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blanco, 28049, Madrid, Spain

E-mail: John.Ellis@cern.ch, Marek.Lewicki@kcl.ac.uk, Josemiguel.no@uam.es

Abstract. What is the maximum possible strength of a first-order electroweak phase tran-
sition and the resulting gravitational wave (GW) signal? While naively one might expect
that supercooling could increase the strength of the transition to very high values, for strong
supercooling the Universe is no longer radiation-dominated and the vacuum energy of the un-
stable minimum of the potential dominates the expansion, which can jeopardize the successful
completion of the phase transition. After providing a general treatment for the nucleation,
growth and percolation of broken phase bubbles during a first-order phase transition that
encompasses the case of significant supercooling, we study the conditions for successful bub-
ble percolation and completion of the electroweak phase transition in theories beyond the
Standard Model featuring polynominal potentials. For such theories, these conditions set a
lower bound on the temperature of the transition. Since the plasma cannot be significantly
diluted, the resulting GW signal originates mostly from sound waves and turbulence in the
plasma, rather than bubble collisions. We find the peak frequency of the GW signal from
the phase transition to be generically f & 10−4 Hz. We also study the condition for GW
production by sound waves to be long-lasting (GW source active for approximately a Hubble
time), showing it is generally not fulfilled in concrete scenarios. Because of this the sound
wave GW signal could be weakened, with turbulence setting in earlier, resulting in a smaller
overall GW signal as compared to current literature predictions.
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1 Introduction

There are many scenarios for physics beyond the Standard Model (BSM) that predict a
first-order electroweak phase transition, a number of them motivated by the hope of realis-
ing electroweak baryogenesis [1–4]. Recently these models have enjoyed renewed attention
because a strong phase transition is also a potential source of observable gravitational wave
(GW) signals [5–37].

It is widely thought that a thermally-induced phase transition at the electroweak scale
results in a GW signal in the frequency window where space-based interferometers such
as LISA [38–40] offer the best hope of detection. It has also been suggested that strong
supercooling could have resulted in the electroweak phase transition lasting much longer
and ending at a significantly lower temperature 1. However, for long-lasting supercooled
first-order phase transitions the field remaining in the initial vacuum generates an effective
cosmological constant term, due to the non-zero energy of this false vacuum. If the transition
lasts too long, the cosmological constant term eventually dominates over the red-shifting
radiation background, and the horizons still occupied by undecayed false vacuum begin to
inflate. In this case it may not be possible for the transition to complete successfully, echoing
the well-known graceful-exit problem of old inflation [43].

In this work we provide a detailed treatment of supercooled cosmological first-order
phase transitions (see [44, 45] for related work), taking into account the impact of the vac-
uum energy on the expansion of the Universe and discussing in detail the various stages of
the transition: bubble nucleation, growth and percolation/reheating. We study the extent to
which a supercooled electroweak phase transition is possible, investigating the maximal possi-
ble strength of an electroweak phase transition that completes successfully, and constraining
the corresponding maximal GW signal.

1It has been wrongly hypothesized that such a scenario could yield a GW signal from the electroweak
phase transition peaking at a lower frequency than in the standard case and extending into the range of
frequencies accessible to pulsar timing array (PTA) studies, much below the space-based interferometer band
(see e.g. [41, 42]).
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We illustrate this detailed treatment in two specific BSM scenarios with polynomial
potentials, namely the Higgs effective field theory (EFT) with a dimension-6 term ∝ |H|6
and the SM with an extra real singlet scalar field. In both scenarios we obtain the GW
spectrum produced by sound waves [46–48] and plasma turbulence [49–53]. We study the
conditions for sound waves to be a long-lasting (active for more than a Hubble time) source of
GW production, showing these are generically not fulfilled in these concrete BSM scenarios.
This indicates that the sound wave GW signal could be weakened, with turbulence setting in
relatively early. This would result in a smaller than predicted amplitude of the GW spectrum,
revising previous estimates of the GW signal from the electroweak phase transition in BSM
models [38].

However, we note that the above results may not hold in the particular case of the
electroweak phase transition triggered by conformal dynamics [14, 35, 36, 54–62]. After
discussing general features of such a scenario, we leave a detailed analysis for future work.

