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Abstract We derive gauge invariant operators entering def-
initions of the Transverse Momentum Dependent (TMD)
gluon distributions, for all five and six parton processes.
Our calculations utilize color decomposition of amplitudes
in the color flow basis. In addition, we find the general result
for multi-gluon process (with arbitrary number of gluons) at
large N.. On phenomenological ground our results may be
used for multi-jet production in the small-x regime, where
the TMD gluon distributions can be derived from the Color
Glass Condensate effective theory.

1 Introduction

Nowadays, itis an ordinary fact that most processes occurring
at high energies do not involve just one large energy scale.
Consequently, the standard collinear factorization often is
not sufficient or even does not apply. Example of a wide
class of such processes are those involving large measurable
internal transverse momenta of partons. A consistent theoret-
ical treatment of such processes was initiated by Diakonov,
Dokshitzer and Troyan [1] and turned into the Transverse
Momentum Dependent (TMD) factorization [2,3] (for a
recent review see [4]). This concept, not only resumes the
large logarithms, but also defines, within the QCD theory,
more general (and interesting) objects than usual collinear
parton distribution functions (PDFs) — the TMD parton dis-
tribution functions. The high energy factorization (or kr-
factorization) [5—-8] and Color Glass Condensate (CGC)
effective theory [9—12] also address transverse momentum
dependence of gluons in a hadron, although in somewhat
different kinematic regime, namely in the so-called small-x
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limit, where the gluonic degrees of freedom dominate due
to large logarithms of energy that have to be resummed. The
collinear-factorization-based Monte Carlo event generators
like Pythia [13] or Herwig [14] are also capable of simulat-
ing the semi-hard processes by constructing explicit parton
branching mechanisms, based on the Dokshitzer—Gribov—
Lipatov—Altarelli—Parisi (DGLAP) evolution kernel, i.e. the
Sudakov form factors (although they have to implement sev-
eral model-dependent mechanisms to maintain the momen-
tum conservation, regulate singularities, etc...). The Cascade
Monte Carlo event generator [15] attacks similar problems
employing the evolution equations which resum also the log-
arithms enhanced at small x.

Although the applicability of the strict TMD factorization
theorems is limited to few processes only (like Drell-Yan or
semi-inclusive DIS), the basic objects appearing in the for-
malism — the TMD parton distributions — can be studied in the
broader context. They are defined as the Fourier transforms
of the hadronic matrix elements of bilocal field operators
with non-light-like separation. To ensure the gauge invari-
ance the Wilson links connecting the two space-time points
must be inserted. For the gauge invariance itself the shape
of the links is not relevant. In the TMD factorization how-
ever, the shape of the links is determined by the hard process
accompanying the TMD parton distribution. This happens
because the collinear gluons (to the incoming hadron), which
couple to various components of the hard process have to be
considered as a part of the nonperturbative wave function.
They can be resummed into the Wilson links attached to
each external leg by means of the Ward identity. Since the
external legs are connected by certain color matrix, so are
the pieces of Wilson links and this is how the process depen-
dence enters (see [16,17] for details). For simple processes
like Drell-Yan pairs production, the color flow in the hard
process is rather simple because of only two colored partons.
Consequently, the resulting TMD parton distribution has also
simple structure. On the contrary, for processes with several
colored partons one gets multiple nonequivalent structures
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(including Wilson loops) which cannot be eliminated by a
gauge choice.

Although, as mentioned, the strict all-order factorization
theorems fail for more than two colored partons participat-
ing in the hard collision [18], in the nonlinear small-x regime
the lowest order TMDs are of great phenomenological impor-
tance. In Ref. [19] aleading power limit of the expressions for
dijet production in pA collisions within the CGC was stud-
ied. They found that the correlators of Wilson lines averaged
over color sources according to the CGC theory correspond
exactly to the TMD gluon distributions for 2 — 2 processes,
provided the hadronic matrix elements are traded for the color
source averages. Not only the correlators agree, but also the
hard factors. Although it is not known whether this corre-
spondence survives beyond the leading order, it opened new
phenomenological opportunities to study with better theoret-
ical control semi-hard jets in the gluon saturation domain, see
[20-24]. In particular, in Ref. [20] a beyond-leading-power
extension of the TMD factorization for forward dijets in pA
collisions was proposed, such that it coincides with the lead-
ing power of CGC in the dense nucleus regime, and with
the all-power high energy factorization in the dilute nucleus
limit. One should understand the notion ’factorization’ here
in the following sense. First, the overall kinematic condi-
tions justify so called hybrid approach [25], i.e. where the
projectile proton is treated as a dilute state so that an aver-
age parton coming from it is a large-x parton modeled from
ordinary collinear parton distribution functions. The target
nucleus is probed in the dense state, so it is modeled basing
on the small-x dynamics (note that the operator definitions
of the TMD distributions formally are valid also at small x).
Second, it is a generalized factorization, i.e. the formulae
involve several TMD gluon distributions for nucleus. In the
formal leading-power TMD factorization, even the general-
ized factorization breaks, because one is unable to define the
separate correlators whilst more than two colored partons
are present [18]. In the small-x approach for dilute-dense
collisions described above, however, there is only one cor-
relator with transverse separation. Therefore the complica-
tions leading to the lack of possibility to separate Wilson
links into TMD operators, formally do not appear here. Out-
side the small-x limit for dilute-dense collisions these results
might also be useful: for example to access the factorization
breaking effects.

In the TMD factorization formalism the TMD parton dis-
tributions have operator definitions and evolve according
to the renormalization group equations [3]. In the small
x regime with gluon saturation playing significant role,
which is of main interest in the context of this work, the
evolution equations are nonlinear and thus more compli-
cated than the equations at moderate x [26-28]. In addi-
tion, the program of obtaining the renormalization group
evolution equations for all possible TMD operators is
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nowhere near the end. Hopefully, the correspondence of
the small-x TMD gluon distributions and CGC correlators
[19] allows for a treatment of evolution in the strict small x
limit using the Balitsky—Jalilian-Marian—-Iancu—McLerran—
Weigert-Leonidov—Kovner (B-JIMWLK) equations [29-35]
following Ref. [22]. At small x, but in the linear regime,
where the saturation scale is much smaller than the typical
scale of the internal transverse momenta, it seems that the var-
ious TMD gluon distributions converge to one universal dis-
tribution, which may be identified with the so-called uninte-
grated gluon distribution [21,22,24]. This object is much bet-
ter understood and constrained from data. There are several
approaches to their evolution. First, there are extensions of
the original Balitsky—Fadin—Kuraev-Lipatov (BFKL) equa-
tion (see e.g. [36] for a review) like the Catani-Ciafaloni-
Fiorani-Marchesini (CCFM) equation [37-40], Kwiecifiski—
Martin—Stasto (KMS) equation [41] or the Kimber—Martin—
Ryskin (KMR) approach [42]. As the linear evolution can be
solved through the explicit branching process, it allows for a
natural determination of the unintegrated PDFs from Monte
Carlo simulations [43—-45]. The complete set of evolution
equations in the linear regime can be also derived through
the projector method [46], see [47,48] for a recent approach.
There have been many calculations attacking various pro-
cesses where the usage of unintegrated parton distributions is
important, see for example [49—60] where mostly forward jet
observables in hadroproduction were addressed. These cal-
culations, however, use universal unintegrated gluon distribu-
tions, the same for any color flow. While in the linear regime
or in certain phase space regions, this is a good approxima-
tion, it is definitely not the case in the region where the gluon
saturation may dominate [19,61].

Motivated by the phenomenological usability of the non-
universal TMD gluon distributions discussed above (and
demonstrated in [21]), we will present explicit results for
the operator structures for all five and six colored parton
processes. Instead of working with particular Feynman dia-
grams and calculating the corresponding operator structure,
we choose to work with color decomposition of amplitudes
(seee.g.[62]). This is motivated simply by the way the ampli-
tudes are calculated at present in practice. Such a proce-
dure for the operator structures in the TMD gluon distri-
butions was for the first time used in [20] for four parton
processes.

The paper is organized as follows. We will start with
definitions of the TMD parton distribution functions and
summary of color decomposition of scattering amplitudes
(Sect. 2). Next, in Sect. 3, we will introduce the color flow
diagrams for the operators appearing in the definitions of the
TMD distributions. Basing on these rules, we list all struc-
tures appearing in arbitrary process in Sect. 4. The explicit
results for four, five and six parton processes will be given in
Sect. 5. We will summarize our work in Sect. 7.
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2 Preliminaries

We start off by providing necessary definitions and conven-
tions for the TMD gluon distributions and color decomposi-
tion.

We adopt the light cone basis defined using two null four
vectors n = (1,0,0,—1)/+/2 and i = (1,0,0, 1) /v/2.
They define the ’plus’ and 'minus’ components of a four
vector v: vT =n - v, v™ =7 - v, so that the four vector has
a decomposition

v“=v+ﬁ“+v_n“+v’;. (1)

The light-cone coordinates are (v*,v™,Ur), where the
Euclidean transverse vector is defined (in canonical coor-
dinates) as v = (0, U7, 0).

We consider n-parton processes with a gluon in the initial
State

g (k1) + by (ky) — by (ko) + -+ -+ bp_1 (ky—1) , (2)

where the partons b; can be quarks or gluons (restricted by
the flavor number conservation of course). The initial state
gluon with momentum k; carries an x fraction of the parent
hadron with momentum P* = Pt7k:

Kl o x PP 3)

Above, the minus component is suppressed as it is neglected
in the hard part. The transverse component is also neglected
within the leading twist collinear and TMD factorization. In
the more general case, the gluon may be off-shell and a suit-
able redefinition of the hard process is required to maintain
the gauge invariance (see e.g. [63—67]). Even then, at least
formally, the principles to obtain the TMD distributions still
hold, therefore we shall not distinguish these situations here.

