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The direct detection of gravitational waves crowns decades of efforts in the modeling of sources and of
increasing detectors’ sensitivity. With future third-generation Earth-based detectors or space-based
observatories, gravitational-wave astronomy will be at its full bloom. Previously brushed-aside questions
on environmental or other systematic effects in the generation and propagation of gravitational waves are
now begging for a systematic treatment. Here, we study how electromagnetic and gravitational radiation is
scattered by a binary system. Scattering cross sections, resonances and the effect of an impinging wave on a
gravitational-bound binary are worked out for the first time. The ratio between the scattered-wave
amplitude and the incident wave can be of order 10−5 for known pulsars, bringing this into the realm of
future gravitational-wave observatories. For currently realistic distribution of compact-object binaries, the
interaction cross section is too small to be of relevance.
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I. INTRODUCTION

A. Precision gravitational-wave physics

The direct detection of gravitational waves (GWs) [1] is
the first step on a long road to a new understanding of the
gravitational universe [2]. Future, higher-precision obser-
vations of inspiraling black holes or neutron stars, will
inform us about the number and origin of these objects,
their nature and provide new information about strong-field
gravity [3,4]. Among others, the observation of inspiraling
compact objects will determine their mass and spin to levels
which are all but incredible by astronomy standards [5,6]; it
will impose strong constraints on nontrivial radiation
channels [7–10], and it may bring information on the
local dark matter density where the process is taking place
[11–13]. Precise measurements of the gravitational wave-
form can tell us if the objects have nonzero tidal Love
numbers, potentially discriminating black holes from other
hypothetic compact objects [14–17]. The final, ringdown,
phase will allow us to test general relativity [18–20], and
even to perform tests of the “black hole” nature of the
object [16,17,21]. For a review see the recent roadmap [2].

The possibility to extend our knowledge in such funda-
mental questions can only be realized via precision GW
physics. This enormous potential for new science requires
the careful control of any systematic factors. Environmental
effects, such as accretion disks, nearby stars, electric or
magnetic fields, a cosmological constant or even dark
matter, all can possible contribute to blur what is otherwise
a clear picture of compact binaries. The effects of such
environment on the generation of GWs was investigated
recently [12,13].

B. Scattering

The effects of the environment on the propagation of
GWs are usually believed to be negligible.1 If the medium
is modeled as a perfect fluid, then GWs do not couple to it
and are therefore neither absorbed nor dispersed by such an
environment [27,28]. These calculations have been redone
for viscous fluids and very recently for some particle dark
matter models [29,30]. See also [31,32] for more promising
results for dark matter models beyond the WIMP paradigm.
Here, wewish to investigate the scattering of radiation by

individual obstacles, in particular a gravitationally bound
binary such as the one depicted in Fig. 1. This subject
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1An important counterexample are some models of dark
energy. In fact, the recent observation of [22] has been used to
rule out many candidates [23–26].
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remains largely unexplored, but is the gravitational counter-
part of well-known and observed electromagnetic (EM)
scattering phenomena (such as the Rayleigh scattering of
light responsible for blue skies). GW scattering is sup-
pressed by the small value of the gravitational coupling
constant. However, our ability to do precision measure-
ments has increased to unforeseen levels and will continue
to do so in the next decades. Pulsar timing, for instance,
holds the promise to overcome the smallness of this
coupling and detect minor variations in the time of arrival
of the radio-wave from a background of GWs [33]. On the
other hand, resonances between the impinging GWs and a
binary system may enhance the effects to measurable
levels. This motivated a few studies in the past [34,35],
both focusing on resonant interaction between a passing
GW and a binary.2 An analysis for secular effects of a
stochastic background of GWs was performed in [38].
Here, we will take the program a step further, by computing
the binary contribution to the reradiated field, thereby truly
calculating the scattered wave.

C. Executive summary

For the sake of clarity, we outline here our main results.
We start by working out how an incoming EM wave affects
a rotating dipole. This is a classical treatment that only
requires linear perturbation theory. We use the change in
the dipole moment induced by the incoming EM wave to

compute the scattered radiation and the total scattering
cross section. All these quantities are evaluated for an EM
wave propagating along the direction of the observer and
with the electric field oscillating in the plane of the orbit. In
the high frequency limit, we recover classical results
concerning scattering off oscillators.
The equations of motion for two pointlike masses on a

bound orbit, (94), are found encapsulating the GW pertur-
bation within a PN framework. This procedure highlights
the nonlinear character of the Einstein equations. For GWs
which are homogeneous on length scales larger than the
characteristic orbital distance between the masses, we find
the same equations of motion as those described by Turner
[34] and Mashhoon [35]. Using an angle-action formalism
to treat the variation of the orbital parameters, we find that
the changes in the orbital parameters are linear in the
incoming GW. Likewise, resonances between the binary
and the incoming GW happen at certain discrete GW
frequencies (integer multiples of the proper orbital fre-
quency), in agreement with previous literature [34,35].
We extend previous results in an important direction, by

including dissipative terms and evaluating the scattered
GW (C1), (C2) and the scattering cross section (144) for
two physical configurations: (i) for GWs propagating along
the direction of the angular momentum of the system (i.e.,
oscillating in the orbital plane), and (ii) for GWs propa-
gating perpendicularly to the angular momentum vector
(i.e., GW traveling parallel to the orbital plane).

D. Geometrical conventions

Our calculations and description of the problem involve
specific but different frames. To avoid confusing the reader,
we summarize here all the frames that we are going to use
through all the paper. Consider an observer located in a
direction N, whose basis is ðP;Q;NÞ. This will be called
the frame of the observer, and it is fixed with respect to the
observer itself. We refer the reader to Fig. 2. We will study
binaries, in which the motion of the individual bodies under
central forces (EM or Newtonian) are described by ellipses.
We choose as unit vector P the one that points toward the
direction of the ascending node N . In the presence of a
perturbation, this freedom to choose the ascending node no
longer exists and we choose to keep the basis ðP;Q;NÞ in
its unperturbed configuration. Furthermore, we define ψ as
the angle between P and the ascending nodeN , ζ the angle
between the ascending node and the direction n and ι the
angle between N and L, where L is the angular momentum
vector of the binary. The second frame will be the one that
describes the motion of the reduced mass with respect to the
center of mass. This frame is defined with respect to the
following directions: n is the radial direction with respect to
the orbital motion, λ is the tangent one, while l is directed
along the angular momentum direction L. From classical
mechanics, the following relations between the binary
center of mass basis and the observer basis hold [39]:

Incident

Scattered

FIG. 1. Scattering of an incoming GW by a binary. The GW
affects the motion of the binary, which in turn reradiates and
contributes to a nontrivial scattered wave.

2Our work was also motivated by a study suggesting that the
modes of oscillation of stars could be excited by passing GWs
[36]. The master differential equation that rules these excitations
is akin to our radial displacement in the binary, due to the
incoming GW. In fact, in both cases one gets resonances induced
by the scattering process. Also, in the single star case there are
reasons to expect that the GW signal can be the source of
measurable deviations in the acoustic oscillations of the stars
[37]. Moreover in the case of a binary made of two stars, if the
frequency of the excited mode is comparable with the proper
orbital frequency, the scattering process can leave a signature
both on the binary as a whole and on the single compact bodies in
the couple. However, this topic needs further investigation to be
properly clarified.
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n ¼ ðcosψ cos ζ − sinψ cos ι sin ζÞP
þ ðsinψ cos ζ þ cosψ cos ι sin ζÞQþ sin ι sin ζN; ð1Þ

λ ¼ −ðcosψ sin ζ þ sinψ cos ι cos ζÞP
þ ðcosψ cos ι cos ζ − sinψ sin ζÞQþ sin ι cos ζN; ð2Þ

l ¼ sinψ sin ιP − cosψ sin ιQþ cos ιN: ð3Þ

Note that the unperturbed case corresponds to the con-
figuration ψ ¼ 0 and ι ¼ cst. In this configuration, the
velocity in the center-of-mass frame is

v ¼ _rnþ rð _ζ þ _ψ cos ιÞλþ rð_ι sin ζ − _ψ sin ι cos ζÞl; ð4Þ

where r is the relative position. The frame ðn; λ; lÞ, called
CM frame in the rest of the paper, has time-varying basis
with respect to the fixed observer frame. Lastly, we also
introduce the proper frame of the wave ðex; ey; ezÞ, useful
for the definition of the polarizations in both the EM and in
the GR case. We denote α the angle between the P-axis and
the ascending node N 0, β the angle between the ascending
node and ex and κ the angle between ez and N. We then
have the following relations between the observer basis and
the incoming GW basis:

ex ¼ ðcos α cos β − sin α cos κ sin βÞP
ðsin α cos β þ cos α cos κ sin βÞQþ sin κ sin βN; ð5Þ

ey ¼ ðcos α sin β þ sin α cos κ cos βÞP
ðsin α sin β − cos α cos κ cos βÞQ − sin κ cos βN; ð6Þ

ez ¼ − sin α sin κPþ cos α sin κQ − cos κN: ð7Þ

Figure 2 sketches the frame of the observer and of the CM.

Finally, we will use the Keplerian parametrization of the
orbit, and we perform an expansion for small eccentricities.
Despite this, wewill mostly concentrate on the zeroth order.
Here are the parametrizations we use,

r ¼ að1 − e cosðuÞÞ; ð8Þ

ζ ¼ v≡ 2 arctan

��
1þ e
1 − e

�
1=2

tan

�
u
2

��
; ð9Þ

l≡ nðt − t0Þ ¼ u − e sin u; ð10Þ

where a is the semimajor axis, e is the eccentricity, u and v
are respectively the eccentric and true anomaly, l is the
mean anomaly, n is the mean motion and t0 is the instant of
passage at the perihelion. At Newtonian order we have that
n ¼ ω0, where ω0 is the orbital frequency of the binary
system.

