rzsin29

5 py- (B3)

The angular momentum L = r A v is then given by

L(p = Po- (B4)
We want to go from the canonical set of variables
(r.0.9.p,.pg.p,) to a set of canonical angle-action
variables, by taking into account the symmetries of the
system. We use the modified Delaunay variables that are
well suited to described the Keplerian two-body problem.
The actions are given by

Gm Gm
J; = , J, = —-L, Ji=L-L..
3 F 2 F 1 z
(B5)
The Hamiltonian is then simply
~ G*m?
Hy=——. B6
0 2]% ( )

We can then derive the frequencies Q; = 0H/0J;,

G*m?

Q=—",
3 J%

Q =0. (B7)

The angles 6;, conjugate variables of the action J;, are then
linear in time,
03 = Q3(1 = 19) + (63),.

92 = (92)0’ 91 = (91)0’

(B8)
with (0;), the values of the angle variables at time 7. We

can also relate the modified Delaunay variables to the
orbital elements a, e, [,1, w, y; we get

J3; = VGma, Jy = Gma<1 -V1- ez),

Jy = 1/Gma(l —e*)(1 — cos), (B9)

Oy=l+o+y, O=—(0+y), 0 =-y.
(B10)

Note in particular that these variables are well-defined
when e = 0 and : = 0, which will allow us to perform an
expansion for small eccentricity.

2. Perturbation theory

When the total Hamiltonian is no longer integrable, it is
not possible to write it as a function of the actions only. The
perturbed Hamiltonian in the modified Delaunay variables
can be written as

H=HoJ) +H,(0.4.1). (B11)
where 7, = —G?m?/(2J3) is the Newtonian Hamiltonian
previously studied, and 7, is the perturbation, assumed
to be small, O(H;;) = O(e) < 1. We see that the total
Hamiltonian now depends on the actions and angles,
but also on time. The dependence on time can be
removed by introducing a new coordinate 7 and its
conjugate variable 7', and transforming the time-dependent

Hamiltonian 7{ into a time-independent Hamiltonian 7{ in
the following way:
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H=QT +H@O.J.7). (B12)
We see that the Hamilton equations for z are
. OH . A,
=—=Q T = B1
fTor T or (B13)

such that 7 = Qt. The other equations for the angle-action
variables are unchanged, and are now given by

. 0H, . 0H, _ 0H,
73 965" h= 96, /i 00,
G2m2 67:(1 87:[1 87:[1
03 = i +87J3’ T ' =57, (B14)

Using the relations (B5) linking the angle-action coordi-
nates (0, J) and the Hamilton equations (B14), we can see
that we directly have the variation of the orbit elements
a,e,l,1,w,y. As the perturbation is small, we can use the
unperturbed (Newtonian) results to evaluate 7{; and its
derivatives. Then by averaging over one (Newtonian) orbit,
we get the secular evolution of the binary. However the

Hamiltonian 7{ is quite complicated and so are the
equations Egs. (B14).

In order to circumvent these technical difficulties we use
Hamiltonian perturbation theory to define a new set of
canonical angle-action coordinates (€,cy,Jpew) Such that
the Hamiltonian will only depend on the action variables.
We call (6°,J°) the old variables (including z and 7).
We have

Hsew) = HolJ®) + i (0°.J°).  (BIS)
We now consider the generating function
5(0H6W7 JO) 0HCW J + S<0newv JO) (B 16)
where § = O(¢). Then we can rewrite the Hamiltonian, up
to O(e?), as
= 0 0§ _
H(Jnew) = HO(Jnew) - W + Hl(anew,]ﬂeW)’
where Q0 = ?;;{5’ Now we expand both the perturbed

Hamiltonian 7, and § in Fourier series,

-/ E tkH
Hl new new hk new e,

konew
ZE Sk new e’ .