This paper is organized as follows: In Section 2 we review the formalism used to describe
the various stages of phase transition dynamics, and introduce the new elements needed
when the vacuum energy of the unstable minimum becomes cosmologically relevant. Then,
in Section 3 we describe the method of extracting parameters relevant for a GW signal from
a cosmological first-order phase transition that is also appropriate for supercooled scenarios,
and discuss the computation of the GW spectrum from the electroweak phase transition in
such a case. In Section 4 we apply the above formalism to two BSM scenarios: the SM
supplemented with a dimension-six |H|6 EFT operator and the SM with an extra real singlet
scalar field, and also discuss briefly the case of conformal scenarios. Finally, we present our
conclusions in Section 5. The Appendix contains some technical details of our calculations.

2 First-order phase transitions with strong supercooling

2.1 Nucleation and bubble growth

We begin by reviewing the formalism governing the nucleation of bubbles in first-order phase
transitions, and discuss in detail the specific case of a supercooled transition. Our starting
point is the decay rate of the false vacuum [63–65]:

Γ(T ) ' max

[
T 4

(
S3

2πT

) 3
2

exp (−S3/T ) , R−4
0

(
S4

2π

)2

exp (−S4)

]
, (2.1)

where the first term corresponds to the thermally-induced decay rate, and the second to
quantum tunnelling, which can dominate at very low temperatures when there is a potential
barrier between vacua at T = 0. In (2.1), S3 and S4 are the 3− and 4−dimensional Euclidean
actions for the O(3)- and O(4)-symmetric tunnelling (“bounce”) solutions, respectively, and
R0 is the size of the nucleating bubble in the latter case.

Once the decay rate is obtained in some specific model, of which we discuss examples in
Section 4, one can compute the nucleation temperature Tn at which one bubble is nucleated
per horizon on average, given by

N(Tn) =

∫ tn

tc

dt
Γ(t)

H(t)3
=

∫ Tc

Tn

dT

T

Γ(T )

H(T )4
= 1 , (2.2)

where in the second step we have used the adiabatic time-temperature relation

dt

dT
= − 1

T H(T )
, (2.3)
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and Tc is the temperature at which the two minima are degenerate, below which the decay
of the false vacuum becomes possible.

In the case of a fast phase transition it is customary to assume also that the transition
finishes at a temperature ' Tn. However, a more accurate prescription, valid in a general
case, is obtained in terms of the probability of finding a point still in the false vacuum, given
by [66, 67]

P (t) = e−I(t), I(t) =
4π

3

∫ t

tc

dt′ Γ(t′) a(t′)3 r(t, t′)3 , (2.4)

where a(t′) is the Friedmann-Robertson-Walker scale factor and r(t, t′) is the comoving size
of a bubble nucleated at t′ after growing until t:

r(t, t′) =

∫ t

t′

vw dt̃

a(t̃)
, (2.5)

where vw is the wall velocity of the expanding bubble, which we discuss in more detail in
Section 2.2. The exponent I(t) in (2.4) yields the amount of true vacuum volume per unit
comoving volume, where Γ(t′) and a(t′)3 are the nucleation rate per unit time and the unit
comoving volume, respectively.

A common way to proceed has been to assume radiation domination and compute the
above expressions in terms of the temperature. However, for scenarios with strong super-
cooling due to the existence of a potential barrier between minima that persists down to
T = 0, it is possible for the energy associated with the non-zero value of the potential in
the false vacuum - which acts as a “cosmological constant” - to become important and even
dominate at low temperatures [43]. In this case the Friedmann equation becomes, in terms
of the radiation and vacuum energy densities ρR and ρV:

H2 =
1

3M2
pl

(ρR + ρV) =
1

3M2
pl

(
T 4

ξ2
g

+ ∆V

)
= H2

V

(
χ−1 + 1

)
, (2.6)

with ξg =
√

30/(π2g∗), where g∗ = 106.75 is the number of degrees of freedom in the plasma
(which we assume to be constant, for simplicity), Mpl = 2.435 × 1018 GeV and we have
defined χ ≡ ρV/ρR and H2

V ≡ ∆V/(3M2
pl).