E. Acronyms and notation

Here we summarize the recurrent acronyms that will be
used in this paper:
GR general relativity
GW gravitational wave
EM electromagnetism
CM center of mass
SW scalar wave
2p dipole
PN post Newtonian
TT transverse traceless
LL Landau Lifshitz
LW Liénard Wiechert
Wewill also often abbreviate the following trigonometric

functions:

cosðαþ βÞ≡ cαþβ and sinðαþ βÞ≡ sαþβ:

Furthermore, variables in bold are to be intended as vectors,
while the corresponding normal ones are their correspond-
ing magnitude. We use Greek letters to represent space-
time indices and Latin letters for three-dimensional spatial
indices. As the spatial indices are moved with the delta
metric δij, we indifferently write them in a lower or upper
position.

II. SCATTERING OF
ELECTROMAGNETIC WAVES

We will start with an old and venerable problem, that of
scattering of EM waves off obstacles [40]. This incursion
will set the stage for both the scalar and gravitational case,
while sharing some (many) features in common. We want
to evaluate the effect of an incoming EM wave on a binary
system of two electric charges orbiting at a frequency ω0.

ascending node ascending node

FIG. 2. Plane of the orbit with respect to the fixed observer
basis ðP;Q;NÞ. The angle ζ is the polar angle describing the
motion of the reduced mass μ in the orbital plane, while L and ι
are respectively the total angular momentum and the angle
between this vector and the direction N. The total mass is
denoted m.
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The monochromatic EM wave propagates along the z
direction and has a frequency Ω.

A. Unperturbed dipole physics

Consider a system of two charged particles, of mass
m1 and m2, that interact through the product between
the electromagnetic potential Aμ ¼ ðΦ=c;AÞ and four-
current Jμ ¼ ðcρ; jÞ, where ρ is the charge density
[ρ ¼ qiδ3ðx − xiÞ] and j ¼ ρv is the current density.
We take these charges to interact only through the
Coulomb force in Minkowski flat spacetime with metric
ημν ¼ diagð−1; 1; 1; 1Þ. Using xμ ¼ ðx0; x1; x2; x3Þ ¼
ðct; x; y; zÞ as coordinates, where c is the speed of light
in vacuum, the action that describes this system is

S ¼
Z

d3xdt

�
−
FμνFμν

4μ0
− A1

μJ2μ − A2
μJ1μ

�

− c2
Z

dτðm1 þm2Þ; ð11Þ

in which μ0 is the magnetic vacuum permeability, Fμν the
antisymmetric electromagnetic tensor defined as Fμν ¼
∂μAν − ∂νAμ and dτ ¼ dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
, where v2 is the

square of the three-velocity vi ¼ dxi=dt. From now on,
we restrict ourselves to the small velocities case, dropping
all the special-relativistic terms. With all these assumptions,
the ith component of the equations of motion for each
particles is

m1r̈i1 ¼
q1q2ðr1 − r2Þi
jr1 − r2j3

; m2r̈i2 ¼
q1q2ðr2 − r1Þi
jr2 − r1j3

; ð12Þ

where i ¼ ð1; 2; 3Þ, r1ð2Þ represents the position vector of
particle 1(2), q1, q2 are the electric charges and the double
dot sign means a second derivative with respect to time t. In
the center-of-mass frame, the center of mass vector position
has zero second time derivative (R̈CM ¼ 0), while, defining
the relative position vector with respect to the radial
direction defined in Sec. I D as r≡ r1 − r2 ¼ rn, the
equations for the relative motion become

r̈ ¼ 1

μ

q1q2
jrj2 n; ð13Þ

where μ is the reduced mass of the system,

μ ¼ m1m2

m1 þm2

: ð14Þ

We define the total mass as m ¼ m1 þm2. Since the
Coulomb force is central, the total angular momentum
of the system is conserved and the motion happens on a
fixed plane. The solution to the equations of motion, in
analogy with the Newtonian ones, have the characteristic

shape of a conic section, depending on the energy of the
particles. Since we are interested in bound systems, we
assume that the energy will be the one associated with
bound orbits.
We focus on the case in which the dipole is composed of

two particles with equal and opposite charge and equal
mass,

−q2 ¼ q1 ¼ q;

m1 ¼ m2 ¼ M: ð15Þ

From Eqs. (12), we find that the center of mass is fixed, the
angular momentum of the system is constant and the
motion lies in the orbital plane. The orbit of the binary
can be directly obtained from

r̈ −
4L2

M2r3
¼ −

2q2

Mr2
; ð16Þ

where L ¼ Mr2 _ϕ=2 is the magnitude of the angular
momentum vector of the system and ϕ is the angle
describing the motion of the reduced mass in the plane
of the orbit (polar angle). Defining the dipole vector (d) as

d ¼ q1r1 þ q2r2 ¼ μ

�
q1
m1

−
q2
m2

�
r; ð17Þ

where r is the proper radius of the system (relative position
vector in the dipole case). Introducing the vector between
the CM and the observer, of magnitude R0 and unit
direction R̂0, the generated EM wave has a vector potential,
electric field and magnetic one given by

A ¼ 1

cR0

_d; H ¼ 1

c2R0

d̈ × R̂0; E ¼ 1

c2R0

ðd̈ × R̂0Þ × R̂0:

ð18Þ

This is a well-known result, a dipole emits only if it is
accelerated. Finally, the expression for the intensity of the
emitted energy is given by [40],

dI ¼ c
H2

4π
R2
0do → I ¼ 2

3c3
d̈2; ð19Þ

where we averaged over one period of the orbit and do is
the solid angle in the R̂0 direction.

B. Scattering from a rotating dipole

1. Initial considerations

The binary above is now hit by an EMwave described by
a vector potential Aμ

Ω. For definiteness, the wave propagates
along the ez axis, parallel to the direction of the observer N
and to the angular momentum of the system L. In this way,
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the x-y plane of the orbital frame, of the observer and also
of the wave are all parallel between each other and
perpendicular to the z direction of the observer.
The action (11) needs to be complemented by adding

both the scalar and the vector potentials of the perturbation,

Aμ
1 → Aμ

1 þ Aμ
Ω ¼

�
Φ1

c
þΦΩ

c
;A1 þ AΩ

�
; ð20Þ

Aμ
2 → Aμ

2 þ Aμ
Ω ¼

�
Φ2

c
þΦΩ

c
;A2 þ AΩ

�
: ð21Þ

Using the definitions of EM fields3 and potentials,

E ¼ −∇Φ −
∂
∂tA and B ¼ ∇ × A; ð22Þ

one finds

m1a1 ¼ q1E2 þ q1EΩ þ q1v1 × B2 þ q1v1 × BΩ; ð23aÞ

m2a2 ¼ q2E1 þ q2EΩ þ q2v2 × B1 þ q2v2 × BΩ: ð23bÞ

Dropping the last two terms of Eqs. (23) by assumptions
of small internal velocities compared to the speed of light,
we get

m1a1 ¼ q1E2 þ q1EΩ; ð24aÞ

m2a2 ¼ q2E1 þ q2EΩ: ð24bÞ

Finally, in the CM frame we have

R̈CM ¼ q1 þ q2
m1 þm2

ðEΩÞCM; ð25Þ

r̈ ¼ 1

μ

q1q2
jrj2 nþ

�
q1
m1

−
q2
m2

�
ðEΩÞCM; ð26Þ

where ðEΩÞCM, means that the quantity under consideration
has to be properly expressed in the CM frame. Using the
equations of motion (24) and transforming all the quantities
in the CM frame, we find the total angular momentum
variation in time,

dL
dt

¼ μ
2q
M

r × ðEΩÞCM: ð27Þ

Here, we used already the specific setup described
by Eq. (15).

2. Equations of motion

As we have shown in Eq. (27), the time variation of
the angular momentum is given by the cross product of
the relative position vector and the external perturbing
force FΩ,

_L ∼ r12 × FΩ: ð28Þ

An electric field on the plane of the orbit changes the
magnitude of the angular momentum, but not its direction.
We should highlight that this simplification still captures
the dynamics of the scattering, allowing us to give an
analytic treatment of the process. In order to further
simplify our calculations, we consider the unperturbed
motion happening in circular orbits. Therefore, the equa-
tions that describe the perturbation of such kind of
trajectory are given by

r̈−r _ϕ2¼−
2q2

Mr2
þqEΩ

M
ðcγ−Ωt−ϕðtÞ þcγþΩt−ϕðtÞÞ; ð29aÞ

2 _r _ϕþrϕ̈ ¼ qEΩ

M
ðsγ−Ωt−ϕðtÞ þ sγþΩt−ϕðtÞÞ; ð29bÞ

where γ is the angle between the direction of polarization of
the electric field and the P direction, in the plane of the
orbit. Here, and in this section only, ϕ is the polar angle
describing the orbital motion in the x-y plane. The constant
EΩ is the amplitude of the electric field. The presence of the
perturbation in the right-hand side of the second equation
spoils the constancy of the angular momentum but, at first
order in EΩ, one can find the relation between _ϕ and L. Let
us write

2 _r _ϕþrϕ̈≡ 2

M
1

r
d
dt

�
M
2
r2 _ϕ

�
¼ 2

M
1

r
d
dt
LðtÞ; ð30Þ

where LðtÞ is the angular momentum magnitude. Since
without any external perturbation the angular momentum is
conserved (and equal to a constant L∘), we can expand LðtÞ
in powers of the electric field,

LðtÞ ¼ L∘ þ EΩL1ðtÞ þOðE2
ΩÞ: ð31Þ

Making use of this, a similar expansion for rðtÞ and for ϕðtÞ
can be found,

rðtÞ ¼ r∘ þ EΩgðtÞ þOðE2
ΩÞ; ð32Þ

ϕðtÞ ¼ ϕð0Þ þ t _ϕ ¼ ϕð0Þ þ tðω0 þ EΩZp þOðE2
ΩÞÞ;

ð33Þ

where r∘ is the orbital radius of the unperturbed motion,
ϕð0Þ ¼ ϕ0 is the initial angular position of the reduced
mass in the x-y plane and Zp is the first order correction in

3In order to pass to the old vectorial picture, in this section
B ¼ μ0H is the magnetic field in vacuum.