(B17)

(B18)

s (HIICW ’ IICW

Then the Hamiltonian becomes, up to O(e?),

ﬁ(]new) - HO(Jnew) + hO(JHeW)

+ Z[hk (Jnew) +k- Q° (Jnew)sk (J)]eikﬂ“cw .
k#0

As the lhs of Eq. (B19) depends only on the action variables
Joew» the ths should also depends only on this variables.
This gives the Fourier coefficients of the generating
functions,

hi(J)

k'Q—O(‘]) fork;é()

k) = — (B19)

This transformation is valid only when k- Q°(J) # 0.
The case

k-Q(J) =0, (B20)

is called the problem of small divisors, and it describes the
appearance of a resonance at the corresponding frequency.
In that case the formalism we are using to describe the
binary dynamics is no more valid.

We now consider the coordinate transformation, defined
by (B19), to a new set of canonical variables (€',.J). The
Hamiltonian obtained after this transformation is

H ') = Ho(') + ho(J').- (B21)

It describes the dynamics of the system up to first order
included. The new variables are related to the old ones by
the relations,

) | e
=J+ Zk:#(o()ﬂke“ : (B22)
=0+ ZaJ (k ol )eikﬂl' (B23)

Finally the dynamics of the system is governed by
Hamilton’s equation

. oH'
! J—
J 50 0, (B24)
. OH'  OH, Oh,
/ —
“or " ar Tar (525)
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APPENDIX C: THE POLARIZATIONS OF THE SCATTERED GRAVITATIONAL WAVES

1. Parallel to the orbital plane

Similarly to the usual orbital frequency parameter x = (92%20)%/3  we define the parameter X = (6252)2/3 related to the

incoming frequency. When the wave is incident parallel to the orbital plane (¢ =0, f =x/2, k = n/2 + 1) we find

3/2

i(T/ZCOS(Qt) <55in3z coscos(2¢) +% (6 sin(21)(7 cos(4¢) — 25)

h, = % {—(cos(Zz) +3)cos(2{) + Hy

+ sin(41)(7 cos(4¢) — 17))> + sin(Qr) (ig (é sincos1(cos(2t) + 3) sin(4¢) — 2sin’1cos1 sin(ZC))

1
+ Zsinzcos z(l2sin21 sin(2¢) + (8 cost— 3 cos(21) — 1) sin(4§)>>

3

+ H, |cos(Qt1) (@ (2 (661 cos(2t) + 18 cos(41) — 21(cos(61) + 74)) cos(2¢)

-7 (—65 cos(21t) + 6 cos(4t) + cos(61) — 198) cos(4¢) — 448(cos(2t) + 3) sin ¢ + 448(cos(21) + 3) sin(3¢)
+ 647 cos(21) 4+ 6 cos(41) — 7 cos(61) — 6) + ﬁ (7 (67 cos(21) —3(6 cos(4)
+ cos(61) — 70))cos2(2§) + 672sin? (%) (cos(21) — 3) (cos 1((cos(2t) + 3) cos(4) —4) — 23in21)

— cos(2¢) (448(cos(2l) £ 3)sin¢ + 3931 cos(21) + 38 cos(4r) — 91 cos(61) — 4774)))

X3/2

+ 344,07 sin(Qr) (—6sin21 (8 cos(2t) + 35cos(41) — 619> sin(2¢)

— 49(cos(21) — 3)(cos(21) + 3)? sin(4éj)>] } (C1)

and

3/2

X 7 1
a7 cos(Q1) <§ sin zcos?zsin(4¢) — 7 sin’zsin(2¢ ))

G
hy = #}:{—4coszsin(2§) + H,
c

X3
+ sin(Qr) (m <2 sin(31) — 2sin l<7COS21 cos(4¢) + 3sin?icos(24) + 5)) + 8 sin icos?isin*¢

8
-5 cos(2¢) (sin3z — 7sinzcos zsin24,‘> ) ]

X (2 cosz<7(cos(4l) —17) cos(4¢) — 409) +65cos(31) + 17 cos(51)> sin(Qr)