2.1 TMD gluon distributions
In the present work we will be concerned with the gluon

TMD distributions as explained in the Introduction. A generic
distribution is defined as the following matrix element:

d&~d*6r opreiip i
Sk /(271)3 p+ ¢
X (PITe{ P ) te, F* (6% = 0,67 &r ) Uy 1),
4)
where |P) is a hadron state, F/*' (x) = F!" (x)19 is

the SU (N.) algebra-valued field strength tensor (we use
Tr (t“tb ) =Tpd% Tr =1 /2 convention for the generators),
Uc, ,Uc, are certain fundamental representation Wilson lines

joining space-time points (E“L =0, =0, é’T = 6T> and

(g T=0,&", §T), multiplied by possible traces of Wilson
loops. The exact shape of Wilson lines will depend on the

hard process coupled to the TMD. Their calculation for mul-
tiple partons is the main goal of the present work.

The above generic definition represents a bare TMD dis-
tribution. In QCD there are divergences, in particular the
rapidity divergence that have to be regulated. In the present
work we will not be considering the renormalization of these
operators. Recent studies of that matter in the small-x limit
which mainly motivates the present work are given in [26—
28].

A generic Wilson line joining x and y through a path C is
defined as

Uc = Pexp {—ig/ dz, A" (z)}. 5)
C

The Wilson line can be defined also in the adjoint represen-
tation, by replacing generators ¢ by (T%),. = —if®. In
the case where the path is a straight line segment, we will use
the following notation

Uc =[x, y]. (6)
2.2 Color decomposition

The calculation of the operator structure entering the TMD
distributions is nicely systematized not by considering a par-
ticular diagrams, but rather by considering various color
flows in the amplitude (squared) under consideration. Such
systematization is achieved by using gauge invariant decom-
position of amplitudes into so-called color-ordered ampli-
tudes (called also partial, or dual amplitudes). Here we
are presenting only necessary definitions and properties,
see e.g. [62] for a complete review.

Letus start with pure gluonic tree-level amplitudes. For the
sake of this section we assume that all the momenta are out-
going (later, it will become necessary to distinguish incoming
and outgoing legs). The most standard decomposition reads

MEAn (ke k)
= Z Tr (170 .17 0) AT (1), ..., 7 (n),
weSn/Zn

(N

where the sum runs over all noncyclic permutations 7 of
an n-element set. Three important properties of the above
decomposition are: i) the partial amplitudes A are gauge
invariant, ii) the partial amplitudes contain only planar dia-
grams; consequently the full amplitude squared satisfies
MP =CYs AL TQ),....,tm)* + O(1/N2),
with C being a color factor, iii) the amplitudes .4 satisfy so-
called Ward identities: A(1,...,n)+ A, ...,n,n— 1)+
--+A(,n,2,...) = 0(and similar for other partial ampli-
tudes). Because of the last property, sometimes more desir-
able is a decomposition which utilizes only (n — 2)! inde-
pendent partial amplitudes, instead of (n — 1)! as in the
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fundamental-representation (7). Such decomposition uses
the adjoint generators [68]:

MO ey, k) = Y (T@ L T4en)
TeSy—2
xA(, 7 2),....,.t(n—1),n),

®)

with (T),. = —if*°. The partial amplitudes above are the
same as in the fundamental-representation decomposition.
Finally, let us recall the so-called color flow decompo-
sition [69]. It will be useful especially for processes with
quarks as it treats gluons and quarks on equal footing. The
basic idea is to work with the gluon fields as the elements of
the SU (N,) algebra, i.e. matrices A’] = A, (t“);. That is,
a gluon is characterized by a pair of fundamental and anti-
fundamental representation indices i, j = {1,..., N.}. In
this representation, the amplitude can be decomposed as

i1...dp p—y) i1 ¢ln@) (ix3) It (n)
M]I Jn K, oo kn) =2 Z 8j11(2)8j71(3)8j71(4) ) "8j|
7T€S,,_|
xA(, 7 Q2),...,7 (), 9)

again with exactly the same partial amplitudes as in the other
two representations.

For processes with quarks, we use the color flow decom-
position as it treats the quarks and gluons uniformly, and is
best for easy calculation of the TMD operator structures. The
decomposition for a process with one quark—anti-quark pair,

g k1) g (k2) g (k3)...g (kn—1)q (kn) — @,

reads:

MU G )

J1J3 - Jn— 1.//1
(n=2)/2 tn(l) ix(3) Ix(n—1)
=2 Z ]J'r(l) Jn(3> Jn(4) "8]-,‘17
TES 2
xA(zq,n(l),n@),...,n(n—1),n‘?). (10)

Above we have put superscripts g, g to remind which indices
belong to a quark (anti-quark). The decomposition for a pro-
cess with two quark—anti-quark pairs,

g (k1) q (k2) g (k3) q (k) g (ks) ... & (kn—1) G (kn) — ¥,

reads:

11’31415 - 1
M (k1. kn)
TSt

— o—(n=4)2 Z 5 ’ ln(n ix(s)
_q ./rr(l) J:r(:) ]7(6) o

TES,—3

ix(n-1)
8
Jn

><.A<2q,71(3q,4q>,n(1),71(5) ..... n(n—l),n‘i)
1 lzr ) iz(r)
_FC Z Z ( Jz(1y Jn(;) "Bj;,i

—1}meS,—a
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% Big siﬂ(r+l) Siﬂ(rx—l)
Jreran) Cineay 1;1
xA(zq,n(l) ..... 7 (i), n?, 49 7 (rig) s . n(n—l),3-’?).
(11)

In the decomposition above, the first sum runs over all per-
mutations of the n — 4 gluons and a quark—anti-quark pair
(the curly brackets in deltas denote that the enclosed indices
should be permuted together, according to the permutation
), while the second sum runs over various partitions of the
two quark—anti-quark pairs with gluon insertions. The sec-
ond sum is genuinely suppressed by 1/N, in case of distinct
quark—anti-quark pairs; for identical pairs subleading terms
will contribute to both sums in the partial amplitudes. In the
present work, we shall explicitly consider processes with up
to 6 partons, thus we do not give decomposition for more
quark—anti-quark pairs.

In a sense, there is a price for the simplicity of the color
flow decomposition. Namely, to each final state gluon we
have to apply the projector

et i |
P}’j/ =48"68; — ES}S;/, (12)
which removes the redundant degrees of freedom from the
sum over colors. For pure gluon amplitude they are actually
not needed, but must be applied to the quark amplitudes.

3 Color flow Feynman rules for TMD operators

The color flow Feynman rules (see e.g. [69]) are useful for
calculating color factors. It turns out that they are also very
useful in the context of calculation of the structure of the
TMD operators in (4), especially, when quarks are involved.
We shall supplement the standard color flow rules for color-
ordered diagrams (see Table 1) with a set of additional rules
which are simple color flow representations of the rules
derived in [16] for calculation of a TMD operator structure
in an arbitrary process.

The original procedure effectively leads to the following
recipe. For each final state we assign the gauge link U/!*],
which joins the points 0 and & (see Sect. 2.1) through the
point in +o00:

U+ = [(0+,0—,6T) , (0+, oo—,éT)]

X [(O*, oo, 6T) , (0+, oo, gT)]
x [<0+, 00, §T) , <0+, £, 57)] . (13)

In case of gluons the gauge link is to be defined in adjoint
representation. The Wilson link replaces the deltas for color

summation when the amplitude is squared: §;; — (L{ [H)i,i

for quarks, 8/ — (U[HT)j 7 for anti-quarks and 8, —>
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Table 1 Standard color flow
Feynman rules for partial
amplitudes. All momenta are
outgoing. In the middle column
we show the color part only

Triple gluon vertex

Four-gluon vertex

Quark-gluon vertex

Gluon propagator

J3 i3

~ §i2 803 11
sjlajzsh
i J2
Ji in
iy Js
) \\/ )
~ 17 o3 ¢l4 ¢l
87,197,938 >\
i J2
Ju iy
j‘l
o sil gl
5_i18.fq )
§ /\

S

-, -

(U [‘H)a,a for gluons (here and in what follows i, j, k, ... are
fundamental color indices, while a, b, c, . .. are adjoint). For
the initial state (not connected to the TMD gluon distribu-
tion), the resummation of the initial state interactions leads
to the Wilson line extending to —oo:

Ul = [(o+,o—,6T) , (0+, —o0™, 6T)]
X [(O*, —007, 6T) , <0+, -0, gT)]
x[ (0% —oo Br). (076 Er) .

Similar to final states, one needs to replace the color deltas for
initial states by the matrix elements of /=1, The remaining
initial state (connected to the TMD) is attached to F 6§+ (§) in
the amplitude and to Fa",Jr (0) in the conjugate amplitude. The
rest of the procedure is similar to calculating color factors:
one extracts the color structure of the pertinent amplitude and
makes all the contractions (here with Wilson lines and field
strength tensors instead of deltas). In the end one needs to
divide-out the color factor for a process without gauge links.

Passing to the color flow representation is straightfor-
ward. Nothing really is to be done for quarks and anti-

(14)

quarks. For gluons, we first need to make a connection
of the adjoint Wilson line with the trace of fundamental-
representation instances of the same Wilson line, and next
project it onto the fundamental color quantum numbers with
the help of the Fierz identity. All rules with graphical rep-
resentation are collected in Table 2. The procedure of cal-
culating the TMD operator structures is now reduced to
considering all possible color flows and applying the rules.
Although, in principle, we could consider all standard Feyn-
man diagrams, draw them in the color flow representa-
tion and calculate TMD operator structures, fortunately, we
do not need to do this. Instead we can just use the color
flow decomposition described in Sect. 2.2. This will also
ensure, that we work with gauge invariant sets from the
start.