SCATTERING OF SCALAR, ELECTROMAGNETIC, AND … PHYS. REV. D 98, 084001 (2018)

084001-5



the orbital frequency due to the external perturbation. Using
Eqs. (29) we find

_L1ðtÞ ¼
qr∘
2

ðsγ0−ϕ0−tΩ−tω0
þ sγ0−ϕ0þtΩ−tω0

Þ; ð34Þ

where we kept only the zero order in the ϕðtÞ expansion
because _L1 is already a first order quantity. For the
unperturbed circular motion, _ϕ ¼ ω0 is constant. Thus,
integrating Eq. (34) with ϕðtÞ ¼ ω0t, one finds

L1ðtÞ ¼
Z

t

0

dt0½ _L1ðt0Þ�

¼ qr∘
�
ω0cγ−ϕ0

Ω2 − ω2
0

þ cγ−ϕ0þtΩ−tω0

2ðω0 − ΩÞ þ cγ−ϕ0−tΩ−tω0

2ðω0 þ ΩÞ
�
:

Finally, the total angular momentum to first order in the
external field is

LðtÞ ¼ L∘ þ EΩL1ðtÞ

¼ L∘ þ
EΩqr∘ω0cγ−ϕ0

Ω2 − ω2
0

þ EΩqr∘
2

�
cγ−ϕ0þtΩ−tω0

ω0 −Ω
þ cγ−ϕ0−tΩ−tω0

ω0 þΩ

�
: ð35Þ

From the definition of angular momentum, from Eqs. (32)
and (33) and up to OðE2

ΩÞ,

LðtÞ ¼ 1

2
MrðtÞ2 _ϕðtÞ

¼ M
2
r2∘ω0 þ

�
M
2
r∘ðr∘Zp þ 2ω0gðtÞÞ

�
EΩ: ð36Þ

We can compare with Eq. (35) order by order, to get

L∘ ¼
M
2
r2∘ω0; ð37Þ

at order zero, and

Zp ¼ q
Mr∘

�
2ω0cγ−ϕ0

Ω2 − ω2
0

þ cγ−ϕ0þtΩ−tω0

ðω0 − ΩÞ þ cγ−ϕ0−tΩ−tω0

ðω0 þ ΩÞ
�

−
2ω0gðtÞ

r∘
: ð38Þ

Now that we have used the Keplerian polar equation to get
the angular perturbation due to the incoming wave, we
substitute this result in _ϕ2 in the radial equation (29a) in
order to find the equation governing gðtÞ. Then substituting
the expansions given by Eqs. (32)–(33),

g̈ðtÞ − r∘ðω0 þ EΩZpÞ2

¼ −
2q2

Mðr∘ þ EΩgðtÞÞ
þ qEΩ

M
ðcγ−Ωt−ϕ0−ω0t þ cγþΩt−ϕ0−ω0tÞ; ð39Þ

we get, at zero order in EΩ, the relation between the
Newtonian orbital frequency and the characteristics of the
binary,

ω2
0 ¼

2q2

Mr3∘
: ð40Þ

Substituting M obtained by the equation above in the first
order expansion of Eq. (39), we find a differential equation
for gðtÞ,

g̈ðtÞ þ ω2
0gðtÞ þ

2r3∘ω4
0cγ−ϕ0

qðω2
0 − Ω2Þ ¼

r3∘ω2
0ðΩ − 3ω0Þcγ−ϕ0þtΩ−tω0

2qðΩ − ω0Þ
þ r3∘ω2

0ðΩþ 3ω0Þcγ−ϕ0−tΩ−tω0

2qðΩþ ω0Þ
: ð41Þ

The equation above represents a driven harmonic oscillator with multiple resonant frequencies, whose solution is given by

gðtÞ ¼ k1 cosðtω0Þ þ k2 sinðtω0Þ þ
r3∘
q

�
2ω2

0cγ−ϕ0

Ω2 − ω2
0

−
ω2
0ðΩ − 3ω0Þcγ−ϕ0þtΩ−tω0

2ΩðΩ2 − 3Ωω0 þ 2ω2
0Þ

−
ω2
0ðΩþ 3ω0Þcγ−ϕ0−tΩ−tω0

2ΩðΩ2 þ 3Ωω0 þ 2ω2
0Þ
�
; ð42Þ

in which k1 and k2 are integration constants. We set in the
following the two constants of integration to zero. Finally,
we can evaluate Zp considering the explicit solution for
gðtÞ given by Eq. (42) with k1 ¼ k2 ¼ 0,

Zp ¼ r2∘
q

�
3ω3

0cγ−ϕ0

ω2
0 −Ω2

−
ω2
0ðΩ2 − 4Ωω0 þ 6ω2

0Þcγ−ϕ0þtΩ−tω0

2ΩðΩ − 2ω0ÞðΩ − ω0Þ

þ ω2
0ðΩ2 þ 4Ωω0 þ 6ω2

0Þcγ−ϕ0−tΩ−tω0

2ΩðΩþ 2ω0ÞðΩþ ω0Þ
�
: ð43Þ

The roots of the denominators in the solution for
gðtÞ are

f−2ω0;−ω0; 0;ω0; 2ω0g:

The negative values are a solution because of the symmetry
of the problem, but they are not adding any physics to the
positive ones, so we will consider only 0;ω0; 2ω0. Let us
evaluate the limit of rðtÞ for these roots,
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lim
Ω→0

rðtÞ ¼ r∘ −
2EΩr3∘cγ−ϕ0

q
þ EΩr3∘

q

�
7

4
cγ−ϕ0−tω0

�

−
EΩr3∘
q

�
3

2
tω0sγ−ϕ0−tω0

�
; ð44aÞ

lim
Ω→ω0

rðtÞ ¼ r∘ −
EΩr3∘
q

�
1

3
cγ−ϕ0−2tω0

�

þ EΩr3∘
q

ðtω0sγ−ϕ0
Þ; ð44bÞ

lim
Ω→2ω0

rðtÞ ¼ ∞: ð44cÞ

In the high-frequency limit, the reasoning described before
does not hold because the effect of the external field lives
on a time scale much shorter than the one associated with
the proper rotation of the binary, such that we can neglect
the free motion of the system during one (or few) period of
oscillation of the external electric field. So, we can just
consider that

lim
Ω→∞

rðtÞ ¼ r∘: ð45Þ

From these results we see that resonant phenomena appear
depending on the ratio between the incoming and the
orbital frequency. Especially, in the Ω ¼ 0 limit the radial
motion of the reduced mass has a secular instability given
by the last term of Eq. (44). This term can be understood
thinking that the low frequency limit of our scattering
corresponds to a perfect dipole inside a capacitor: in the
large time limit, the two particles are dragged away from
each other. In the Ω ¼ ω0 case there is also such a secular
term, but it can be set to zero with an appropriate choice of
the initial condition. Finally, theΩ ¼ 2ω0 case corresponds
to a proper resonance, meaning that the amplitude of the
motion for that value is infinite.

3. Scattered fields

Having solved the perturbed equations of motion, we can
find the scattered electrical field, energy and the total cross
section. When the system interacts with the external
perturbation, the total field will contain a perturbed dipole
term. In addition, the CM may contribute to the scattered
field; we denote this contribution ELW, where LW stands
for Liénard–Wiechert,

Escattered ¼ E2p þ ELW: ð46Þ

We express our results in the fixed observer frame, using

R̂0 ¼ cos δ cos ξPþ sin δ cos ξQþ sin ξN; ð47Þ

nðtÞ ¼ cosϕðtÞPþ sinϕðtÞQ; ð48Þ

EΩðtÞ ¼ cos γPþ sin γQ; ð49Þ

where δ and ξ are the angles that characterize the position of
the unitary vector R̂0 with respect to the CM, in the fixed
observer frame; ϕðtÞ is given by Eqs. (33) and (43), γ is the
direction of the linear polarization of the electric field in the
orbital plane and EΩ is the unitary vector in the direction of
the external electric field (EΩ ¼ EΩEΩ). Since we are
considering the motion of a dipole in which the total
charge is zero, the contribution from the CM acceleration is
zero, as shown in Appendix A.
The vector potential has contributions from the unper-

turbed dipole and a contribution from the perturbed part,
induced by the incoming EMwave. Particularly, getting the
electric field E from the vector potential A, we find the
same functional expression (18), but containing the accel-
eration of the dipole given by Eq. (25). Therefore, using the
definitions of dipole fields in Eq. (18) and the expression
for the radial separation (42) we find

E2pðtÞ ¼ −
qr∘ω2

0

c2R0

h�
nðtÞ × R̂0

�
× R̂0

i
þ EΩr3∘ω2

0cΩt
c2R0

h�
EΩ × R̂0

�
× R̂0

i
þ 4EΩω

4
0r

3∘cγ−ϕ0

c2R0ðΩ2 − ω2
0Þ
h�

nðtÞ × R̂0

�
× R̂0

i

−
2EΩr3∘ω4

0

c2R0

� ðΩþ 3ω0Þcγ−ϕ0−tΩ−tω0

2ΩðΩ2 þ 3Ωω0 þ 2ω2
0Þ

þ ðΩ − 3ω0Þcγ−ϕ0þtΩ−tω0

2ΩðΩ2 − 3Ωω0 þ 2ω2
0Þ
�h�

nðtÞ × R̂0

�
× R̂0

i
; ð50Þ

H2pðtÞ ¼ −
qr∘ω2

0

c2R0

h
nðtÞ × R̂0

i
þ EΩr3∘ω2

0cΩt
c2R0

h
EΩ × R̂0

i
þ 4EΩω

4
0r

3∘cγ−ϕ0

c2R0ðΩ2 − ω2
0Þ
h
nðtÞ × R̂0

i

−
2EΩr3∘ω4

0

c2R0

� ðΩþ 3ω0Þcγ−ϕ0−tΩ−tω0

2ΩðΩ2 þ 3Ωω0 þ 2ω2
0Þ
þ ðΩ − 3ω0Þcγ−ϕ0þtΩ−tω0

2ΩðΩ2 − 3Ωω0 þ 2ω2
0Þ
�h
nðtÞ × R̂0

i
: ð51Þ

The first term describes the unperturbed dipole radi-
ation, as we can see from a quick comparison with
Eq. (18). Once this term is expressed in the observer
frame, nðtÞ also includes a term linear in the external

perturbation, due to the first order Taylor expansion of
the trigonometric functions in Eq. (48). The second term
that does not depend on nðtÞ is the only one that matters
in the high frequency limit. The third term represents the
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modification to the dipole emission due to the exter-
nal wave.