+Hy 192x3/2

+ cos(Q1) (%8 sin(2¢) (—24Sin2 (é) (cos(41) — 17)sin?¢ + cost ((35 —3cos(41)) cos(28)

— 23 cos(2t) + cos(41) — 32sin{ + 38) -3 sinz(cos(Zl) + 2cos(41) — 17) tan l)

3

_ %COS 1sin(20) ((cos(4z) —33)cos(28) — 32sin + 16) )] } (C2)
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2. Perpendicular to the orbital plane

For perpendicular incidence (¢ = 0, f = 7/2, kK = 1), we have

and

th:

hy = R { —4 cosisin(2f) + H,

3/2
2x3/2

Gl/z—r;x {—(cos(Zz) +3)cos(2¢) + H, cos?1 cos(Qt) <—7(cos(21) +3) cos(4¢) — 60sin?1 cos(2¢)

C

3
+ 17 cos(21) + 75> + sin(Qt) (% cos l(24Sll’l 1sin¢ cos ¢ — (cos(21) + 3) sin(4c§))

+ cos?1 (—3Sin2z sin(2¢) — % (—8 cost+ 5cos(21) +7) sin(4C))>1

X3/2 1 7
+ H., |75 sin(Q1) <11 sin?1(35 cos(2t) + 109)(cos(21) + 3) sin(2¢) + 193 (cos(2t) + 3)3 sm(4cj)>
+ cos(Qr) (2688 5 | —448(cos(21) 4 3) cos § — 448(cos(21) 4 3) cos(3) + 14(cos(21) + 3)(12005(21)
x

+ cos(41) + 51> cos(4¢) — 24sin z<92 cos(2t) + 7 cos(41) + 157) cos(2¢) — 448(cos(21) + 3)sin¢

+ 448(cos(21) + 3) sin(3¢) + 457 cos(21) + 78 cos(41) + 7 cos(61) + 738)

+ 531? (448(005(21) + 3) cos { + 448(cos(2t) + 3) cos(3¢) + 14(cos(2t) + 3) (—168 cost+ 132 cos(2:)

— 24 cos(31) + 15cos(41) + 109) cos(4¢) + 16sin?z(cos(21) + 3)(91 cos(21) + 345) cos(2¢)
+ 448(cos(21) + 3) sin{ — 448(cos(2:) + 3) sin(3¢) + 8400 cos 1 — 4837 cos(2:)

+21 (104 cos(31) —30cos(41) + 8 cos(51) + cos(61) — 82)))] } (C3)

Gumx 3/2

1 7
—75 cos(Q) (5 sin?1cos 1sin(2¢) — 3 cos’1 sin(4C)>
c

2X3
+ sin(Qr) <21 3OS l(7COS 1c0s(4¢) + 3sin?1cos(2¢) — 2 cos(21) + 4)

+ <§ cos 1cos(2¢) (14sin2 (%) cos 1sin’¢ + sin2z) - 20053zsin2(2§))>]

X3/2

+Hy 192x3/2

(—2 cos z(l4(cos(2l) +3)%cos(4¢) + 593) —269cos(31) — 17 cos(51)> sin(Qr)

3

+ cos(€) (19Xz)c3 ese ( (101 sin(2¢) + 12sin(41) + sin(6z)) sin(4¢) — 64 sin(21) (sin ¢ +sin(30)

—cos{ + cos(3§))> + é (3 (—48 cos(2t) + 39 cos(3t) — 4 cos(41) + 3 cos(51) — 76) sin(4¢)

+ cos z<386 sin(4¢) — 64 cos ¢ + 64(sin¢ + sin(3¢) + cos(3é’))) + 4sin? (2> (538 cos1

+ 136 cos(21) + 153 cos(31) + 14 cos(41) + 13 cos(51) + 170) seczsin(Z(:)))} } (C4)
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