When constructing the TMD operators, the initial and final
states are treated differently, i.e. they are assigned differ-
ent gauge links. Therefore, we have to adjust the color flow
decomposition (9)—(11) to take into account the fact, that
two legs are incoming (recall, that these decomposition are
within the standard convention of all outgoing partons). This
is fixed by making the replacement i1 «<— ji, i, <— Jjy,

@ Springer
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Table 2 Color flow Feynman
rules for the gauge links. The
diagrams correspond to the cut
lines, as denoted by the vertical
dotted line. The routing in the
color loops is clock-wise

Outgoing gluon

Incoming gluon

Outgoing quark

Incoming quark

Outgoing anti-quark

Incoming anti-quark

Field strength operators

(o) (o)l

_—
s B o 4
A e e
_ 1l i
Ne* " R 7C: i
4‘—
|~
N N WP J —— - |
(u[ 1 )ll (Z/{[ ])j’j l\}pa;a;’ J } J
1 i @
_—
@), U I B e
«—
1) |~
_—
(ul+1n) 7’ R I B S
«——
(M[,J) . J l 7
J'J 5
j i Ji

as in our convention always the first and the last partons are
incoming.

Below, we present some examples to better illustrate the
procedure.

3.1 Examples

Let us first illustrate the usage of color flow Feynman rules to
calculate the structure of the TMD operator for the following
diagram:

15)

This diagram contributes to the process g (k1) g (k4) —
q (k2) g (k3) and represents the diagram squared and summed
over final/initial colors (except insertions of the field oper-
ators). The arrows indicate whether the line is incom-
ing/outgoing. Let us stress, that considering particular dia-

@ Springer

grams is not the way we will ultimately proceed; instead we
will consider various color flows as defined in Egs. (9)—(11).
The structure of the TMD operator for this diagram was cal-
culated in [16]. In the color flow representation we have to
consider two diagrams:

)

I

;
L

[

(16)

The diagram with dashed line represents an exchange of the
U (1) gluon (a colorless gluon). To calculate the diagrams we
simply look for the closed quark loops and make the trace
of the objects appearing in the loop. The direction of the
trace is clockwise. The dashed lines carry no color, thus they
do not make any traces (they also always accompany 1/N,
factors). Note, we calculate only color part (with possible
SU (N.) matrix insertions) — we are not concerned with any
kinematic factors. For the first diagram, we have
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Tr {F E U F (O)U[H} Tr {u[D]} : (17)

where the first trace corresponds to the bottom loop, the sec-
ond to the top loop. Above, we defined the Wilson loop [16]

ylBl = =Yg+, (18)
We also use shorthand notation F () = Fit (5* =
0,&°, §T> The second diagram reads

1 .
_ [—]7 [+]

N Tr(F(;:)u FO)U ) (19)

To get the final result, the sum of the two contributions must
be divided by the sum of the color factors (without the Wil-
son lines), with open indices where the field operators are
attached:

DU S

The part multiplying the open indices reads

1 N2-1
N — NN 21
c c
Thus the TMD operator reads
N2 Tl
! F 4 Yy
i
1 _
- W} F (0) u'*'} , (22)
c

which exactly agrees with the result quoted in [16].
As an illustration of a more complicated structure, let us
consider an example contribution to the process gg — gggg:

-

(23)

Applying the color flow rules gives immediately the operator
structure for the leading color flow displayed on the r.h.s.:

N, Tr {F & U F (0) u[ﬂ} Teed O] Trg 1P (24)

Above, the N, factor comes from the second loop from the
bottom, Tr {t/HY1+} = Trl = N,.

To close this section, let us stress, that the problem of
proliferation of color flow diagrams compared to ordinary
diagrams, will not concern us at all. As mentioned, we shall
use the color flow decomposition, which sets the color flow
without need to consider particular diagrams.

4 The operator basis for arbitrary TMD gluon
distribution

Using the color flow Feynman rules from the previous section
we can easily determine all possible ’basis’ operators, from
which a TMD gluon distribution for arbitrary process can be
constructed. Alternatively, one can think about ’basis’ TMD
gluon distributions.

Plenty of different operators already appear for processes
with four colored partons considered in [16]. In order to find
all of them, we use the following facts. First, there are at
most two U/!~1 Wilson lines. This is the case for initial state
gluons where [~ and 2/!=17 appear. Thus, we can built at
most two Wilson loops (18), when they are looped with /1]
or U7 (see the last example in Sect. 3). Second, any color
flow loop will contribute trace of at most first power of /*1,
U™IT (and F (&), F (0), or both), in addition to mentioned
Wilson loops (at most U (O] and i« [D]T). This is because for
a color flow loop with many Wilson lines (contributed by
many final states), most of the Wilson lines will collapse to
unity, U111 = 1, leaving only at most single instances
of Y, Y= O] 14101,

Basing on the above, below we list all *basis’ TMD gluon
distributions, from which an arbitrary TMD is given as a
linear combination. We assume here, that the correlators are
real valued functions.

dg—d’gr P e ik
@) P+
% (Tr [ﬁi+ E Ul piE (O)M[H])

F (ekr) =2

-2 -
dé—d%ér eixP*&’—ikrng

@m)? Pt
x (Tr [ﬁf+ (&) U+ pit (O)UHD , (25)
dE~d*6r pie-_it i
fézg) (x,kr) =2 (27[)3 o X PTE ik Er

[m]
y <Tr [z[ il T [ @UT R 0 ul+1]>

c

— 9 dé~d*Er X Pre ik
m)? Pt
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-
. <Tr[i\';”]n [+ @ut+it e <0>u”‘]>, (26)

dg~d’gr X PrE ik r
@y’ Pt

x (Tr [ﬁ“f E Ul gt (O)Ul‘:”ul“])

FP @ kr) =2

d&~d*&r P ik
)’ P+
% (Tr [ﬁw @& ulBr I+t git () M[H]), 27

dg—d’gr P E ik
@m)} P+

§ <Tr [1,;]1‘:‘”] T [ﬁwr @ Ut it ) u[+1]>

F@ (e kr) = 2f

o

_ /dé_dzéT i PE iRy
@m)} P+

e

<Tr[zlm]w [ @uttis o MH]>, (28)

-2 I
F ke = 2 [ S8 iy L
@2n)} P+ N,

x (Tr [ﬁf+ ® u[D]"'] Tr [ﬁ"* (O)U[E”])

A&y opreiipd 1

@mn)? P+ Ne
% <Tr |:F‘~i+ (g)u“:”] Tr [I}i+ (O)L{[D”]), (29)
de~d*Er pre- i E
FQ @ kr) =2 (;ﬂ)3 [i elxPrE ke
« (Tr [I:ﬂwf &) U EiF (O)UH—J]) . (30)
de—d? PrE- il E
Y k) = 2 [ S e iy
y (Tr [ﬁi+ & U (O)u[—1]>, (€2))
dE~d*Er i pre- it i
.7:;,2,) (x,kr) =2 (257-[)3 lfi NPT E ik
% (Tr [ﬁi+ @& U Dl +1t B+ () u[DluM]), (32)
dE~d*Er pre i i
FO (e k) =2 (;)3 E: el PE ik g
Tr [UID]] Tr [UID”]
pit [+1F frit [+]
X<7NC T [F © U EF 0)u ]>
(33)

dE~d*Er pre- ik
]:(7) X, k — 2[ e:xP £~ —iky-ET
s (0 k1) Qn)? P+

% <Tr [Z[»D]] Tr [ﬁw @& U DNy 41t B+ () u[+l]>

-2 o
[lé d ST ei.tP*E’*ikT-ET
@n)* P+

Tr | 1 00F
x<[N ]Tr[ﬁf+(s)u[+]"'ﬁf+(O)M[Dlu[+1]>. (34)

e

In the definitions above, the average should be understand as
the hadronic matrix elements, cf. Eq. (4). Two new structures
appear in addition to those known in the literature: .7-';? and
Fep.

Here the subscripts refer to a partonic process to which
a given TMD distribution belongs — whether this is a pure
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gluonic process or a process with quarks.! This notation was
first introduced in [19] in the context of the small-x limit and
we stick to that notation in the present work.

The above set of basic TMD gluon distribution constitutes
the basis for any TMD gluon distribution to be convoluted
with a hard process, assuming there are no other TMD opera-
tors involved. As discussed in the Introduction, this assump-
tion is meant to be used at small-x where it can be justified
from the CGC effective theory. It is important to note, that it
is the complete basis within the rules of [17] — it does not rep-
resent a basis for a gluon correlator with arbitrary gauge link
structure. At least formally, the basis structures are indepen-
dent; however, in the large k7 limit they start to be degenerate
(or vanish), as discussed in the Introduction.

5 Operator structures for 5 and 6 colored partons

In this section we present the main result of the present work,
i.e. the form of the TMD gluon distributions for the processes
with 5 and 6 colored partons, together with their large N,
limit, which might be useful phenomenologically in short
run. We will start with a derivation of 4 parton TMD opera-
tors, to demonstrate the procedure utilizing the color decom-
position and, more importantly, to introduce the general nota-
tion we shall use for more complicated processes (the oper-
ator structures for 4 parton processes were first obtained in
[16], and in [20] using the color decomposition).