4. Cross section

The scattering cross section is defined as the ratio
between the energy emitted by the system in any given
direction per unit of time, to the energy flux density of the
incident radiation per unit of time. Considering that dI is
the energy radiated per second by the binary into the solid
angle do, we can define the differential cross section as

dσ ¼ dIscat
SΩ

; ð52Þ

where SΩ is the modulus of the Poynting vector of the
incoming wave. Using the relation between intensity and
Poynting vector and considering that the Poynting vector
module is a time-varying quantity, we get

dσ
do

¼ hSscatiR2
0

hSΩi
; ð53Þ

where the triangle brackets indicate a time average over one
(or more) period and do is the solid angle element given,
with our choice of R̂0, by

do ¼ cos ξdξdδ; with ξ ¼ ½−π=2; π=2�; δ ¼ ½0; 2π�:
ð54Þ

In the high frequency limit, since the incoming wave is a
monochromatic plane wave, its Poynting vector is

SΩ ¼
�

c
4π

E2
Ωc

2
Ωt

�
N: ð55Þ

Its absolute value, averaged over one period of the EM
wave (2π=Ω ¼ TΩ), is

hSΩi ¼
Ω
2π

Z
TΩ

SΩdt ¼
cE2

Ω
8π

: ð56Þ

To evaluate the Poynting vector of the scattered radiation
we need to use the fields obtained in (50) and (51),

hSscati ¼
	

c
4π

ðE2p ×H2pÞ



¼ Ω
2π

Z
TΩ

c
4π

jE2p ×H2pjdt:

ð57Þ

In the high frequency limit we can evaluate the differential
scattering cross section using only the second term in
Eq. (50) and Eq. (51),

dσ
do

¼
�

q2

c2M

�
2

ð2c2ξc2γ−δ þ c2ðγ−δÞ − 3Þ: ð58Þ

The total high frequency scattering cross section is found
by integrating the above, and yields

σ ¼ 32π

3

�
q2

c2M

�
2

; ð59Þ

the standard Thomson result [40]. Notice that q2=Mc2 is
the classical charge radius. In the case of a circular orbit, the
cross section in (59) can be given as a function of the
unperturbed orbital frequency through (40),

σ ¼ 32π

3

�
r3∘ω2

0

2c2

�
2

¼ Ar2∘ ; ð60Þ

where A ¼ 8π
3
ðr2∘ω2

0

c2 Þ
2
. The total cross section for a wavewith

a generic frequency Ω is shown in Fig. 3 at Ω≳ ω0. From
this plot, we can see that the cross section goes to infinity
when the incoming frequency approaches twice of the
orbital frequency and that in the high frequency limit it
reaches the value given in Eq. (60).

III. SCATTERING OF SCALAR WAVES

For completeness, we now show that the previous results
are straightforward to extend in the presence of a scalar
interaction. Let us suppose that a binary system, made of
two pointlike scalar charges, interacts with a scalar wave
and that is on a circular orbit of frequency ω0.
We consider the following action:

S ¼
Z

d4x

�
−
1

2
∂μϕ∂μϕ − ρqϕ

�
þ Sm; ð61Þ

where ϕ is the scalar field and ρq is a general scalar charge
density. The action for a free particle Sm is as in (11).

FIG. 3. Total scattering cross section for a dipolar wave as a
function of the external frequency. Here, σ̃ ≡ σ=ðAr2∘Þ is shown as
a function of Ω̃≡ Ω=ω0. We set c ¼ 1 and the two angles
γ ¼ ϕ0 ¼ 0. As expected, the cross section grows unboundedly
for Ω ¼ 2ω0. For large values of Ω we recover the standard high-
frequency classical result (60).
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The scalar field is then governed by the Klein-Gordon
equation

∂μ∂μϕ ¼ ρq: ð62Þ

For a pointlike charge ρq ¼ qδ3ðx − x0Þ dτdt, in the non-
relativist limit the static solution is given by the Green’s
function of the Laplace operator,

ϕðxÞ ¼ −
q
4π

1

jx − x0j ; ð63Þ

therefore, a Coulomb-like potential. From the Euler-
Lagrange equation in a nonrelativistic regime, one finds

m1a
j
1 ¼ −q1

�∂ϕ2

∂xj
�

1

; m2a
j
2 ¼ −q2

�∂ϕ1

∂xj
�

2

; ð64Þ

in which the scalar field ϕi is the potential produced by the
particle i.
Let us now consider the case in which a scalar wave

impinges on the system. We call δϕ ¼ ϕΩ the perturbation
in the scalar potential. The equations of motion are then
altered to include the interaction of the binary with the
wave,

m1a
j
1 ¼ −q1

�∂ϕ2

∂xj
�

1

− q1

�∂ϕΩ

∂xj
�

1

; ð65Þ

m2a
j
2 ¼ −q2

�∂ϕ1

∂x2j
�

2

− q2

�∂ϕΩ

∂xj
�

2

: ð66Þ

Using the explicit form of the potential (63), transforming
the equations to the CM frame and assuming that the scalar
field is homogeneous enough to be evaluated directly in the
CM position, we find

R̈CM ¼ −
�
q1 þ q2

m

��∂ϕΩ

∂xj
�

CM

; ð67Þ

r̈ ¼ −
1

μ

q1q2
jrj2 n −

�
q1
m1

−
q2
m2

��∂ϕΩ

∂xj
�

CM

: ð68Þ

These equations are formally equivalent to the EM counter-
part, and no further calculation is necessary. The existence
of a background of light bosons is motivated by the
problem of dark matter, see e.g., [41]. Their influence in
binary systems was recently described in [42–44]. The
scattering that we described here may be of interest to refine
these studies.

IV. SCATTERING OF GRAVITATIONAL WAVES

We now want to evaluate the effect of an incoming
gravitational wave on a binary system. The binary system

is made of two compact stars modeled by two point
particles of massm1 andm2 orbiting at an orbital frequency
ω0. We consider an incoming monochromatic GW propa-
gating in the z direction of a fixed basis ðex; ey; ezÞ, at a
frequency Ω. In the transverse traceless (TT) gauge, Hij,
the waveform is

Hij ¼ Pkl
ijfHþ cos ðΩt − kzÞeþkl

þH× sin ðΩt − kzÞe×klg; ð69Þ

where eþij ¼ ex ⊗ ex − ey ⊗ ey and e×ij ¼ ex ⊗ ey þ ey ⊗
ex are the two polarization states of the GW [45], Pijkl ¼
PikPjl − 1

2
PijPkl is the TT projection operator, with Pij ¼

δij − NiNj the projection onto the plane orthogonal to N.
As the wave is a solution of □Hij ¼ 0, we have

k ¼ �Ω
c
; ð70Þ

andHþ ¼ cst andH× ¼ cst. As a consequence, the spatial
derivatives of Hij will be suppressed, ∂kHij ¼ Oð1cÞ
(homogeneity condition), in particular ∂jHij ¼ 0 (trans-
verse), and we can assume that in the near zone of the
compact binary one has Hij ∼ ðHijÞA ∼ ðHjkÞCM. These
conditions will be used in the following when we will
perform a perturbative expansion of the solution.

A. Post-Newtonian formalism

1. Einstein’s equations

We want to solve the Einstein equations

Gμν ¼ 8πG
c4

Tμν; ð71Þ

whereGμν is the Einstein tensor and Tμν is the stress-energy
tensor for point particles

Tμν ¼
X
A¼1;2

mAffiffiffiffiffiffi−gp vμAv
ν
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðgρσÞA
vρAv

σ
A

c2

q δð3Þðx − xAÞ; ð72Þ

where g is the determinant of the metric gμν. Defining the
gothic metric gμν ¼ ffiffiffiffiffiffi−gp

gμν and the tensor Hμανβ ¼
gαβgμν − gανgβμ, we have the well-known identity [39]

∂αβHμανβ ¼ ð−gÞ
�
2Gμν þ 16πG

c4
tμνLL

�
; ð73Þ

where tμνLL is the Landau-Lifshitz tensor [39]. Next we
define the gravitational field

lμν ¼ gμν − ημν; ð74Þ
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where ημν ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric and
we impose the harmonicity condition on the metric
perturbation lμν,

∂νlμν ¼ 0: ð75Þ

Using Eq. (73), we can rewrite the field equations as

□lμν ¼ 16πG
c4

Tμν þ Λμν; ð76Þ

where

Λμν ¼ 16πG
c4

tμνLL þ ∂ρlμσ∂σlνρ − lρσ∂ρσlμν; ð77Þ

is at least quadratic in the gravitational field. In our case, lμν

is formed by two different terms, the perturbation Hμν due
to the incoming GW that we are superimposing on the
original unperturbed gravitational field hμν. Thus, at linear
order we can write

lμν ¼ hμν þHμν: ð78Þ

Since □Hμν ¼ 0, the field equations (76) can be rewritten
as a d’Alembertian equation for hμν,

□hμν ¼ 16πG
c4

Tμν½m; hαβ; Hαβ� þ Λμν½hαβ; hαβ�
þ Λμν½hαβ; Hαβ� þ Λμν½Hαβ; Hαβ�: ð79Þ

The last term in (79) can be neglected when considering
only the dominant, linear order in Hμν terms.