Using (2.5) and (2.6), and assuming vw ' 1, the comoving size of bubbles r(T, T ′) (with
T ′ > T ) is given by

a(T ′) r(T, T ′) = a(T ′)

∫ T ′

T

dT̃

T̃ H(T̃ ) a(T̃ )
=

1

T ′

∫ T ′

T

dT̃

HV

√
1 + χ(T̃ )−1

, (2.7)

which can readily be computed in terms of elliptic functions. From (2.4), the volume fraction
converted to the true vacuum I(T ) is then

I(T ) =
4π

3

∫ Tc

T

dT ′ Γ(T ′)

HV T ′4
√

1 + χ(T ′)−1

∫ T ′

T

dT̃

HV

√
1 + χ(T̃ )−1

3

. (2.8)

It is possible to obtain approximate analytic solutions to (2.7) and (2.8) by assuming that
one of the components dominates the r.h.s. of (2.6), and defining the temperature TV (with
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χ(TV ) = 1) below which the vacuum energy ∆V dominates:

T 4
V

ξ2
g

= ∆V =⇒ H(T ) =

HR(T ) = T 2
√

3Mpl ξg
, T > TV ,

HV =
T 2
V√

3Mpl ξg
, T < TV .

(2.9)

We assume that the potential difference between the false and true vacua ∆V (and thus HV)
is temperature-independent, which is a good approximation at sufficiently low temperature,
as in the strong supercooling case of interest to us. There is then a contribution to (2.7) from
bubble growth during vacuum domination (T ≤ T ′ ≤ TV ):

a(T ′)rV(T, T ′) =
1

T ′

∫ T ′

T

dT̃

HV
=

1

HV

T ′ − T
T ′

, (2.10)

as well as from bubbles nucleated during radiation domination and evolving down to vacuum
domination (T ≤ TV ≤ T ′), given by

a(T ′)rRV(T, T ′) =
1

T ′

(∫ T ′

TV

dT̃

HR(T̃ )
+

∫ TV

T

dT̃

HV

)

=
1

T ′HV

(
2TV − T −

T 2
V

T ′

)
.

(2.11)

The probability for a point in space to remain in the false vacuum at a temperature T < TV
is then PRV(T ) = e−IRV(T ), with

IRV(T ) =
4π

3

(∫ Tc

TV

dT ′Γ(T ′)

T ′HR(T ′)
a(T ′)3r3

RV(T, T ′) +

∫ TV

T

dT ′Γ(T ′)

T ′HV
a(T ′)3r3

V(T, T ′)

)
=

4π

3H4
V

(∫ Tc

TV

dT ′Γ(T ′)

T ′6
T 2
V

(
2TV − T −

T 2
V

T ′

)3

+

∫ TV

T

dT ′Γ(T ′)

T ′

(
1− T

T ′

)3
)
.

(2.12)

We can compare these expressions with the analogous ones assuming radiation domination
(i.e. neglecting ∆V in (2.6)):

a(T ′)rR(T, T ′) =
1

T ′

∫ T ′

T

dT̃

HR(T̃ )
=

√
3Mpl ξg
T ′

∫ T ′

T

dT̃

T̃ 2
=

√
3Mpl ξg
T ′

(
1

T
− 1

T ′

)
, (2.13)

IR(T ) =
4π

3

∫ Tc

T

dT ′ Γ(T ′)

T ′HR(T ′)
a(T ′)3r3

R(T, T ′) = 12π(Mpl ξg)
4

∫ Tc

T

dT ′ Γ(T ′)

T ′6

(
1

T
− 1

T ′

)3

.

(2.14)
The difference in bubble growth between a purely radiation-dominated scenario and that
of (2.6), featuring a transition from radiation to vacuum domination, is shown in Figure 1.
It demonstrates that the analytic approximation (2.11) to the exact growth (2.7) works very
well, and shows the change in the bubble expansion for T < TV . Specifically, it highlights
that once the vacuum energy dominates the bubbles only grow to a finite size in comoving
coordinates [43] (recall (2.5) and (2.10)):

rV(t→∞, t′) = vw

∫ ∞
t′

dt̃

eHV t̃
=

vw
HV

e−HVt
′
. (2.15)

In this way, bubbles separated by a distance larger than twice (2.15) (in comoving coordi-
nates) when they nucleate will never meet. This has a crucial impact on percolation and the
completion of the transition, which we discuss in Section 2.3.
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Figure 1. The normalized size HV a(T ′) r(T, T ′) of a bubble nucleated at T ′ = 5TV , as a function of
T/TV , for pure radiation domination (2.7) (red dot-dashed line), the approximate vacuum domination
solution (2.11) (green dashed line), and the exact (2.7) (solid blue line) evolution from radiation
to vacuum domination. We also show the size of a bubble nucleated at T = TV and growing in
vacuum (2.10) (purple dashed line). We have verified these behaviours in all four cases using the
specific models from Section 4.