5.1 Outline of the method using 4 parton example

As the color decomposition is most straightforward for pure
gluonic amplitude, let us start with the process

g (k1) g (k4) — g (k2) g (k3). (35)

For gluons, three color decompositions can be used: the fun-
damental (7), the color flow (9), and the adjoint (8). First two
involve 6 partial amplitudes, while the last one only two. As
mentioned in Sect. 2.2 the 6 partial amplitudes are not inde-
pendent, but their squares give the leading contribution in the
large N, limit—a property which we will use in Sect. 6. Here,
we are interested in the full answer, thus we use the adjoint
color decomposition (for processes with quarks we will use
exclusively color flow decomposition). It reads

! The notation for the above TMD gluon distributions should not be
confused with the double-TMD parton distributions (see e.g. [70]).
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Table 3 Definitions of the vector of partial amplitudes A for all four-
parton processes. The subscripts in the sub-process indication corre-
spond to the momenta enumeration

8184 — 8283 8194 = §243 8184 — 243

A(l1,2,3,4) AG,1,2,4) A4, 1,2,3) A2, 1,4,3)
A(l,3,2,4) AG,2,1,4) A4,2,1,1) AQ2,4,1,3)

8194 — 8293

MNDRBA () fr k3, kg)
= (T7%),,, A, 2.3.4
+ (Ta3 Taz)a1a4 A(lv 3’ 2’ 4) (36)

The square of the amplitude, summed over colors, can in
general be written in a matrix form

IMP2 = ATCA, (37)

where C is the color matrix and A is a column vector con-
structed from the partial amplitudes. For the present simple
case

14
C=N3NA<12), (38)
51
and A is given in Table 3.
In order to calculate the TMD operator structure, we need
to insert the appropriate gauge links instead of deltas sum-
ming over colors, as reviewed in Sect. 3

Ma1aza3a4M* <M[+]>a2az (u[+]>a3a3
ajayayay

()" FiF @ FiF 0. (39)

The structure of TMD operators is most conveniently (and
inevitably) expressed in the fundamental representation.
Thus the Wilson lines are transformed to the fundamental
representation using

uEl) = 1y 1 UFE YT (40)
ab Tf

Next, the decomposition (36) is used to represent the above
expression in the following general form

AT F A, (41)

where F is the matrix of the TMD operators containing
implicitly the color factors of the hard process. In most cases,
it is reasonable to keep these color factors together with the
hard matrix elements. Thus, to avoid double counting, we
divide the elements of F by the corresponding color factors
of the square of the amplitude, but without the summation
of indices where the field operators are attached (this corre-
sponds to the elements of the matrix C (38) divided by Ny).

This leads to the following definition of the TMD distribution
matrix

-2 .
® =2 meuf’%*—ikrfr <P ‘F ) (Lc)' P>
Qm)? pt Ny ’
(42)

where the symbol @ represents the Hadamard division, i.e.
the element-wise division: (A @ B);; = A;j/Bi;. It may
happen, for certain multiparticle processes, that some ele-
ments of the color matrix C vanish, but the corresponding
elements of F are non-zero. In that case, we need to mod-
ify the above prescription. We shall come back to this point
when discussing processes where this happens. An additional
motivation to divide out the color factors from the TMD oper-
ators is that one could in principle use the results with matrix
elements not represented in the color-ordered form.

With the above definitions, the cross section for a collinear
parton a to scatter off a gluon with some internal transverse
momentum and producing certain number of colored partons,
can be generically written as

doagx = f AT(C o ®ygx) Adr, (43)

where d I” represents all pre-factors, phase space, and convo-
lution in x and k7. The symbol o is the Hadamard (element-
wise) multiplication, (A o B);; = A;;Bij.

In the present example of four gluons, the TMD gluon
distribution matrix reads

D Dy
¢gg—>gg = <¢2 djl) s (44)

with two independent TMD gluon distributions expressed in
terms of the basis distributions:
1 2
— 1) _ 3 ) (5) 2 (6)
@) = 2N2( 2FY 2FD 4 FY 1+ FS +chgg),
c
(45)
1 22 (3) “) (5) 2. (6)
Py = N—3<Nc7:gg 2 T +Nc]:gg)'
(46)

For more complicated processes with gluons it is useful to
write the above equations in matrix form:

(1)
o)) fgg
1 ]_-(2)
=M T | (47)
Dy, )
(7)
‘7:88

where M is a matrix with £ rows and 7 columns. For the
present case, this matrix reads

50 _Lz 2 3N2 3

2 N2 2NZ 2N? 2

Moo = (O 1 _iz 1T ) (48)
NI N2

C
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Table 4 Matrices M of structures appearing in four-parton processes.
The subscripts in the sub-process indication correspond to the momenta
enumeration

8184 — 8283 8184 = Q243
1 1 1 1 1 2
50—@27{2 W2 2 20 5000
01-37 3 a2 0 —N2 17000
8194 = 8243 8194 = 8243

1 0 1 0
1 N? 1 N?
" Nix Na T Nx Na

In a similar fashion, one can derive the matrices ® and M
for other 4 parton channels. The only difference is that for
processes with quarks, we always use the color flow color
decomposition of an amplitude. For the channel

g (k1) q (kg) — g (k2) q (k3), (49)
we obtain

by @
Pyysgq = ((p? (p: > (50)

with the @; given in Table 4. For a similar process with an
anti-quark we get

D Dy
‘I’gé—mé = <¢1 @2)' (51)
Finally, for
g (k1) g (ka) — q (k2) g (k3) (52)
we have

D Dy
Qgg%q(} = <¢2 @ ) : (53)

The partial amplitude vectors A for the above cases are listed
in Table 3.

5.2 Five partons

The calculation of the TMD gluon distributions with 5 col-
ored partons proceeds in the same fashion, but is technically
more complicated. Also, a new feature appears. Certain color
factors, building up the matrix C, vanish for some processes.
However, some of the corresponding TMD operators do not
vanish (more precisely, we mean here corresponding ele-
ments of the F matrix). It is a special property of the TMD
factorization: certain color flows would not contribute in the
collinear factorization (where only the matrix C appears), but
they do contribute if the TMD gluon distributions are con-
sidered. Thus we need to modify the definition of the TMD
gluon distribution matrix ® (42) and the Eq. (43) for such
processes. In both formulas, instead of the matrix C (which
has zeros), we use the matrix C’ with elements

@ Springer

if Cjj #0

: 54
ifCij =0 oY

Ci;
/ L

This is a simple way to extract the hard matrix element color
factors only from those TMD operators, for which the color
factor is nonzero. For reader’s convenience, the color factors
for 5 parton processes in the color-ordered-amplitude repre-
sentation are collected in “Appendix D” (they were cross-
checked with [68,71]).

Below, we present the TMD gluon distribution matrices
® for various channels. The vectors A of partial amplitudes,
corresponding to the entries of the matrices ®, are given in
Table 5 in “Appendix A”. The TMD gluon distributions &;
building up these matrices, are expressed through the "basis’
distributions (25)—(34), as given by the M matrices listed
in Table 6 (“Appendix A”). The M matrices for processes
in which an incoming and outgoing quarks are replaced by
incoming and outgoing anti-quarks are the same.

For the pure gluonic process,

g (k1) g (ks) — g (k2) g (k3) g (ka) , (55)
we obtain

D Dy Dy P3 D3 @I
Dy D D3 @I Dy D3
Dy D3 D Py @I D3
D3 @I Dy O D3 Py
D3 Dy (PI D3 D Dy
D) O3 D3 Oy Py Dy

Pyog9s = (56)

The @; gluon distributions are listen in the first row of Table 6.
This process has the property mentioned in the beginning of
this section. The entries for which the color factors are zero
are marked with the asterix *.

For
g (k1) g (ks) — q (k2) q (k3) g (ka) (57)
we get
D1 Dy Dy D3 D3 Py
Py Dy P5 P P3 P3
Poggig = P2 D5 2 D3 Do s (58)

D3 Do P3 Dy D5 Py |’
D3 D3 D D5 Dy Dy
Dy D3 D3 Dy Py D

with the TMD gluon distributions given in the second row of

Table 6.
For the process with initial state quark

g (k1) q (ks) — g (k2) g (k3) q (ka) (59)
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or anti-quark, we obtain, respectively

Dy Dy D3 Dy D5 Dy

Dy D) D5 Py D3 Dy

| D3 D5 D3 Dy D Dy
Peq—g89 = Dy Py Py Oy Py Py |’ (60)

D5 D3 g Py D3 Dy

Dy Dy Oy Oy Py Dy

and

Dy Py Dy Dy Py Dy

Dy Dy Dy Py Py Dy

) | Py Dy D3 D3 D D5
Pei—g85 = Dy Oy D3 D D5 Py | 6D

Dy Dy Gg P5 D3 D3

Dy Dy 5 Py D3 D

with the TMD gluon distributions given in the third row
of Table 6. These matrices differ by the permutations of
the entries, which has its origin in a slightly different color
decomposition for quarks and anti-quarks. Namely the order
of quark—anti-quark lines (with the outgoing-momenta con-
vention) is reversed in one case with respect to the other.

Finally, the processes with two quark—anti-quark pairs,
with incoming quark

g (k1) q (ks) — q (k2) q (k3) q (ks) , (62)

or anti-quark, involve respectively

D 0 &1 D
0 &y &3 &
Pog—qqq = D, D3, 0 |7 (63)

D D1 0 P
and
1 0 &) D
0 &y & D3

DD D1 0
D D3 0 Dy

Poi—qqq = (64)

The TMD gluon distributions appearing in these matrices
are listed in the fourth row of Table 6. Interestingly, for this
case, not only some of the color factors vanish, but also the
corresponding TMDs.