2. Post-Newtonian iteration

We perform the post-Newtonian iteration of the field
equations in harmonic coordinates in the near-zone of the
isolated source. As we are only interested in the effect of
the external perturbation on the binary dynamics, we only
need the lowest order PN expansion. We parametrize the
metric by the usual PN potentials, using the variable
h00ii ≡ h00 þ hii,

h00ii ¼ −
4V
c2

þOðc−4Þ; ð80Þ

h0i ¼ −
4Vi

c3
þOðc−5Þ; ð81Þ

hij ¼ Oðc−4Þ: ð82Þ

Each potential obeys a flat space-time d’Alembertian
equation sourced by the lowest order potentials and by
some matter energy density components. We get

□V ¼ −4πGϒ −Hab∂abh00ii; ð83Þ

□Vi ¼ −4πGϒi −Hab∂abh00ii þ
1

c
∂tHia∂ah00ii; ð84Þ

where we have defined

ϒ ¼ T00 þ Tii

c2
; and ϒi ¼ T0i

c
: ð85Þ

The first terms in the rhs of Eqs. (83) are of compact
support, while the other terms are of noncompact support.
We solve these equations perturbatively and up to linear
order in H. The zeroth order corresponds to the Newtonian
term, and the equation becomes ΔV ¼ −4πGϒ, with
ϒ ¼ m1δ1 þm2δ2, and thus,

VN ¼ Gm1

r1
þGm2

r2
: ð86Þ

We now decompose V in a Newtonian part and a con-
tribution linear in H, V ¼ VN þ Vh. Inserting it into
Eq. (83), we find

Vh ¼ Δ−1
�
−Hab∂ab

�
Gm1

r1
þ Gm2

r2

��
: ð87Þ

Using the fact that Hij ∼ ðHijÞCM, we see that the inverse
Laplacian will not act on H. Further commuting it with the
spatial derivatives, we get

Vh ¼
Gm1

r1
Hijni1n

j
1 þ

Gm2

r2
Hijni2n

j
2: ð88Þ

The potential Vi can be obtained in a similar way.

3. Geodesic equation

The geodesic equations for point-particles is equivalent
to the conservation of the matter stress-energy tensor,
∇νTμν ¼ 0. We express the resulting equations for particle
1 as [46]

dðPiÞ1
dt

¼ ðFiÞ1; ð89Þ

with

Pi ¼ giμvμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρσ vρvσ

c2

q ; ð90Þ

Fi ¼ 1

2

∂igμνvμvνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρσ vρvσ

c2

q : ð91Þ

Using the expression of the metric as a function of the
potentials, see Eq. (80), we obtain at linear order in H
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Pi
1 ¼ vi1 − vj1ðHi

jÞ1; ð92Þ

Fi
1 ¼

1

2
vj1v

k
1ð∂iHjkÞ1 þ ð∂iVÞ1: ð93Þ

Using the relation V ¼ VN þ Vh, with Vh given by
Eq. (88), we finally obtain the acceleration of particle 1,

ai1 ¼ −
Gm2

r212

�
1þ 3

2
Hjkn

j
12n

k
12

�
ni12 þ

dHij

dt
vj1: ð94Þ

Here we ignored all higher order post-Newtonian correc-
tions, since they will be subleading in the computation of
the cross section.

4. Lagrangian formulation

The equations of motion (94) can be derived from the
Lagrangian

L ¼ Gm1m2

r12

�
1þ 1

2
Hijni12n

j
12

�
þ 1

2
m1v21

−
1

2
m1Hijvi1v

j
1 þ

1

2
m2v22 −

1

2
m2Hijvi2v

j
2:

Varying the Lagrangian with respect to the velocities, we
obtain the linear momentum

Pi ≡ X
A¼1;2

δL
δviA

¼ m1vi1 −m1Hijv
j
1 þm2vi2 −m2Hijv

j
2:

It is possible to see that the time-derivative of the
momentum is zero. Then we get the energy associated
with the binary motion,

E≡ X
A¼1;2

δL
δviA

viA − L

¼ −
Gm1m2

r12

�
1þ 1

2
Hjkn

j
12n

k
12

�
þ 1

2
m1v21

−
1

2
m1Hijvi1v

j
1 þ

1

2
m2v22 −

1

2
m2Hijvi2v

j
2: ð95Þ

Similarly the angular momentum Ji is given by

Ji ≡ ϵijk
X
A¼1;2

xjA
δL
δvkA

¼ ϵijk½m1ðxj1vk1 −Hklx
j
1v

l
1Þ þm2ðxj2vk2 −Hklx

j
2v

l
2Þ�;

where ϵijk is the Levi-Civita tensor. Finally, we define the
center-of-mass integral

Gi ¼ m1xi1 −m1Hi
jx

j
1 þ ½1 ↔ 2�: ð96Þ

The conservation laws associated with all these quantities
are

dPi

dt
¼ 0; ð97Þ

dGi

dt
¼ Pi −m1

_Hi
jx

j
1 −m2

_Hi
jx

j
2; ð98Þ

dE
dt

¼ 1

2
m1

_Hijvi1v
j
1 þ

1

2
m2

_Hijvi2v
j
2

−
Gm1m2

2r12
_Hijni12n

j
12; ð99Þ

dJi

dt
¼ ϵijk

�
−m1v

j
1Hkmvm1 −m2v

j
2Hkmvm2

þ Gm1m2

r12
nj12Hkmnm12

�
: ð100Þ

Unlike the Newtonian result, these quantities are not
conserved, due to the incoming GW; the only conserved
quantity here is the momentum Pi.
We now wish to work in the center-of-mass coordinates.

We define the total mass m, the symmetric mass ratio ν and
the relative position xi and velocity vi as

m ¼ m1 þm2; ð101Þ

ν ¼ μ

m
¼ m1m2

m2
; ð102Þ

xi ¼ xi1 − xi2; r ¼ jxj; ð103Þ

vi ¼ vi1 − vi2; ai ≡ ai1 − ai2: ð104Þ

The center of mass coordinates are obtained by solving the
equation

Gi ¼ 0: ð105Þ

It implies the well-known Newtonian results, that are still
valid at linear order in Hij,

xi1;CM ¼ m2

m
xi; xi2;CM ¼ −

m1

m
xi; ð106Þ

vi1;CM ¼ m2

m
vi; vi2;CM ¼ −

m1

m
vi: ð107Þ

In the center of mass coordinates, the relative acceleration
is given by

ai ¼ −
Gm
r2

�
1þ 3

2
Hjknjnk

�
ni þ _Hijvj; ð108Þ

and the conservation laws are now
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dPi

dt
¼ 0; ð109Þ

dE
dt

¼ 1

2
mν _Hijvivj −

Gm2ν

2r
_Hijninj; ð110Þ

dJi

dt
¼ ϵijkmν

�
Gm
r

njHkmnm − vjHkmvm
�
: ð111Þ

B. Hamiltonian formulation and
angle-action variables

To understand the gravitational problem, we will follow
a different route from that we used in the electromagnetic
example. We will use an approach based on angle-action
variables. The dynamics of a Keplerian orbit in Delaunay
variables is well known, and we will use the powerful tool
of perturbation theory in angle-action variables to describe
the evolution of the perturbed system [47]. The advantages
of such an approach is that the calculations are simpler,
notably because they capture the symmetries of the system.
By promoting the integrals of motion to coordinate
variables in the phase space, the dynamics of the system
become very simple, as we will see. In particular, it allows a
simple treatment of generic orbits and of the resonances
that occur in such systems. However, in this work we will
focus mostly on circular orbits and resonances will be
absent from the final result. In Appendix B, we review the
Hamiltonian in the Delaunay variables and explain the
basics of perturbation theory in angle-action variables.

1. Hamiltonian in the modified Delaunay variables

The first step is to determine the Hamiltonian from the
perturbed Lagrangian, and then to express it as a function of
the modified Delaunay variables ðθ1;2;3; J1;2;3Þ (see
Appendix B 1). We start from the reduced perturbed
Lagrangian in the center-of-mass coordinates, in spherical
coordinates,

L̃ ¼ Gm
r

�
1þ 1

2
Hijninj

�
þ 1

2
_r2½1 −Hijninj�

þ 1

2
r2 _θ2½1 −Hijθ

iθj� þ 1

2
r2sin2θ _φ2½1 −Hijφ

iφj�
− r _r _θHijniθj − r sin θ _r _φHijniφj

− r2 sin θ _θ _φHijθ
iφj; ð112Þ

we derive the conjugate momenta px ¼ ∂L̃=∂ _x,
pr ¼ _r½1 −Hijninj� − r _θHijniθj − r sin θ _φHijniφj;

pθ ¼ r2 _θ½1 −Hijθ
iθj� − r _rHijniθj − r2 sin θ _φHijθ

iφj;

pφ ¼ r2sin2θ _φ½1 −Hijφ
iφj� − r sin θ _rHijniφj

− r2 sin θ _θHijθ
iφj; ð113Þ

and then the reduced perturbed Hamiltonian

H̃≡ pr _rþ pθ
_θ þ pφ _φ − L̃

¼ −
Gm
r

�
1þ 1

2
Hijninj

�
þ 1

2
p2
r ½1þHijninj�

þ 1

2r2
p2
θ½1þHijθ

iθj� þ 1

2r2sin2θ
p2
φ½1þHijφ

iφj�

þ prpθ

r
Hijniθj þ

prpφ

r sin θ
Hijniφj

þ pθpφ

ρ2 sin θ
Hijθ

iφj: ð114Þ

The perturbed Hamiltonian depends explicitly on time
through the perturbation Hij, given by Eq. (69).
The next step is to write the Hamiltonian as a function of

the modified Delaunay variables. This can only be achieved
with an expansion in the eccentricity e. In the following we
will only consider the perturbation of a circular orbit. At
this order we have that J2 ¼ 0 and θ2 is not defined. Our
new set of variables is thus fθ1;3; J1;3g, and the relations
between the old canonical variables and the angle-action
ones are

r ¼ J23
Gm

; θ ¼ π

2
− arccos

�
1 −

J1
J3

�
;

φ ¼ −θ1 þ θ3;

pr ¼ 0; pθ ¼ 0; pφ ¼ J3 − J1: ð115Þ

The Hamiltonian that arises out of this procedure is

˜̃H ¼ −
G2m2

2J23
½1þ ðHijninjÞ − ðHijλ

iλjÞ� þ ΩT ; ð116Þ

where we have introduced a new variable τ and its
conjugate T to absorb the explicit dependence in time,
cf. Appendix B. In particular it depends not only on the
actions but also on the angle variables. The dependence on
the variable τ is only through the incoming GW and the
only modes that contribute to the Fourier expansion are

kτ ¼ �1. Then, as Ω0ðJÞ ¼ d ˜̃H0

dJ ¼ ð0; 0; G2m2

J3
3

;ΩÞ, we can

see that the resonance occurs when

Ω ¼ �k3n; ð117Þ

where n ¼ G2m2

J3
3

is the orbital frequency of the binary

and k3 ∈ N.
We can also use the new set of angle-action variables

ðθ0; J0Þ, as constructed in Appendix B 2. The Hamiltonian
for this set of variables is
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H̃0ðJ0Þ ¼ −
G2m2