2.2 More on bubble growth: hydrodynamics

In this Section we delve into the details of the bubble expansion, which will be of importance
when discussing the generation of GWs from the phase transition in Section 3.

We start by discussing briefly why, in the case of a very strong cosmological first-order
phase transition, the bubbles are expected to expand with a velocity vw → 1. A leading-order
evaluation of the friction on a phase transition bubble expanding at ultrarelativistic speeds
γ � 1 [68] showed that the relativistic flux of particles crossing the bubble wall exert only a
bounded, i.e., independent of γ in the γ →∞ limit, pressure on the wall: ∆PLO ∼ ∆m2 T 2,
where ∆m denotes the particle’s change of mass across the phase boundary. Hence, if the
pressure difference produced by the difference in vacuum free energy ∆V exceeds the friction
∆P, the bubble wall keeps on accelerating to highly relativistic velocities with no upper
bound on γ, a situation known as “runaway” [68].

Higher-order contributions to the friction have recently been evaluated [69], and shown
to scale roughly as ∆PNLO ∼ γ g2 ∆mT 3 for the electroweak phase transition, where g
is the electroweak gauge coupling. This implies that the bubbles reach a state expanding
with γ ∼ ∆V/(g2 ∆mT 3) � 1 shortly after nucleation, even if ∆V exceeds the leading-
order friction ∆PLO, as expected for very strong phase transitions. Still, the leading-order
runaway criterion allows us to assess the expansion of bubbles at ultrarelativistic velocities
vw → 1 [68], and we employ it below when discussing explicit models in Section 4.

When the bubble reaches a terminal expansion velocity, the subsequent bubble growth
in the presence of a thermal plasma can be described via a hydrodynamical treatment [70–
75], whose most relevant aspects we review here (see [74] for a detailed discussion). This
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hydrodynamic description assumes that the plasma is in local thermal equilibrium and can
be described by a perfect fluid, with an energy-momentun tensor Tµν = wUµUν − gµνp. Here
p is the pressure, w = T (∂p/∂T ) is the enthalpy and Uµ the four-velocity field of the plasma:

Uµ =
(1, ~v)√
1− |~v|2

= (γ, γ ~v) . (2.16)

The behaviour of the plasma can then be obtained from the conservation of energy and
momentum, ∂µT

µν = 0, with the appropriate boundary conditions on the bubble wall, where
conservation of energy-momentum becomes non-trivial due to a non-zero change in pressure
across the phase boundary: ∆p = −∆V . The equations that match energy-momentum across
the bubble wall (with “+” denoting the symmetric phase and “−” the broken phase) read

w+γ
2
+v

2
+ + p+ = w−γ

2
−v

2
− + p− , w+γ

2
+v+ = w−γ

2
−v− , (2.17)

with v = |~v|. From these equations, and assuming an appropriate equation of state (EoS) for
the fluid, one arrives at the relation 2

v+ =
1

1 + α

(v−
2

+
1

6v−

)
±

√(
v−
2

+
1

6v−

)2

+ α2 +
2

3
α− 1

3

 . (2.18)

Here α(T ) is the latent heat of the transition 3 normalized to the radiation energy of the
plasma ρR in the symmetric phase (outside the bubbles):

α(T ) =
∆V (T )− T ∂∆V (T )

∂T

ρR
. (2.19)

Away from the bubble wall, energy-momentum conservation of the plasma yields

∂µT
µν = Uν∂µ(Uµw) + Uµw∂µU

ν − ∂νp = 0 . (2.20)

We consider a spherically-symmetric bubble configuration. In addition, as there are no
characteristic length scales in the system apart from the microphysical (EW) scale and the
Hubble radius, the velocity and temperature profiles of the plasma show a self-similar be-
haviour, depending only on the combination ξ = r/t, where r is the distance from the centre
of the bubble and t is the time since nucleation. Then, from (2.20) we obtain the equation
describing the plasma velocity profile v(ξ):

2 v

ξ
=

1− ξ v
1− v2

[
1

c2
s

(ξ − v)

(1− ξ v)
− 1

]
∂ξv , (2.21)

where cs is the speed of sound in the plasma, which is given by c2
s = 1/3 in a relativistic fluid.