As the potential phenomenological application of the
results (in short run) concerns rather the large N, limit, we
present the relevant matrices in this limit in “Appendix C”
(Table 12).

5.3 Six partons

Six parton processes do not involve new features, except
more channels and more involved calculations. The vectors
A of the partial amplitudes, and the M matrices are given

in Tables 7 and 8, 9, 10, 11 in “Appendix A”. The M matri-
ces for processes in which an incoming and outgoing quarks
are replaced by incoming and outgoing anti-quarks are the
same. Below, we present results for the TMD gluon distri-
bution matrices ® for all channels. The number of partial
amplitudes necessitates the use of block matrices to com-
pactify the notation.
For the six-gluon process,

g (k1) g (k¢) — g (k2) g (k3) g (ka) g (k5) , (65)
the ® matrix is

T 13714

L, TWT5 Ts
Ty Ts T\ T7 |’
T, T] Th T
where 7; are 6 x 6 block matrices given by Eqgs. (B.1)—(B.4)
in “Appendix B.1”.

In the present case we have two TMD operators, for which
the color factor vanishes — QDZ and @g‘ (we remind, that we
mark these matrix elements with an asterix). The full list of
the TMD gluon distributions is given in the Table 8.

Next consider the process

Poogges = (66)

g (k1) g (ke) — q (k2) q (k3) g (ka) g (ks) . (67)
The TMD matrix reads
T, T3 Ty
| T n
Poo—qigs = TV T T5 Ts | (68)

) T T T

where the blocks gathered in Egs. (B.8)—(B.12) in “Appendix
B.2”. The TMD gluon distributions are given in the Table 9.
For the process

g (k1) q (k¢) — g (k2) g (k3) g (k4) q (k5) , (69)
the TMD matrix reads
T, 1T,
T Ts Ts T7
_ 2
Pogg950 = T3T Te Ts Tg | (70)

T T Ty Ts

with the blocks expressed by Egs. (B.13)-(B.16) in
“Appendix B.3”. The TMD distributions are in Table 10.
Similarly, for the process with the anti-quark

g (k1) q (ke) — g (k2) g (k3) g (ka) q (ks), (71)
we get
W Ty T Th
) 1T 3T,
Pogg597 = TN T Ts | (72)
T, T4T Ts T
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with the blocks given by Egs. (B.17)—(B.19) in “Appendix
B.4”. The TMD distributions are in Table 10.

Processes with two quark—anti-quark pairs have smaller
number of partial amplitudes. For the process

g (k1) g (k¢) = q (k2) q (k3) q (ka) q (ks) , (73)
we obtain

T, T
Poo—qieq = (T; T?) ) (74)

with only two blocks:

D1 0 &, D3 0 Dy
0 &4 0 0 D5 0
Dy 0 &1 Dy 0 D3
D3 0 &, D1 0 &y
0 &5 0 0 &4 O
Dy 0 &3P 0 D

D O3 P O3 P D3
D3 &g D) Dy P D3
b Py @1 D3 D3 D3
D3 @) O3 D D3 D
D) P D3 D3 D D)
D3 O3 O3 D) Dy D)

Ip)

(75)

The TMD distributions are given in the Table 11.
For the process

g (k1) q (ke) — g (k2) q (k3) G (ka) q (ks) , (76)

we have
T
Poy—g939 = (TzT T3> ’ (77)

with three different blocks

D1 0 & 3 0 Dy
0 &4 @; 0 &3 ¢g
T = (020} (I)gk Dy D3 0 Dy
D3 0 &3 P3 0 D3 |’
0 &3 0 0 &3 0
D, <PZ Dy D3 0 Py

D O3 P D3 Py D3
Dy O3 P Dy P7 D3
| D2 D3 D) Dy Dy B3
= D3 D3 D3 D3 D3 D3 | (78)
D3 D3 D3 P3 D3 D3
Dy O3 D3 D7 Py D3

D4 0 Py Dy ¢§ D3
0 &3 0 0 &3 0
Dy 0 @1 Dy 0 D3
D4 0 Py Dy Q:’; D3
;D3 0 D5 P4 0
D3 0 @3 P3 0 D3

13

(79)

@ Springer

Note, that in this process there appear both the vanish-
ing structures for vanishing color factors and non-vanishing
structures for vanishing color factors. The list of the TMD
distributions is given in the Table 11. Similarly for the process
with an anti-quark, we get:

T T»
Poi-5957 = (Tz T3> ; (30)
with
D3 0 &3 D3 0 D3
0 &4 @g 0 &3 @;
T — D3 @g Dy Py 0 Py
"l o0 o0, 0 0, |
0 &3 0 0 &3 O
D3 d’; Dy Dy 0 Dy

D3 O3 @3 D3 P3 D3
D3 D7 Dy P D3 Dy
| D3 Dy D7 D3 D3 Dy
D=\ g, 0, 0,0 ¢ 0, | 1)
D3 D3 D3 P3 D3 D3
D3 Oy Py O P3 D)

D3 0 &3 D3 0 D3
0 D4 (D; 0 &3 Q)g
| 93 P5 D4 D2 0 Py
B=lo;0 @0, 0 @ [ (82)
0 &3 0 0 &3 O

D3 Cbg Dy Dy 0 Dy

The large N, limits of gluon distributions for 6 parton
processes were gathered in Tables 13, 14, 15, 16 in “Appendix
C”. Additionally, we collect the color factors for all processes
in “Appendix D”.

6 Large N, analysis for arbitrary number of gluons

In this section, we shall utilize the color flow method to give
the large N, results for a process with n gluons

g (k1) g (kn) — g (k2) ... g (kn—1) - (83)

‘We shall use the fact that the color flow decomposition (9)
involves all (n — 1)! partial amplitudes which are the same as
in the fundamental decomposition (7). Therefore, the leading
N, contribution is given by the partial amplitudes squared
(the interference terms are subleading) [72]

MPP=c {|A<n(1),...,n(n>>|2+o<i)},

2
TESY/Zn Nc
(84)

with C being some color coefficient. Note, that if we used
the adjoint color decomposition to reduce the number of par-
tial amplitudes only to the linearly independent ones, as we
did in the previous section, we would not be able to claim
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(84). Consequently, the general analysis of large N, would
be very difficult. Therefore, there is a trade off: switching to
a general argumentation requires giving up the advantage of
using minimal number of amplitudes. In practice, however,
any partial amplitude can be easily calculated numerically,
so the real loss is not so big.

Based on the above, the idea is to calculate first the diag-
onal elements of matrix ®, as they will definitely contribute
in the large N, limit. This would be the final answer, if there
is no enhancement of powers of N2 for some of the non-
diagonal elements. In fact, as we shall see, the enhancement
indeed occurs, but still the TMD gluon distribution appearing
off the diagonal is numerically small.

Let us start with calculating the diagonal elements of the
TMD gluon distribution matrix @. It is sufficient to consider
only the following diagrams:

Not only any permutation of final states will give the same
result, but also any diagram with leg k, permuted with
{3,...,n—2}. Thus

{l.A(l,rr(2) ..... n(n—z),n,n(n—l))ﬁ‘nesH}
U{IA(l,r[(Z) ,,,,, T —3),n T —2), 71— 1))\2‘71 c SH}

U[IA(I,H(Z),n,T[(3) ..... n(n—2),n(n—1))|2)nes,,,2}
-

(89)

Finally, the third diagram, gives complex conjugate of the
operator in (86), thus also ]—"g(;,), because of our assumption
of the reality of the correlators. We get therefore

{40 n 7@ 7@, m o= D)P|7 e 0]~ Fl

Now let us put together the above results, using the matrix
notation as in Sect. 5. Let us define the partial amplitude

A2, ,n,n—1) A(1,n,2,...,n—1)]

mim{Enin

“T ol
| ULJ¢ LJLJ¢ LJLJ¢

A1,2,...,n)

T
g
+ 1 + +
= +
S | B
%’“ ® T@g’“

—> ks 4 ky
] -
1 Tg
é?) )™ é?) (85)

The first diagram from the left corresponds to the partial
amplitude squared | A (1,2, ..., n)|? and the TMD operator
reads (after dividing by the corresponding color factor)

n—73

N,
N;_QTr{F(s)u[—”F(0)u[+l}Tru[DlT v Fofs (86)

i.e. it corresponds to the TMD }'éi,), Eq. (28). However, any

permutation of the following (n — 2) final state legs will give

the same contribution, thus, the set

[l r@. 7). om =D wP|x e 8, 0) ~ 7.
(87)

The second diagram, corresponding to I.A(l, 2,..
1)[?, gives

LN, n —

Nn—4
N“ Tr {F EUMTF (0) u[ﬂ} TP Ty lO) 0 7).

n—2
¢

(88)

vector so that it preserves the block structure emerging
above:

A,2,...,n—2,n—1,7)
AT, 2,3,....n—=2,,n—1)

A,2,3,....a,n—2,n—1)

b
I

(90)

AT, 2,7,3,....,n—2,n—1)

o~

A,n,3,...,n—2,n—1)

where we have used hats to denote momenta with fixed posi-
tion in a given group (the actual ordering in each group
doesn’t matter). For this choice of the vector ,Zl, the diag-
onal contribution to the matrix ® at large N, reads
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7. 0 O
Phiag=| 072 0 |, (29)
00T
where
T =FQ g, T = Flp-sm-2. 92)
For example, for n = 4, we have explicitly
F 0 0 0 0 0
0 Fg 0 0 0 0
0o 0 F% 0 0 o0
D ige = 8¢ 93
diag o 0 0 FY o0 o ©3)
0 0 0 0 Fy 0
0 0 0 0 0 F

Now, let us consider the nondiagonal elements. As said
above, these elements will be convoluted with partial ampli-
tudes (interference terms) whose color factors are suppressed
by at least 1/N, 62 (to say it differently, the non-diagonal ele-
ments of the color matrix C in (43), if it is calculated in
fundamental color decomposition, are subleading of at least
1/ NCZ). Therefore, they do not contribute in large N, unless
some off-diagonal TMD gluon distribution is enhanced by at
least Nf. This still might not be enough, but is a sign that a
careful analysis has to be carried.