J023
þΩT 0: ð118Þ

The Hamilton equations are then

_J0 ¼ 0; ð119Þ

_θ01 ¼ 0; _θ03 ¼
G2m2

J033
and _τ0 ¼ Ω: ð120Þ

2. Variation of the orbit elements

We now relate the new set of variables to the orbit
elements and obtain their evolution. From J3 ¼

ffiffiffiffiffiffiffiffiffiffi
Gma

p
,

we get

da
dt

¼ 2

ffiffiffiffiffiffiffiffi
a
Gm

r
dJ3
dt

¼ −2
ffiffiffiffiffiffiffiffi
a
Gm

r ∂H̃1

∂θ3 : ð121Þ

From J1 ¼ J3ð1 − cos ιÞ we get, using the previous rela-
tion,

dι
dt

¼ cos ι − 1

sin ι
1

a
da
dt

: ð122Þ

We also have

dψ
dt

¼ −
dθ1
dt

;
dω
dt

¼ −
dψ
dt

; and
dl
dt

¼ dθ3
dt

:

To obtain explicit results we specify to some specific
configurations.
a. Parallel to the orbital plane: α ¼ 0, β ¼ π=2,

κ ¼ π=2þ ι
We compute the variation of the energy, defined as

E≡H, and get

J23
G2m2Ω

dE
dt

¼ −
H×

2
sinð2ιÞ cosðΩtÞ sinð2ζÞ

þHþ
32

sinðΩtÞðcosð4ιÞ − 17Þ cosð2ζÞ: ð123Þ

The variation of the semimajor axis is given byffiffiffiffiffiffiffiffi
a
Gm

r
da
dt

¼ −
Hþ
8

cosðΩtÞðcosð4ιÞ − 17Þ sinð2ζÞ

þ 2H× sinð2ιÞ sinðΩtÞ cosð2ζÞ; ð124Þ

while the variation of the inclination angle is

a3=2ffiffiffiffiffiffiffiffi
Gm

p dι
dt

¼ 2H×ð1 − cos ιÞ cos ι sinðΩtÞ cosð2ζÞ

−
Hþ
16

cosðΩtÞðcosð4ιÞ − 17Þ tan
�
ι

2

�
sinð2ζÞ:

ð125Þ

b. Perpendicular to the orbital plane: α ¼ 0, β ¼ π=2,
κ ¼ ι The variation of the energy is

J23
G2m2Ω

dE
dt

¼ −
Hþ
16

sinðΩtÞðcosð2ιÞ þ 3Þ2 cosð2ζÞ
−H× cosðΩtÞcos2ι sinð2ζÞ: ð126Þ

The variation of the semimajor axis is given by

−
ffiffiffiffiffiffiffiffi
a
Gm

r
da
dt

¼ 4H× sinðΩtÞcos2ι cosð2ζÞ

þHþ
4

cosðΩtÞðcosð2ιÞ þ 3Þ2 sinð2ζÞ;
ð127Þ

and the variation of the inclination angle is

a3=2ffiffiffiffiffiffiffiffi
Gm

p dι
dt

¼ 2H×cos2ι tan

�
ι

2

�
sinðΩtÞ cosð2ζÞ

þHþ
8

cosðΩtÞðcosð2ιÞ þ 3Þ2 tan
�
ι

2

�
sinð2ζÞ:

ð128Þ
3. Scattered gravitational wave

The asymptotic waveform is given by [46],

lTTkm ¼ 2G
c2R

Pijkm

X∞
l¼2

1

cll!

n
NL−2UijL−2ðT −R=CÞ

−
2l

ðlþ 1ÞcNaL−2εabðiVjÞbL−2ðT −R=CÞ
o
þO

� 1

R2

�
;

ð129Þ

where ðT; RÞ are the radiative coordinates. We recall that
Pijkm is the TT projection and the radiative moments UL

and VL are related to the mass-type and current-type
moments of the source. Here we suppose that the same
relation still holds at linear order in Hij, that is,

ULðTÞ ¼ MðlÞ
L ðTÞ. The waveform is then given at our

order by

lTTkm ¼ HTT
km þ 2G

c4R
PijkmM

ð2Þ
ij þO

�
1

R2

�
: ð130Þ

The contribution from the incoming GW, HTT
ij , has to be

expanded at future null infinity, i.e., when R → þ∞
keeping T − R

c constant. We get4

4We did not prove this expression and only consider the
general structure of a gravitational wave at infinity
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2ΩR
c

HTT
ij ¼ Pijkl

�
Hþeþij sin

�
Ω
�
T −

R
c

��

−H×e×ij cos

�
Ω
�
T −

R
c

���
:

Then, we have to link the canonical momentsML and SL to
the real source moments IL and JL, and then to figure out
the expression of these source moments. We have the
relation

MLðtÞ¼ ILðtÞþδILðtÞ: ð131Þ

In our case we are only interested by Mij, for which
δIij ¼ 0. The source dipole moment is given by the usual
formula,

IijðtÞ¼FPB¼0

Z
d3yjyjB

�Z
1

−1
dzδ2ðzÞŷijΣ̄ðy; tÞ

�
þOðc−2Þ;

ð132Þ

where FP is the finite part [46]. After some calculation we
obtain

Mij ¼ Iij þO
�
1

c2

�
; ð133Þ

Iij ¼ m1y
hiji
1 þm2y

hiji
2 −

m1

7
ðHhijiy21 þ 4Hhi

a y
ji
1 y

a
1Þ

−
m2

7
ðHhijiy22 þ 4Hhi

a y
ji
2 y

a
2Þ: ð134Þ

The second term in the gravitational waveform (130) is
given by

hTTkm ¼ 2G
c4R

PijkmI
ð2Þ
ij : ð135Þ

The projection onto the plus and cross polarizations gives

hþ ¼ G
c4R

ðPiPj −QiQjÞIð2Þij ; ð136Þ

h× ¼ G
c4R

ðPiQj þQiPjÞIð2Þij : ð137Þ

The explicit expression of the polarizations is given in the
Appendix C. We can see that the amplitude of the scattered
wave scales as ω−4=3

0 .

C. The energy balance equation

Before going further, we want to check that the energy
balance equation is verified,	

dE
dt



¼ −hF i; ð138Þ

where the brackets stand for the angular average over one
orbital period and the left-hand side has been computed in
Eqs. (123)–(126). The gravitational flux is defined as

F ≡ c
Z
S
ð−gÞt0iLLdSi

¼ c3

16πG

Z
S
∂τHij∂τhijR2dΣ; ð139Þ

where dSi ¼ NiR2dΣ is the surface element of the two-
dimensional surface S. Inserting the expressions for HTT

ij

and hTTij we get for the first configuration,

hF i ¼
128a2νmω6

0Hþsin3ðπΩω0
Þ cosðπΩω0

Þ
15πΩðΩ2 − 4ω2

0Þ
; ð140Þ

and for the second configuration,

hF i ¼
8a2νmω5

0sin
3ðπΩω0

Þ cosðπΩω0
Þð14Hþω0 − 5H×ΩÞ

15πΩðΩ2 − 4ω2
0Þ

:

ð141Þ
After averaging over one orbital period the variation of
the energy (123)–(126), we can see that the quadrupole
formula is respected,	

dE0

dt



¼ −hF i; ð142Þ

where we have defined the modified energy

E0 ¼ Eþ Gm2ν

2r
ðHijninjÞ þ

1

2
mνðHijvivjÞ

¼ −
Gm2ν

2r

�
1 −

1

2
ðHijninjÞ

�
þ 1

2
mv2: ð143Þ

D. The cross section

Using the previous results, the scattering cross section
can be computed generically for any binary orientation and
any incoming gravitational wave. We find that, for a þ-
polarized wave, for instance, the scattering cross section
depends on the angle with which the wave hits the binary.
However, in the limit when Ω → ∞, the cross section for
either edge- or head-on configurations is the same,

σ ¼ 11408πν2

2205

�
v
c

�
4 a6

λ4GW
; ð144Þ

where we have introduced the orbital radius of the binary
system, a ¼ v

ω0
, as well as the wavelength of the incoming

GW, λGW ≡ c
Ω. From this formula we can see that at equal

total mass, the effect is larger the slower the system. Also, it
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highlights a structure similar to that of Rayleigh scattering
of light.
Note that the cross section is not allowed to grow

unboundedly, since that would take us away from the
perturbative regime we work in. In particular, we must
require that the scattered wave is always of much smaller
amplitude than the incoming GW. Evaluating the scattered
wave a wavelength away from the scatterer, we find that the
cross section can be expressed as

σ ¼ C2
1

11408πa2

2205
; ð145Þ

with C1 ≪ 1 the ratio between scattered and incident GWs.
In addition, we must require that C2 ≡HΩ=ω0 ≪ 1, to
ensure that the backreaction on the binary is small. This
condition prevents the cross section from getting arbitrarily
large for weakly bound binaries.