For vw → 1, the solution to (2.21) with the appropriate boundary conditions on the phase

2The relation (2.18) is usually derived in the context of the bag-model EoS, which follows from a relativistic
gas approximation. It has nevertheless been shown in [74] to hold in a more general context.

3For the case of strong phase transitions considered in this work, the definition of α in terms of the latent
heat or in terms of the free-energy difference ∆V (T ), which would yield α(T ) = χ(T ) (recall eq. (2.6)), are
approximately equivalent. However, for the case of weak phase transitions it is not completely settled how α
should be defined precisely [76].
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boundary (the + branch of (2.18) with vw = v+ and v− ≥ cs, see [74] for details) is called
a “detonation” (see Figure 2), with the velocity of the fluid just behind the phase boundary
given by

v(ξ = vw → 1) =
3α

2 + 3α
. (2.22)

The above discussion can easily be extended to vw < 1, with detonation solutions being
realized for a given value of α down to a minimum value of vw (given by the condition
v− = cs), below which other fluid solutions (“deflagrations” and “hybrids”, see [74]) are
instead realized, a regime we do not consider in this work.

Figure 2. Detonation plasma velocity profile v(ξ) for various values of α and vw.

Before continuing, we define two quantities (related to each other) that will appear in
the analysis of GW signatures later on. The first is the root-mean-square four-velocity of the
plasma Ūf , which for a single expanding bubble as discussed above reads [48]

Ū2
f =

3

v3
w

∫ vw

cs

ξ2 v2

1− v2
dξ . (2.23)

The second is the “efficiency” ratio of the plasma kinetic energy to the available energy of
the transition (the latent heat), given by

κ =
3

αρR v3
w

∫ vw

cs

w ξ2 v2

1− v2
dξ , (2.24)

where w(ξ) is the enthalpy profile of the plasma [74].

2.3 Bubble percolation and reheating: completing the phase transition

In the standard radiation-dominated scenario, bubbles are assumed to percolate when I(T ) &
nc = 0.34. This is the ratio of the volume in equal-size and randomly-distributed spheres
(including overlapping regions) to the total volume of space for which percolation occurs
in three-dimensional Euclidean space [77], and implies that at least 34% of the (comoving)
volume has been converted to the true minimum, leading then to the completion of the phase
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transition for P (T ) . 0.7. The percolation temperature can then be approximately defined
as 4 I(Tp) = 0.34.

However, this simple percolation criterion is known to be misleading in a vacuum-
dominated scenario, as the false vacuum is inflating and percolation may never be achieved
in this case [43], even though P (t) decreases with time and can reach the required value,
since

IV(t) =
4π

3

∫ t

tc

dt′ Γ(t′) aV(t′)3 rV(t, t′)3 =
4π

3

(
vw
HV

)3 ∫ t

tc

dt′ Γ(t′)
(

1− e−HV(t−t′)
)3

−→
t→∞

4π

3

(
vw
HV

)3

Γ× t , (2.25)

where in the last step we have assumed a constant Γ in the t→∞ limit. Instead, a necessary
requirement for successful completion of the phase transition is that the physical volume
of the false vacuum Vfalse ∝ a(t)3P (t) decreases [44] around/after percolation. This is a
strong requirement, since not only does the probability P (t) need to decrease, it has to drop
faster than the increase in the volume of the space, which is inflating in the case of vacuum
domination. This condition reads

1

Vfalse

dVfalse

dt
= 3H(t)− dI(t)

dt
= H(T )

(
3 + T

dI(T )

dT

)
< 0 . (2.26)

Intuitively, one would evaluate this condition at the percolation temperature Tp and conclude
that the transition ends successfully with percolation provided it is fulfilled. However, as we
discuss below in specific models, there usually exists a region in the parameter space with
an even stronger transition for which this criterion is not satisfied at Tp but becomes true at
some lower temperature. We will indicate when such situations occur, keeping in mind that
successful percolation is then not guaranteed as in transitions for which the above criterion
is never fulfilled, though it cannot be immediately disproved. We will see in the models
studied in the following Sections that condition (2.26) severely limits the duration of the
vacuum-domination period, and leads in general to a lower bound on Tp, constraining the
possible amount of supercooling.