The most suspicious non-diagonal elements are those,
which correspond to color flow diagrams with least num-
ber of loops. This is slightly counter-intuitive, but we have
to keep in mind that, by definition, we divide the color fac-
tors out of the TMD (there are no vanishing color factors for
gluons in the color flow representation, unlike for the adjoint
representation). Thus, the enhancement may happen if the
diagrams with Wilson lines have much more loops than the
pure color factor diagrams. It is best to illustrate this by an
explicit example. Consider a 4 gluon process and the follow-
ing interference term:

A(1,2,3,4) A% (1,4,2,3). (94)

We have the following two leading diagrams for the color
factor:

ki

\J
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95)

The U (1) colorless propagator for the k; leg stems from the
projectors that have to be inserted for the final state gluons,
cf. (12). Recall, that in general these color factor diagrams
have to be divided by N4 to get the color factor with open
indices’. The first, Mobius-loop-like diagram, cancels with
the second:

1 2 1 3
v (Ve gove) =0 (96)
(o

(We called the first diagram ’Mobius-loop-like diagram’
because one of the internal loops shares its border with
the external loop.) Similar cancellation happens for the dia-
grams, where the U (1) gluon appears for legs k2 and k3. The
sub-leading diagrams are those where U (1) colorless gluon
is k4, i.e. it crosses the other legs:

oY

7
In this case, we get
! 1N3+ Lyvz) = (98)
Na\ N. ¢ N2 €°) 7

Now, let us look at the leading diagram for the TMD operator:

T@

It reads

99)
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N, Tr {F (s)u[D]} Tr [F (O)U[D]T} — N2FD. (100)

Dividing by the leading color factor (divided by N4) we get
finally the following non-diagonal element of the @ matrix
in the large N, limit:

(®)5 = —N.FQ. (101)

As the color factor for A (1, 2, 3,4) A* (1,4, 3,2) is sup-
pressed with respect to diagonal elements by 1/N 3’ the TMD
gluon distribution —F, g{) indeed contributes in the large N,
limit. In a similar manner, but considering much more com-
plicated diagrams with maximal number of crossed lines, one
can deduce, that this will be always the case for some non-
diagonal elements for any multi gluon process. For example,
after a similar but tedious calculation for 5 gluon process, we
find that the dominant non-diagonal element is — N F, é(,? /4.
We will always get the F, ;? TMD gluon distribution, because
of the Mobius-loop-like structure, which gives the two traces
appearing in the definition (29).

While perhaps it is possible to derive the answer for the
non-diagonal leading N, elements for any n, let us note that
F, g(.? gives numerically rather small contribution to the cross
section, compared to the other gluon distributions [21,22].
Indeed, it vanishes very quickly with k7, so that it is small for
transverse momenta around the saturation scale. Moreover,
it does not survive the collinear limit. Therefore, in possible
phenomenological studies of multigluon production, itis safe
to set

Pogg..g = Piag- (102)

The study of large N limit for multiparton processes with
quarks, and for gluons without the approximation described
above, is left for a separate work.

7 Summary

In the present paper we have faced the task of calculating
the TMD gluon distributions for processes with five and six
colored partons, following the procedure of [17]. So far, in
the literature, processes with four partons were considered.
Although it is known that within the formal TMD factor-
ization the generalized factorization fails for processes with
more than two colored partons, it was argued from the CGC
theory that at small-x for dilute-dense collisions exactly such
structures appear. At leading order, our results are sufficient
to calculate three and four jet production in the gluon sat-
uration regime in dilute-dense collisions, provided the two
new basic TMD gluon distributions, ]-"(g) and F, (g(,7g), defined

respectively in (27) and (34), are determined. This can be
done using the B-JIMWLK equation, as in [22]. At tree level,
the hard matrix elements can be easily obtained from avail-
able software for automatic calculations, for example KaTie
[73], which can deal with on-shell and off-shell initial states.

Instead of calculating the structure of the operators for
particular Feynman diagrams, we have used the color decom-
position, which is the most efficient way of dealing with the
multi-particle QCD amplitudes. In particular, for processes
with quarks, we have used the color flow decomposition,
which treats quarks and gluons on equal footing. In addition,
we formulated straightforward color flow Feynman rules for
the gauge links, which allow immediate derivation of the
TMD operator for a given color flow.

The color flow Feynman rules are particularly convenient
for large N, analysis. In the present work, as a first step
towards this goal, we attacked multigluon processes with
arbitrary number of legs. We find a general answer, but in a
certain approximation, motivated by known numerical stud-
ies of a particular TMD gluon distribution. In the large N,
limit, we find that only two structures contribute, for any
number of legs. This is similar to the conclusion made in
[74], where the universality at large N, was found in the
multiparton production in the Color Glass Condensate: only
dipoles and quadrupoles contribute.

Finally, it would be very interesting to compare the TMD
factorization formulae for three jet production (by factoriza-
tion we mean the approach described in detail in the Intro-
duction) with the leading power of the corresponding CGC
result, which was recently derived in [75].
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Table 5 Definitions of the

vector of partial amplitudes A 8185 — 828384 8185 — 929384 8195 —> 828394 8195 —> 828344
for all five-parton processes. The -/ 4 3 3 4,5) A2,1,4,5,3) A(4,1,2,3,5) A(5,1,2,3,4)
subscripts in the sub-process A(1,2,4,3,5) A2,1,5,4,3) A(4,1,3,2,5) A(5,1,3,2,4)
indication correspond to the A(1,3,2,4,5) A2,4,1,5,3) A4.2,1,3,5) A(5.2.1,3,4)
momenta enumeration A(1,3,4,2,5) A(2,4,5,1,3) A4,2,3,1,5) AGS,2,3,1,4)
A(1,4,2,3,5) A(2,5,1,4,3) A4,3,1,2,5) A(5,3,1,2,4)
A(1,4,3,2,5) A2,5,4,1,3) A4,3,2,1,5) A(5,3,2,1,4)
8195 = 424344 8195 = 924344
A@2,3,4,1,5) A@2,3,5,1,4)
AQ2,1,3,4,5) A@2,1,3,5,4)
A@2,5,4,1,3) AQ2,4,5,1,3)
AQ2,1,5,4,3) AQ2,1,4,5,3)
Table 6 Matrices M of
L. 1 1 _ L 1 9 o 3 1
structures appearing in the IN? + 7 Nz N2 12
five-parton processes R -2 e iy iR HL
(D=N2—2,F=N2+1). 8185 —> 828384 % % Neoge L e
The subscripts in the NZ , N32 NZ N2 {\’NZ %3
sub-process indication N¢ —zNc (Nc +2) iy 0 - 0 -5
correspond to the momenta N2 0 —L 0 0 N} 0
enumeration /Z 7 Na N;
N 1
v 0 , -~ 0O 0 00
8185 = 429384 0 7Ng 10 02 00
o -2 L o2 00
F F F
-N2 0 1 N)O 00
N2 1 N?
0o - L Y% 9 00
1 DN?
o 0
_F ZN? 0
Nag N,
;oA
8195 — 8283494 ~Ni N, 0
1 0O O
1 —N? Ng
1 N¢
F 0 F
100
8195 —> 424344 010
001
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Table 7 Definition of the vector of partial amplitudes A for all six-parton processes. The subscripts in the sub-process indication correspond to the

momenta enumeration

8196 —> 82838495

8196 — 828384495

8186 = 42938485

8186 — 82838485

NN AN AN N N N N N N N N N N S N S S S S S S S
nunmunmunununmunununununmumunuununmumununununmunymnnn

T A AT A~~~ — A~ —
ANt AR A —~F AN~~~ n—
NS A~~~ =~ NS
B T T T I S I N I N I N I N I N I o R ol o o S R

AN A A A A A S S N S S N S N N S S S N S S S
O O O O O WO WYLV WYOVWYVYLOLYOLOYLOYLOLYLOWYOLoo

t e T AT~~~ AT A~ NN~ A~

8196 —> gzqaq_ws

R R o R R R e R R R R

NnnnninnsTSTS <
NG~~~ 8 aag——Y

NN AN AN AN AN AN AN AN AN N N AN AN N N N AN N AN N S S S
NN NN oN NN NN NN NN NN NN onon oo onon

CH ST N FTIE NG~ =S FC—F ~wFw—~ <~
WSO O—~ 8~ 8 —0— < <~ — <
FTF NS~ =1 S8~ =608~~~ 13w
R I I S e e R NN el TeiN=-NN-IN-RN- V=N

gddadddaddddddgadddgaddgddddddadd
TI I IITITIITIIIIITISIIISIIISISISTS

8196 — 82934495

NSNS AN N S A A S S S

oo
Nan—=—rnHaan =~
Tl IS oI A VNI S Te NS
Nt ar <t —n oo —
TG~~~ aa

cocdodscsoda
TITIIISIISISIISTS

AN AN AN AN AN AN AN N N AN AN AN N N N A N S N N A S S

ool
Nttt rnadtanmeadnaen oo oo
T AaSFtT rnadrnatarnananen AT e
AT rnrnadatTFrnrnadndnn a6 S
222222333333444444555555