V. CONCLUSIONS

After a period of consolidation of the detection of
gravitational waves, it is likely that we will enter a period
of precision gravitational wave physics. This will require a
better control on the possible effects that affect the
production and propagation of gravitational waves. This
will also be essential to use gravitational waves as an
ultimate prove of the constituents of the Universe. In this
work, we have extended previous calculations of propa-
gation of gravitational waves by studying an important
scattering system: a binary of compact objects.
Our results show that gravitationally bound binaries are

able to scatter incoming gravitational radiation. We have
computed the scattered field for general configurations, two
special cases are shown in Appendix C. Consider now the
binary neutron-star systems: PSR J1411þ 2551 [48]
(orbital period 2.6 days, total mass 2.5M⊙) and the ultra-
relativistic pulsar PSR J1946þ 2052 [49] (orbital period
0.078 days, total mass 2.5M⊙). For a GW incoming at a
frequency f ¼ Ω=ð2πÞ ¼ 200 Hz, we find from the expres-
sions in Appendix C that the order of magnitude of the
correction in the amplitude—due to scattering—is, for the
first binary pulsar hþ;× ∼ 10−5Hþ;×, while for the ultra-
relativistic pulsar we have hþ;× ∼ 10−7Hþ;×. As expected
from Eq. (145) the effect is larger for slowly rotating
pulsars. We also find that the effect is slightly stronger for
the configuration of an incoming gravitational wave paral-
lel to the orbital plane.
The numbers above are small, but not desperately small

as to be discouraging. However, how likely is such an
event? The magnitude of the scattered wave is insensitive
(to this order) to the structure of the compact objects
forming the binary. Thus, stellar mass black hole binaries of
similar periods will give rise to similar scattered ampli-
tudes. The number of stellar mass black holes in the central
parsec of our own Galactic nucleus was recently reported to

be significant, of order N ¼ Oð104Þ [50]. If this finding
generalizes to other supermassive black holes in galactic
nuclei, this implies that there exists a substantial screen of
potential scatterers around supermassive black holes. Such
screen may give rise to detectable levels of scattered
radiation, either from binaries (the object of the current
study) or from isolated objects (e.g., Ref. [36]). For
example, consider GWs generated by stellar-mass black
hole binaries in the last stages of the inspiral and merger,
and (barely) detectable by LIGO, f ¼ Ω=ð2πÞ ∼ 20 Hz.
The emitting-binary is close to the galactic center, and the
emitted GWs will now cross a screen of binaries, which we
assume have parameters close to the binary pulsar above
(orbital period 2.6 days, total mass 2.5M⊙). Using the
scattering cross-section (144), and the number density
found in the Galactic center n, the mean free path of the
GW is ∼1=ðnσÞ ∼ 100 Mpc, a number which is clearly too
big to be of relevance. These estimates assume quasicir-
cular motion, we do not expect any qualitatively important
change to occur when eccentricity is included.
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APPENDIX A: RADIATION FROM THE CM

The scalar and vector potentials produced by one
accelerated particle are given by the Liénard–Wiechert
potentials,

Φ ¼ q�
R0 −

ðv·R̂0ÞR0

c

� ; A ¼ qv

c
�
R0 −

ðv·R̂0ÞR0

c

� : ðA1Þ

We can then find the electric and magnetic field for the
accelerated charge in a relativistic context. For small
velocities we get

E ¼ q
R0

2
R̂0 þ

q
c2R0

R̂0 × ðR̂0 × _vÞ; ðA2Þ
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H ¼ 1

R0

R̂0 × E: ðA3Þ

Using Eq. (25), we find

ELW ¼ ðq1 þ q2Þ2EΩ

ðm1 þm2Þc2R0

R̂0 × ðR̂0 × EΩÞ: ðA4Þ

Finally, in the observer frame, one finds

ELW ¼ ðq1 þ q2Þ2EΩcΩt
ðm1 þm2Þc2R0

½ð−cγs2δc2ξ þ sγsδcδc2ξ − cγs2ξÞP

þ ðsγð−c2δÞc2ξ þ cγsδcδc2ξ − sγs2ξÞQ
þ ðcγcδsξcξ þ sγsδsξcξÞN�: ðA5Þ

As we can see from Eq. (A4), this term is due to a nonzero
acceleration of the CM, that, naturally, depends on the wave
perturbation. For two particles with opposite charge, the
CM radiation is zero because of q1 þ q2 ¼ 0, and the
electric field will be only the one produced by the perturbed
dipole.

APPENDIX B: ANGLE-ACTION VARIABLES

1. Newtonian dynamics in the Delaunay variables

From the reduced Newtonian Lagrangian in the center-
of-mass coordinates, using spherical coordinates (r; θ;φ),

L̃≡ L
mν

¼ Gm
r

þ 1

2
_r2 þ 1

2
r2ð _θ2 þ sin2θ _φ2Þ; ðB1Þ

we determine the conjugate momenta px ¼ ∂L̃=∂ _x,
pr ¼ _r; pθ ¼ r2 _θ; pφ ¼ r2sin2θ _φ; ðB2Þ

and, performing a Legendre transformation, the reduced
Hamiltonian,

H̃0 ≡ pr _rþ pθ
_θ þ pφ _φ − L̃

¼ −
Gm
r

þ 1

2
p2
r þ

1

2r2
p2
θ þ

1

2r2sin2θ
p2
φ: ðB3Þ

The angular momentum L ¼ r ∧ v is then given by

Lr ¼ 0; Lθ ¼ −
pφ

sin θ
; Lφ ¼ pθ: ðB4Þ

We want to go from the canonical set of variables
ðr; θ;φ; pr; pθ; pφÞ to a set of canonical angle-action
variables, by taking into account the symmetries of the
system. We use the modified Delaunay variables that are
well suited to described the Keplerian two-body problem.
The actions are given by

J3 ¼
Gmffiffiffiffiffiffiffiffiffi
−2E

p ; J2 ¼
Gmffiffiffiffiffiffiffiffiffi
−2E

p − L; J1 ¼ L − Lz:

ðB5Þ

The Hamiltonian is then simply

H̃0 ¼ −
G2m2

2J23
: ðB6Þ

We can then derive the frequencies Ωi ¼ ∂H̃=∂Ji,

Ω3 ¼
G2m2

J33
; Ω2 ¼ 0; Ω1 ¼ 0: ðB7Þ

The angles θi, conjugate variables of the action Ji, are then
linear in time,

θ3 ¼ Ω3ðt − t0Þ þ ðθ3Þ0; θ2 ¼ ðθ2Þ0; θ1 ¼ ðθ1Þ0;
ðB8Þ

with ðθiÞ0 the values of the angle variables at time t0. We
can also relate the modified Delaunay variables to the
orbital elements a; e; l; ι;ω;ψ ; we get

J3 ¼
ffiffiffiffiffiffiffiffiffiffi
Gma

p
; J2 ¼

ffiffiffiffiffiffiffiffiffiffi
Gma

p �
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
;

J1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmað1 − e2Þ

q
ð1 − cos ιÞ; ðB9Þ

θ3 ¼ lþ ωþ ψ ; θ2 ¼ −ðωþ ψÞ; θ1 ¼ −ψ :

ðB10Þ

Note in particular that these variables are well-defined
when e ¼ 0 and ι ¼ 0, which will allow us to perform an
expansion for small eccentricity.

2. Perturbation theory

When the total Hamiltonian is no longer integrable, it is
not possible to write it as a function of the actions only. The
perturbed Hamiltonian in the modified Delaunay variables
can be written as

H̃ ¼ H̃0ðJÞ þ H̃1ðθ; J; tÞ; ðB11Þ

where H̃0 ¼ −G2m2=ð2J23Þ is the Newtonian Hamiltonian
previously studied, and H̃1 is the perturbation, assumed
to be small, OðHijÞ≡OðεÞ ≪ 1. We see that the total
Hamiltonian now depends on the actions and angles,
but also on time. The dependence on time can be
removed by introducing a new coordinate τ and its
conjugate variable T , and transforming the time-dependent

Hamiltonian H̃ into a time-independent Hamiltonian ˜̃H in
the following way:
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˜̃H ¼ ΩT þ H̃ðθ; J; τÞ: ðB12Þ

We see that the Hamilton equations for τ are

_τ ¼ ∂ ˜̃H
∂T ¼ Ω; _T ¼ −

∂H̃1

∂τ ; ðB13Þ

such that τ ¼ Ωt. The other equations for the angle-action
variables are unchanged, and are now given by

_J3 ¼ −
∂H̃1

∂θ3 ;
_J2 ¼ −

∂H̃1

∂θ2 ;
_J1 ¼ −

∂H̃1

∂θ1 ;

_θ3 ¼
G2m2

J33
þ ∂H̃1

∂J3 ;
_θ2 ¼

∂H̃1

∂J2 ;
_θ1 ¼

∂H̃1

∂J1 : ðB14Þ

Using the relations (B5) linking the angle-action coordi-
nates ðθ; JÞ and the Hamilton equations (B14), we can see
that we directly have the variation of the orbit elements
a; e; l; ι;ω;ψ . As the perturbation is small, we can use the
unperturbed (Newtonian) results to evaluate H̃1 and its
derivatives. Then by averaging over one (Newtonian) orbit,
we get the secular evolution of the binary. However the

Hamiltonian ˜̃H is quite complicated and so are the
equations Eqs. (B14).
In order to circumvent these technical difficulties we use

Hamiltonian perturbation theory to define a new set of
canonical angle-action coordinates ðθnew; JnewÞ such that
the Hamiltonian will only depend on the action variables.
We call ðθ0; J0Þ the old variables (including τ and T ).
We have

˜̃HðJnewÞ ¼ H0ðJ0Þ þ H̃1ðθ0; J0Þ: ðB15Þ

We now consider the generating function

S̃ðθnew; J0Þ ¼ θnew · J0 þ s̃ðθnew; J0Þ; ðB16Þ

where s̃ ¼ OðεÞ. Then we can rewrite the Hamiltonian, up
to Oðε2Þ, as

˜̃HðJnewÞ ¼ H0ðJnewÞ −Ω0 ·
∂s̃

∂θnew þ H̃1ðθnew; JnewÞ;

where Ω0 ≡ ∂H0

∂J0 . Now we expand both the perturbed

Hamiltonian H̃1 and s̃ in Fourier series,

H̃1ðθnew; JnewÞ ¼
X
k

hkðJnewÞeik·θnew ; ðB17Þ

s̃ðθnew; JnewÞ ¼ i
X
k

skðJnewÞeik·θnew : ðB18Þ

Then the Hamiltonian becomes, up to Oðε2Þ,

˜̃HðJnewÞ ¼ H0ðJnewÞ þ h0ðJnewÞ
þ
X
k≠0

½hkðJnewÞ þ k ·Ω0ðJnewÞskðJÞ�eik·θnew :

As the lhs of Eq. (B19) depends only on the action variables
Jnew, the rhs should also depends only on this variables.
This gives the Fourier coefficients of the generating
functions,

skðJÞ ¼ −
hkðJÞ

k ·Ω0ðJÞ for k ≠ 0: ðB19Þ

This transformation is valid only when k ·Ω0ðJÞ ≠ 0.
The case

k ·Ω0ðJÞ ¼ 0; ðB20Þ

is called the problem of small divisors, and it describes the
appearance of a resonance at the corresponding frequency.
In that case the formalism we are using to describe the
binary dynamics is no more valid.
We now consider the coordinate transformation, defined

by (B19), to a new set of canonical variables ðθ0; J0Þ. The
Hamiltonian obtained after this transformation is