The criterion (2.26) may also be compared to the one originally used in [43] for strongly
supercooled phase transitions. Expanding I(t) around some instant t0, the percolation cri-
terion from [43] reads

ε ≡ 3

4πH(t0)

dI(t)

dt

∣∣∣∣
t0

>
9nc
4π
' 0.243 , (2.27)

which is automatically fulfilled (a weaker condition) if (2.26) is satisfied at time t0.

A reheating process takes place after successful percolation, and for strongly supercooled
phase transitions this brings the system back to a state of radiation domination. If (2.26)
is satisfied at T = Tp, we may assume reheating to be a relatively fast process that occurs
as percolation happens (in contrast, when (2.26) is only satisfied at some temperature lower
than Tp, percolation, if successful, is bound to be a fairly slow process, and the same should
be assumed for reheating). Then, immediately after percolation the Universe would evolve

4Some early works in the context of cosmological first-order phase transitions [78] defined the onset of
bubble coalescence as P (t0) = 1/e −→ I(t0) = 1, yielding a slightly lower percolation temperature.
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into a state of radiation domination with a temperature Trh given by 5:

Trh ' Tp [1 + α(Tp)]
1/4 . (2.28)

A more quantitative picture of the reheating process could in principle be obtained in the
following way: (i) For small plasma velocities v(ξ) � 1, the superposition of fluid shells
is approximately a linear process and gives rise to sound waves [46]. (ii) In this case, the
average temperature of the plasma during/after percolation can be obtained from the linear,
random superposition of plasma shells. The temperature profile for each plasma shell can be
obtained using the hydrodynamical treatment discussed in Section 2.2. (iii) When the sound
waves in the plasma cease to be active due to the increase of non-linearities, the bulk-motion
kinetic energy stored in the fluid is used to heat the plasma up further and the reheating
process is completed.

We note that since both the thermal and kinetic energy of the fluid contribute to the
radiation energy density, under the assumption of relatively fast reheating we have 6 H(Tp) '
H(Trh) as a result of energy conservation. As such, the details of the reheating process are not
very crucial. However, we stress that reheating poses a fundamental challenge to shifting the
GW frequency from the electroweak phase transition below the space-based interferometer
range of frequencies and towards the PTA band (e.g. invalidating the claim made in [41, 42]).

3 Gravitational wave signals

We now turn to the discussion of GWs from supercooled phase transitions. Throughout
this work, we assume that the production of GWs from the phase transition occurs around
T = Tp. The key parameters from the phase transition used conventionally to determine the
GW spectrum are vw, α (defined in (2.19)) and the parameter β/H [5–7], which yields the
approximate timescale of the transition in terms of the Hubble parameter H. (Alternatively,
one may consider the relevant length scale for GW generation instead of β, as we discuss
below).

As has been discussed in Section 2.2, α describes the available energy from the transition,
normalized to the radiation energy of the plasma. For strong, supercooled transitions

α(Tp) ' χ(Tp) =
∆V (Tp)

ρR(Tp)
. (3.1)

For a fast cosmological first-order phase transition occurring during radiation domination,
the parameter β is conventionally defined in terms of the false vacuum decay rate (2.1) as

Γ ∝ e−
S3(T )

T = eβ (t−t0) + ... . (3.2)

This means the nucleation rate rises exponentially, and the timescale of the transition is
given by (minus) the first derivative of the thermal bounce action S3(T )/T (the action of the

5We note the lack of an efficiency factor κ accompanying α in (2.28), in contrast to the result in [42]. This
is because [42] includes only the reheating contribution from the energy conversion of plasma bulk motion,
and does not take into account the plasma heating occurring already during the expansion of the bubbles [74].
In addition, the above expression assumes the number of relativistic degrees of freedom to be similar in the
two phases, which is in any case well-justified for strong supercooling in the symmetric, unstable phase.