TTIIIIITIIIIISTIIIIIISIIISIS

8186 — qzq‘sqﬂh

R R R R R R R R N B e e

mwnnwuymnnon o onononon
SO~ =88 —— <
“F A ST~ ST
T ACTF N~ 1O —
SR NNV T S VoSN aN=)

gggggddddddad
TIIIIISIIISISS

Table 8 Matrices M of

8186 —> 82838485

structures appearing in the

o ol e o
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+ 4+ + "MLT + + + 2Nc
N e e AL AT a1
e Foi i S PR
—
N
. + 9. @
[ - - e o
=
—loo
—_~
(q\]
. + Yo
5 e e e HE o -
S~—"
—loo
TR | |
F7452+c4r2+c4c],22ﬁ4n2+c4L2+.(4a1
| | =
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o 172r 7 G 77M(7«.N50
—loo
oo o T e
3

ja
<~ |+
o O —ho
ES
|
|2
Tzﬁ%ﬁ len —Ien
z|=
—Ja— ~Q
a5+
e A
w,{\liN Qo
22c(13
—len
I~
i
T+ o e
,42+£M41M —[=
ze = I
ZN.(
—_
o
oo 0 |,
,22+c7‘.ﬁ22c7urcN
| =S e
oo |
> |
|
—_
o ~
oF
. G
B
_ S—
.I;W..
a
Tooh.r, —en O
i

N2 + 1). The subscripts in

the sub-process indication

six-parton processes (part I)

(F

correspond to the momenta

enumeration
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As
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Table 9 Matrices M of structures appearing in the six-parton processes
(artI) (D = N> =2, F = N2+ 1, K = N} —2N? -1, L =
N*— N2 —1). The subscripts in the sub-process indication correspond
to the momenta enumeration

8186 —> 42938485

N7 1 DN¢

T e )

N% Na N%
FN? 1 2N?

" 0 - 0 0 N 0
N 0 _ L 0 0 _NE N
Né Na Na Na
,ﬁ—; 0 -5 0 0o 0 0
N 1 N
NF-1 0 TN 0 0 0 NI-1
0 —N? 1 0 0 0 0

N? 1 N?
0 - L 0 o0 0

—N? 0 1 N? 0 0 0

N? 1 N?
0 - L % 0 0 0

-N2 —N? F 0 0 0 0

4 2
A L 0 0 0
N? F NZ N¢
0 *x —x 0 -x 0 ¥
—FN? 0 1 N? 0 N 0
2 4 2
_Ne _N 1 % 0 0 0
r 3 >
N N A N 0 0
LS T2 K _? 2
0 __FN F NZ NZ 0 0
g 3NZ+1  3NZ+1 3N}-§1 3NZ+1
N 1 DN;
= 0 -1 1o 0 0 0
FN?2 F 2N?
: 0 -£ 2 0 0 0
I(; FN? FK 2NI§ 0 0 0
_31v52+1 3NZ+1  3NZ+1 ,
N, 1 DN}
0 &= —% 0 =< 0 0
s 22
0 3N§+1 3NZ+1 0 3NZ+1 0 04
0 L o o
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Table 10 Matrices M of structures appearing in the six-parton pro-
cesses (part III) (D = N> —2, F = N>+ 1, K = N} —2N? — 1,
L = N} — N2 — 1). The subscripts in the sub-process indication cor-
respond to the momenta enumeration

81496 — 82838495

1 N2(N}-3N2+3)

- " 0
F N2(NZ-3) 0
Ny N3
K NXNZ-3) 0
Na R AéA

N2+ NZ(N2+3) 0
1-N? Ni-1
e DN? 0
N3 Ngz

_ 2N; 0

Na Né
_1 N 0
Na Na
1 0 0
2 2
1 —N; N¢
_L 2N _z
Na Na N
F —2N? NEA
_1 N DNZ
L L, L,
1 DN; —DN;
I 2N? 2N?
2 FZ
1 _N NE
E F
F FN? 2N?
K K
1 0 Af
F 2 FZ
1 N N
1-N? Na 1-N#
1 _N? 2N?
F F F
_1 0 DN¢
K 2 >
_1 NZ Ne(Ne—3)
K K 5
F 0 2N
3NZ+1 3NZ+1
_E N _N
K K K

Table 11 Matrices M of structures appearing in the six-parton pro-
cesses (partIV). The subscripts in the sub-process indication correspond
to the momenta enumeration

8186 = 42939445 8196 —> 82939495

1 N2
R
er 1
¥ 0 —x-000 0 L0 0
0 0 0 100 O 0 1 0
0 —N} 1 000 0 ez ﬁ (1)
N(‘
0 0 Fai% o |
C 1
1 NZ 0 WM W
0 0 —x-000 F o1
4 4
1 1
0 -z 1
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Appendix B: Block matrices for six parton processes with
. 000001
Appendix B.1: g (k1) g (ks) — g (k2) g (k3) g (k4) 000010
000100
D1 Oy Oy O3 O3 O J = 001000 |- (B.6)
@2@1@3@1@2@3 010000
. Oy @3 D) By OF By 100000
= D3 452{ Oy O] D3 Dy |’ The same relation holds between block matrices for color fac-
D3 Oy Of O3 O D) tors (Eq. D.23). Nonetheless, for convenience we list explic-
O} D3 O3 Py Dy D) itly elements of 77 matrix:
Dy &5 D3 P Dy ¢§ Do q)g D11 P1o Do ¢§
D5 Oy D7 @g D3 D¢ q)ék (I)Zf P19 D9 D3 D7
| @3 #r @5 95 @ @i ey D= P11 P10 P10 Py Py P (B.7)
S TR T | P10 Po Dy Pi P Bs
% gy D¢ D3 D3 D7 Dy D5
P7 @3 P9 Pio Py Py O 7 B Dy D5 Dy
&g Dg P19 P11 Pg Pio
D3 D7 D) D5 D9 Dy Appendix B.2: g (k1) g (ke) — q (k2) q (k3) g (k4) g (ks)
D Pz Pg P1o 1o P11
*
T3 = 22 ZS 23 zi 27 28 , D1 Oy D3 Dy D5 D5
d,i q>2q>7 458 qsi q>6 P2 P2 P4 Po s s
@8 ¢6 q)lo q)u (pi q)lf _ &3 04 @1 0y @5 05 |
73 9 10 Ty Ty Dy Do Dy Py D5 D5
D Pg D5 Pio 1o P11 b5 D5 D5 O5 D5 Ps
D3 Dy (15;‘k (15{{ D9 Do D5 O5 O5 D5 P5 D5
T, — D D P19 P11 P Pio (B.2) Dy D5 D5 D7 D7 Py
R S I o of |’ ' b5 D5 Py P9 D7 Py
By b5 D3 Do D7 D T = Dy D1y D5 D7 P12 Di3 ’ (B.8)
Bs Dy D7 DY Dy D P1g P15 P15 P16 Pi6 Pi7
oF BF Bu By Bon B D9 Dy D1y P19 Dio P
4 g T3 ET IO D15 P9 Dy P21 P10 P16
b5 P10 Po P 431*1 P10 Dy Py D5 D7 P D13
Ts = P3 Ps Py D5 Dy Py , D14 P15 P15 P16 P P17
D7 ®§< D5 Oy Do D3 7o — Dy &5 D5 D7 D7 Dy
Do P11 P Do Pro P P s @5 @9 @19 @7 @7 |
Dy D1y P7 D3 Df D P15 P9 P P21 P10 Pi6
®; D1 D6 D) P1y Pro D9 Dy P13 P19 Dio Pio
DF P D3 D7 D1g Do D7 D7 Dy Py D3 D3
T — D10 P11 (Pék De P Q)ék (B.3) D7 O7 Pg Py DPoyyg D3
CT | @y @9 D7 @5 o o |’ : Ty = D7 O7 P13 D3 g P B.9)
D3 Dg Dy Ps ‘Pg Dy D7 D7 Doy P13 Py B3 ’
Dy @Dék Ds Oy Py P3 D7 &7 &7 D7 D7 Py
T = TN (B.4) D7 &7 &7 @7 D7 Py
Dy P55 D5 D7 D7 Dy
TM denotes a mirror reflection of the matrix 7> with respect b5 5 P9 P9 P7 Py
to the anti-diagonal, which can be written as a similarity Ty = D5 P9 D5 D7 Pig D7 ’
transformation D7 P9 P7 D5 Py Ds
y D7 D7 P9 D9 D5 D5
Y =JTJ, (B.5) Py @7 D7 D5 Ps P2
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D¢ D5
P15 Do
@5 Do
@7 Py
D16 P21
Doy P16

P10 P16
P10 P10
D19 P21
D13 Do
D9 Do
D9 D5

P16 P10
P10 P10
P71 Py
Dy P13
D9 Do
D15 D9

T =

T3

T=1" T

D5
Dy
@5
b7
Do
0]

]
D
30
Dy
D5
D5

D17
P16
D16
D15
D5
Dy

D7 P16 P4
D190 P21 Pis
D7 D9 D7
&5 P9 D5 |’
D9 Dy P55
D5 P15 Dg

Dy P17 P13
D7 D16 P12
D7 P15 Py
b5 D5 D5 |
D5 P15 Dy
Dy Py Py
D13 O7 Py
P D7 Dy
D7 Py Py
b5 D9 D5 |’
D11 D5 Ds
D4 D5 Dy
D5 @5 Os5 s D5 Ps
D5 D5 D5 D5 D5 Dy
D5 D5 Dy Dy Pg Dy
Ds D5 &y D Dy D3
D5 D5 g Dy Py Dy
D5 D5 Dy D3 Py Py

(B.10)

(B.11)

.