H̃0ðJ0Þ≡ H̃0ðJ0Þ þ h0ðJ0Þ: ðB21Þ

It describes the dynamics of the system up to first order
included. The new variables are related to the old ones by
the relations,

J0 ¼ J þ
X
k

hkðJÞ
k ·Ω0ðJÞ ke

ik·θ0 ; ðB22Þ

θ0 ¼ θþ i
X
k

∂
∂J
�

hkðJÞ
k ·Ω0ðJÞ

�
eik·θ

0
: ðB23Þ

Finally the dynamics of the system is governed by
Hamilton’s equation

_J0 ¼ −
∂H̃0

∂θ0 ¼ 0; ðB24Þ

_θ0 ¼ ∂H̃0

∂J0 ¼
∂H̃0

∂J0 þ
∂h0
∂J0 : ðB25Þ
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APPENDIX C: THE POLARIZATIONS OF THE SCATTERED GRAVITATIONAL WAVES

1. Parallel to the orbital plane

Similarly to the usual orbital frequency parameter x≡ ðGmω0

c3 Þ2=3, we define the parameter X ≡ ðGmΩ
c3 Þ2=3 related to the

incoming frequency. When the wave is incident parallel to the orbital plane (α ¼ 0, β ¼ π=2, κ ¼ π=2þ ι) we find

hþ ¼ Gνmx
c2R

(
−ðcosð2ιÞ þ 3Þ cosð2ζÞ þH×

"
X3=2

x3=2
cosðΩtÞ

�
5sin3ι cos ι cosð2ζÞ þ 1

48

�
6 sinð2ιÞð7 cosð4ζÞ − 25Þ

þ sinð4ιÞð7 cosð4ζÞ − 17Þ
��

þ sinðΩtÞ
�
X3

x3

�1
6
sin ι cos ιðcosð2ιÞ þ 3Þ sinð4ζÞ − 2sin3ι cos ι sinð2ζÞ

�

þ 1

4
sin ι cos ι

�
12sin2ι sinð2ζÞ þ ð8 cos ι − 3 cosð2ιÞ − 1Þ sinð4ζÞ

��#

þHþ

"
cosðΩtÞ

 
X3

2688x3

�
2
�
661 cosð2ιÞ þ 18 cosð4ιÞ − 21ðcosð6ιÞ þ 74Þ

�
cosð2ζÞ

− 7
�
−65 cosð2ιÞ þ 6 cosð4ιÞ þ cosð6ιÞ − 198

�
cosð4ζÞ − 448ðcosð2ιÞ þ 3Þ sin ζ þ 448ðcosð2ιÞ þ 3Þ sinð3ζÞ

þ 647 cosð2ιÞ þ 6 cosð4ιÞ − 7 cosð6ιÞ − 6

�
þ 1

2688

�
7
�
67 cosð2ιÞ − 3ð6 cosð4ιÞ

þ cosð6ιÞ − 70Þ
�
cos2ð2ζÞ þ 672sin2

� ι
2

�
ðcosð2ιÞ − 3Þ

�
cos ιððcosð2ιÞ þ 3Þ cosð4ζÞ − 4Þ − 2sin2ι

�

− cosð2ζÞ
�
448ðcosð2ιÞ þ 3Þ sin ζ þ 3931 cosð2ιÞ þ 38 cosð4ιÞ − 91 cosð6ιÞ − 4774

��!

þ X3=2

1344x3=2
sinðΩtÞ

�
−6sin2ι

�
8 cosð2ιÞ þ 35 cosð4ιÞ − 619

�
sinð2ζÞ

− 49ðcosð2ιÞ − 3Þðcosð2ιÞ þ 3Þ2 sinð4ζÞ
�#)

; ðC1Þ

and

h× ¼ Gνmx
c2R

(
−4 cos ι sinð2ζÞ þH×

"
X3=2

x3=2
cosðΩtÞ

�
7

3
sin ιcos2ι sinð4ζÞ − 1

7
sin3ι sinð2ζÞ

�

þ sinðΩtÞ
 

X3

21x3

�
2 sinð3ιÞ − 2 sin ι

�
7cos2ι cosð4ζÞ þ 3sin2ι cosð2ζÞ þ 5

��
þ 8 sin ιcos2ιsin4ζ

−
8

7
cosð2ζÞ

�
sin3ι − 7 sin ι cos ιsin2ζ

�!#

þHþ

"
X3=2

192x3=2

�
2 cos ι

�
7ðcosð4ιÞ − 17Þ cosð4ζÞ − 409

�
þ 65 cosð3ιÞ þ 17 cosð5ιÞ

�
sinðΩtÞ

þ cosðΩtÞ
 

1

48
sinð2ζÞ

�
−24sin2

� ι
2

�
ðcosð4ιÞ − 17Þsin2ζ þ cos ι

�
ð35 − 3 cosð4ιÞÞ cosð2ζÞ

− 23 cosð2ιÞ þ cosð4ιÞ − 32 sin ζ þ 38
�
− 3 sin ι

�
cosð2ιÞ þ 2 cosð4ιÞ − 17

�
tan ι

�

−
X3

24x3
cos ι sinð2ζÞ

�
ðcosð4ιÞ − 33Þ cosð2ζÞ − 32 sin ζ þ 16

�!#)
: ðC2Þ
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2. Perpendicular to the orbital plane

For perpendicular incidence (α ¼ 0, β ¼ π=2, κ ¼ ι), we have

hþ ¼ Gνmx
c2R

(
−ðcosð2ιÞ þ 3Þ cosð2ζÞ þH×

"
X3=2

12x3=2
cos2ι cosðΩtÞ

�
−7ðcosð2ιÞ þ 3Þ cosð4ζÞ − 60sin2ι cosð2ζÞ

þ 17 cosð2ιÞ þ 75

�
þ sinðΩtÞ

�
X3

6x3
cos2ι

�
24sin2ι sin ζ cos ζ − ðcosð2ιÞ þ 3Þ sinð4ζÞ

�

þ cos2ι

�
−3sin2ι sinð2ζÞ − 1

4

�
−8 cos ιþ 5 cosð2ιÞ þ 7Þ sinð4ζÞ

��#

þHþ

"
X3=2

x3=2
sinðΩtÞ

�
1

112
sin2ιð35 cosð2ιÞ þ 109Þðcosð2ιÞ þ 3Þ sinð2ζÞ þ 7

192
ðcosð2ιÞ þ 3Þ3 sinð4ζÞ

�

þ cosðΩtÞ
 

X3

2688x3

�
−448ðcosð2ιÞ þ 3Þ cos ζ − 448ðcosð2ιÞ þ 3Þ cosð3ζÞ þ 14ðcosð2ιÞ þ 3Þ

�
12 cosð2ιÞ

þ cosð4ιÞ þ 51
�
cosð4ζÞ − 24sin2ι

�
92 cosð2ιÞ þ 7 cosð4ιÞ þ 157

�
cosð2ζÞ − 448ðcosð2ιÞ þ 3Þ sin ζ

þ 448ðcosð2ιÞ þ 3Þ sinð3ζÞ þ 457 cosð2ιÞ þ 78 cosð4ιÞ þ 7 cosð6ιÞ þ 738

�

þ 1

5376

�
448ðcosð2ιÞ þ 3Þ cos ζ þ 448ðcosð2ιÞ þ 3Þ cosð3ζÞ þ 14ðcosð2ιÞ þ 3Þ

�
−168 cos ιþ 132 cosð2ιÞ

− 24 cosð3ιÞ þ 15 cosð4ιÞ þ 109
�
cosð4ζÞ þ 16sin2ιðcosð2ιÞ þ 3Þð91 cosð2ιÞ þ 345Þ cosð2ζÞ

þ 448ðcosð2ιÞ þ 3Þ sin ζ − 448ðcosð2ιÞ þ 3Þ sinð3ζÞ þ 8400 cos ι − 4837 cosð2ιÞ

þ 21
�
104 cosð3ιÞ − 30 cosð4ιÞ þ 8 cosð5ιÞ þ cosð6ιÞ − 82

��!#)
; ðC3Þ

and

h× ¼ Gνmx
c2R

(
−4 cos ι sinð2ζÞ þH×

"
X3=2

x3=2
cosðΩtÞ

�
1

7
sin2ι cos ι sinð2ζÞ − 7

3
cos3ι sinð4ζÞ

�

þ sinðΩtÞ
�
2X3

21x3
cos ι

�
7cos2ι cosð4ζÞ þ 3sin2ι cosð2ζÞ − 2 cosð2ιÞ þ 4

�

þ
�
8

7
cos ι cosð2ζÞ

�
14sin2

� ι
2

�
cos ιsin2ζ þ sin2ι

�
− 2cos3ιsin2ð2ζÞ

��#

þHþ

"
X3=2

192x3=2

�
−2 cos ι

�
14ðcosð2ιÞ þ 3Þ2 cosð4ζÞ þ 593

�
− 269 cosð3ιÞ − 17 cosð5ιÞ

�
sinðΩtÞ

þ cosðΩtÞ
 

X3

192x3
csc ι

��
101 sinð2ιÞ þ 12 sinð4ιÞ þ sinð6ιÞ

�
sinð4ζÞ − 64 sinð2ιÞ

�
sin ζ þ sinð3ζÞ

− cos ζ þ cosð3ζÞ
��

þ 1

192

�
3
�
−48 cosð2ιÞ þ 39 cosð3ιÞ − 4 cosð4ιÞ þ 3 cosð5ιÞ − 76

�
sinð4ζÞ

þ cos ι
�
386 sinð4ζÞ − 64 cos ζ þ 64ðsin ζ þ sinð3ζÞ þ cosð3ζÞÞ

�
þ 4sin2

� ι
2

��
538 cos ι

þ 136 cosð2ιÞ þ 153 cosð3ιÞ þ 14 cosð4ιÞ þ 13 cosð5ιÞ þ 170Þ sec ι sinð2ζÞ
��#)

: ðC4Þ
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