6We thank Mark Hindmarsh for reminding us of this.
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bounce field solution driving the thermal tunnelling [64, 65]) in a Taylor expansion around
some time t0, yielding

β = βR ≡ −
d

dt

(
S3(T )

T

)∣∣∣∣
t=t0

= H(T ) T
d

dT

(
S3(T )

T

)∣∣∣∣
T=T0

. (3.3)

For t0 corresponding to P (t0) = 1/e (I(t0) = 1), the bubble number density is [78]

nB = (R∗R)−3 =
1

8π

(
β

vw

)3

, (3.4)

yielding a direct relation between β and the mean bubble centre separation (in the case of a
fast phase transition) R∗R. This relation is approximately maintained at T = Tp.

For very strong phase transitions, a potential barrier between the symmetric and broken
phases may still be present at T = 0, which results in S3(T )/T having a minimum at some
finite T . The linear approximation (3.2) may then break down [45, 79] (see also [80]), as
the first derivative of the bounce action can vanish (the timescale of the transition defined
by (3.3) then yields βR → 0 and even turns negative). In this case, going to the next order
in the Taylor expansion of the bounce action, we obtain a Gaussian approximation

Γ ∝ e−
S3(T )

T = e−
1
2
β2
V(t−tm)2 + ... , (3.5)

where tm corresponds to (d/dt)(S3(T )/T )|t=tm = 0, and βV is given by

βV ≡

√
d2

dt2

(
S3(T )

T

)∣∣∣∣∣
t=tm

= H(T )T

√
d2

dT 2

(
S3(T )

T

)∣∣∣∣∣
T=Tm

. (3.6)

In this scenario the majority of the bubbles are nucleated around time tm, and the bubble
number density at this time is given by [80] (we set vw → 1, as expected for a very strong
phase transition):

nB = (R∗V)−3 '
√

2π
Γ(Tm)

βV
, (3.7)

with R∗V the mean bubble separation in this limit. It is nevertheless clear that the regime in
which the approximation (3.5) is valid will only be relevant for GW generation if Tp . Tm,
since otherwise (3.2) holds down to Tp.

In the general case, the bubble number density at time t can be written in terms of P (t)
and Γ(t) as [44, 78]:

nB = (R∗)
−3 =

∫ t

tc

dt′
a(t′)3

a(t)3
Γ(t′)P (t′) . (3.8)

The mean bubble separation R∗ may be regarded as the relevant length scale for the genera-
tion of GWs from the phase transition (see e.g. the discussion in [48]). In this work we argue
for a related, but we believe quantitatively more appropriate, choice for the GW length scale
as follows:

• At time t the physical size of bubbles nucleated at some earlier time t′ is given by

R(t, t′) = a(t) r(t, t′) . (3.9)
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• From (3.8) the distribution of bubble sizes at temperature T is

dn

dR
(t, R) = − dt

′

dR

a(t′(R))3

a(t)3
Γ(t′(R))P (t′(R)) . (3.10)

where both t′(R) and dt′/dR may be obtained by inverting (3.9).

• As the dominant contribution to the GW generation comes from the bubbles that
contain the largest fraction of the energy budget of the phase transition (see [81] and
Appendix A of [82] for a related discussion), the relevant GW length scale should be
of the order of the bubble size for which the energy distribution is maximized 7 as a
function of R:

EB(t, R) ≡ R3 dn

dR
(t, R) . (3.11)

In obtaining dt′/dR = (−1/H(T ′)T ′) dT ′/dR to maximize EB(t, R), we can use the approx-
imation (2.9) and consider separately the cases Tp > TV and Tp < TV . In the former case,
bubbles expand during radiation domination (recall (2.13)), and we have

T ′ = Tp
1

1− T 2
p

T 2
V

(HVR)
. (3.12)

In the latter case, bubbles expand during both vacuum and radiation domination (recall (2.10)
and (2.11)), and we have

T ′ =

Tp (1 +HVR), HVR < TV
Tp
− 1 ,

TV
1

2− Tp
TV

(1+HVR)
, HVR > TV

Tp
− 1 .

(3.13)

We show in Figure 3 the distribution EB(t, R) (normalized to the total energy stored in
the bubbles at Tp) for two representative scenarios from Section 4.1 featuring Tp > TV
and Tp < TV , respectively. In each case we highlight the value of R for which the energy
distribution is maximal, RMAX, together with the mean bubble separation R∗ for the purpose
of comparison. Figure 3 illustrates that in specific scenarios the difference between RMAX

and R∗ can sometimes be sizeable. We further note that the length scale fixing the peak
of the GW spectrum does not correspond to the size of the bubble RMAX but rather to the
thickness of its fluid shell [83], which for vw → 1 is given by (1 − cs)RMAX ' 0.422RMAX.
The relevant scale for GW generation (yielding the peak of the GW power spectrum) is then
given by 8 R̄ ∼ (vw − cs)RMAX.