(B.12)

Appendix B.3: g (k1) g (ke) — g (k2) g (k3) g (k4) q (ks)

T =

Do Ps

D1 Dy Dy P3 D3 Dy
Dy D &3 Py Dy D3
Dy D3 D Py Dy D3
D3 Dy Oy P D3 Dy
D3 Dy &y 3 O Dy
Dy D3 O3 Py Dy Dy
D5 Py D7 dg D9 Dg
D9 Pg D7 Pg

1

T3

D9 P11 D7 Ds Dip P
D13 P14 P15 Pg P16 P3
D11 Do P12 Pg D7 Dy
D14 P13 P16 Pg D15 D3
D19 D11 D7 Py P12 Py
D3 Dig P15 P D16 P
Ds Pg P71 Py P9 Py
Ds Ps P9 Py D7 Py
D14 D13 P16 Ps P15 Py
D11 Pio P12 Ps D7 Py

@ Springer

(B.13)

1

15

Ts

T;

T3

P13 P14 P15 Pg P16 Pg
D19 P11 D7 Py P12 Py
D1y P13 P16 Pg P15 Pg
D11 P1o P12 Py D7 Py
D5 D D7 Pg Dy Dy
D¢ D5 P9 Pg D7 Dy

D5 g 7 Dg D9 Pg
Do ©5 D9 Pg D7 Pg
D7 P9 D7 Pg D17 Py
Dy g Dy Dy Dy Dg
D9 O7 P17 Pg D7 Dy
Dg g dg dg dg Dg

D13 P19 D7 Pg Doy Pg
D19 1 Py Pg Dy Py
D7 Dy D7 Pg D17 Py
by Py Py Pg Pg Dy
Dop P P17 Pg Doz Py
Dy Py Py Pg Pg Dy

D19 1 Py Pg Dy Pg
D13 P19 P7 Pg Dy Pg
Dop P P17 Pg Doz Py
Dy Py Py Pg Dg Dy
D7 D9 D7 Pg D17 Py
Dy Py Py Pg Pg Dy

Do) P19 P Pg Dy Py
D19 P13 P9 Py D7 Pg
Do Do P23 Pg P17 Py
Py Py Pg Dg Pg Dy
D9 D7 Dy g D7 Dy
Py Py Pg Pg Py Dy

, (B.14)

, (B.15)

(B.16)

Appendix B.4: g (k1) g (k¢) — g (k2) g (k3) g (k4) g (ks)

T

Ip)

T3 =

Dy Py Pg Pg Py D3
Dy Py Pg Pg Py D3
by Oy Pg Pg D3 Dy
Py Py Py Pg g g |’
Dy Py Pg Pg Dy Py
Dy Py Pg Dg Dg Dy

D7 D7 &7 D7 D7 Dy

D7 D7 @7 D7 D7 Py
D7 &7 @5 D5 Dig Do
b7 O7 D5 P Py D2
D7 O7 P13 P19 D5 Ps
D7 D7 P9 P D5 Dy

D17 P17 P9 Dy P9 Pi2
D17 Pz P9 P15 P Pig
D9 D9 Pg Dg D19 Py
D9 P15 P Py P13 P3
Do P22 P19 P13 Po1 P1g
D12 P16 P11 P3 Pia Py

(B.17)
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Ty =

@17 D23 P9 P15 Py Pi6
@17 P17 P9 Dy P9 Pi2
Doy P P19 P13 P21 Py
D12 P16 P11 P3 Pua Py
Dy D9 P P P19 P11
D9 P15 D5 Py P13 P3

D3 D17 P2 P16 P9 Pis
D17 P17 Do P12 P9 Py
Doy Do P21 P14 P19 P13
D16 P12 P14 Py P11 P3
D9 D9 P19 P11 P Dg

D15 &9 D13 O3 Py Dy

(B.18)

(B.19)

Appendix C: Large N, limit for the TMD gluon distribu-

tions

For reader’s convenience we list the large N, expansions of
the results presented in Sect. 5 (see Tables 12, 13, 14, 15

and 16).

Table 12 The large N, limit of the matrices M from Table 6

8185 — 828384

8185 = 429384

8195 — 8283494

8195 = 424394

S O OkI-

0
0
0

00030
00010
00010

Table 13 The large N, limit of the matrices M from Table 8

8186 — 82838485

Table 14 The large N, limit of the matrices M from Table 9

8186 — 42938485

£ 00
0 0 0
0 0 0
2 2
£ 2oy
0 0 0
0 0 0
0 0 0
2 2
0 0 0
100
0 5N20

8]
[

= oo o

S

ool —
Qu—-—O 2 OO = OO

SO OO0 oo O

A=

oo

oo

S vl _.4;‘52'\) — = ;—..p‘hzw — —ool

oo o000
NS

o

w
o o O&‘Z

0 0 000 1 0
0 0 000 1 0
-1 0 000 2 0
0 0 00 0-N>N?
1 0 000 0 O
0 0 000 0 1
0 -N>000 0 O
0 -1 001 0 O
-N2 0 ON?0 O O
0 -1 010 0 0
0 -N*000 0 O
1 0 000 0 O
0 0 000 0 1
-N¥ 0 000N O
0 -N>000 0 O
1 0 000 0 O
0 —4N2000 0 0
0 0 010 0 0
0 0 010 0 0
1 0 000 0 O
0 —iN>000 0 0
0 0 001 0 0
0 —iN2000 0 O
0 0 000 0 1

Table 15 The large N, limit of
the matrices M from Table 10

8196 — 82838495

0 1 0
0 1 0
N} —N2 0
0 1 0
0 1 0
-1 2 0
0 1 0
1 0 0
0 —N2 N?
0 2 -~
N2 —2N2? N?
0 0 1
0 Nt N}
1 -2 2
-1 1
0 1 0
0 0 1
0 1 0
0 -1 2
0 0 1
0 0 1
Lo
0 1 0
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Table 16 The large N, limit of the matrices M from Table 11 W — gggggg
8186 = 42439445 8196 = 82934495
010
1 0 00000 R Ci GG Cy
00 01000 01 0 C, C; Cs Cg
0-N200000 C=NNy| 37070 , (D.23)
0 0 00010 000 C; Cs €1 Gy
000 T T
0 0 00100 010 cjclca
0 0 00001 11
510
0—-73 where
11111 L1 1 1
Appendix D: Color matrices 12144 14 4 8 8
713054 77 8 0 1 3
, . IThyplol L0 0a+la
Below, we list the color factors for five and six partonpro-  C; =] 34 2,4 ,C,=1]14%38 8 ,
cesses. The convention for the enumerating of the rows and 4 (1) 2 } 473 8 (1) 0 | a a a
columns, i.e. the order of the partial amplitudes are the same 1 ? (1) ? } 2 B le atga 0 0
as in Sect. 5. These color factors agree with [68,71], after a 0 4422 1 0 g a4 a 0 a
suitable permutation of partial amplitudes is done. (D.24)
Let us remind, that the actual color factors to be used in ‘—1‘ % 0 Oa+ % a
factorization formula together with the TMD matrices, are Lo 0 a a a
defined in Eq. (54). That is, the zero matrix elements have to c % %-‘ %-‘ é % 0
3 = 1 5
be replaced by one. 1 ? s 0 1 3
0 ? a a 0 a
W — gggge g1at+ga 0 0
I %0 0 a a a
132330 T o oa+ia
7170 % 7 0 i a a 0 a
Tij11 Ci=|738 , (D.25)
3 1130 tga+sa 0 0
C=NNa| 14,2 ,1% (D.20) 84 g
703175 rr 11 1 g
T12171 14 ¢ &8 8%
120713 b o I 1
ol Ll 11y 42 8 O 4 5]5
14722
0 0 % 3 a a + 3
_ 0 az0a a
W — qqsss 1o1lig 1
cs=| 1 51101
2 8 428 1%
N3 —Z\QA —Na 1 I F a a0 % a 0
—Ngy NA 12 F —Ny 1 a_i_%aézo 0
C—l& —Ng 1 Ny —Npo F 1 |
TENZ| 1 F —Na N2 1 N4 | 0 agOa a
I —Na F 1 N2 —Ny 0 Oggaaty
F 1 1 —N4s —N4 N2 . a alOza O
A A Ny Co = a+lal§0 0 , (D.26)
(D-21) 1 ’ 1 E i o 1
with F = N2 + 1. ¢ 8%‘1‘1 $
8 428 14
1
@ — qqrrg a 0 a a % 0
0 0 aa+ % I %
e R & (D.27)
| | | aa+50 0 g3
n 0 -n W [ S
c c c 8
T I D2 o 1 1 1 11
— LA _NL( _NLC N. 0 : 8§ 8§ 4 42
1 1
-~ w9 N witha = 535
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b — qqggsg
C1 C2 C3 Cy
_ lNA C2 C1 C5 C6 D.28
N3 |clese o | (D.28)
b 3 L5 C1 Oy
T T
C, Cq C7Cy,
where
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= N N N N N N | (D.29)
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(D.34)
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We find the following symmetry transformations
c=(c)'. cr=cl D.36
3= 6 ) 7=0C0, ( . )

where
AM = JAJ, (D.37)
with
000001
000010
000100
= . D.
J 001000 (D.38)
010000
100000
B — qqrrgg
1 Ci Cy
C=-N , D.39
4 A<C2 Cs ( )
where
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1 g N 1 g __1
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C = —io B 0 EREE (D.40)
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