As already argued in Section 2.2, in the presence of the surrounding thermal plasma
the growing bubbles can only accelerate for a short amount of time before they reach a
time-independent expansion rate. From that moment on, the energy is mostly pumped into
fluid shells around the bubbles (e.g. corresponding to the detonation profiles discussed in
Section 2.2), leading to only a negligible fraction of the energy being carried by the Higgs
bubble walls. Only an extreme dilution of the plasma due to supercooling could allow the

7Since the energy budget of a bubble scales with its volume R3.
8The impact of the continuous increase of RMAX during the completion of the transition and the generation

of GWs, which may yield an extra source of GW power on scales larger than R̄ [84], is currently under
debate [85].
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Figure 3. The energy distribution EB(tp, R) = dnR3/
∫
dnR3 (blue solid), bubble size distribution

dnR/
∫
dnR (green dashed) and number density dn/

∫
dn (red dotted) as functions of the bubble size

R normalised to RMAX (the maximum of the energy distribution), all computed at the nucleation
temperature. The thin vertical line indicates R∗/RMAX, where R∗is the mean bubble separation. The
left panel shows the example with the strongest transition where percolation can still be possible, namely
Λ = 545 GeV and Tp < TV , while the right panel shows the strongest transition for which percolation
is assured, corresponding to Λ = 545.7 GeV and Tp > TV for the EFT model from Section 4.1.

bubbles to keep accelerating until the transition completes. However, as we show in the
following Section via explicit examples, a significant amount of supercooling is not possible
in polynominal potentials as it spoils percolation. Such plasma dilution is then excluded
and the energy stored in the bubble walls at the end of the transition is negligible. This is
however not necessarily true for (nearly-)conformal scalar potentials, which we comment on
in Section 4.3.

As a result of the above, there is no observable GW signal from the collisions of bub-
bles [5, 8] at the end of the phase transition in the BSM scenarios we consider. The dominant
GW sources from a first-order electroweak phase transition are then expected to be sound
waves propagating in the plasma [46–48, 83] after percolation happens and the transition
completes. The peak frequency of the sound wave GW spectrum (as would be observed
today) is (see [38])

fsw = 1.9× 10−5 (8π)
1
3

HR̄

1

vw

T∗
100

( g∗
100

) 1
6

Hz , (3.14)

where T∗ is the temperature after the transition has completed and reheating has taken place,
from which the GW signal is redshifted up until today. We identify it with the reheating
temperature Trh (see (2.28)). The amplitude of the GW spectrum is given by

Ωh2
sw(f) = 2.65× 10−6 HR̄

(8π)
1
3

(
κα

1 + α

)2 ( g∗
100

)− 1
3
vw

(
f

fsw

)3( 7

4 + 3 (f/fsw)2

)7/2

, (3.15)

with κ given by (2.24). It is important to stress that the numerical lattice simulations from
which this result ((3.14) and (3.15)) is obtained are reliable only if HR∗/Ūf > 1 [48] (with
Ūf given by (2.23)). If this is not the case, the flow in the plasma becomes turbulent in
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less than a Hubble time, cutting short the sound wave period. The result (3.15) would
then overestimate the GW signal 9. As we will see in the following Section, the criterion
HR∗/Ūf > 1 for sound waves to be long-lasting (active for more than a Hubble time) is
challenging to satisfy in explicit models, putting into question whether the prediction in the
literature for GW from sound waves is reliable in these BSM models.

The final important source of a GW signal from the electroweak phase transition, usually
subdominant relative to sound waves, is associated with magneto-hydrodynamical (MHD)
turbulence in the plasma. The peak frequency and amplitude of this contribution is [50]

fturb = 2.7× 10−5 (8π)
1
3

HR̄

1

vw

T∗
100

( g∗
100

) 1
6

Hz , (3.16)

Ωh2
turb(f) = 3.35× 10−4 HR̄

(8π)
1
3

(
ε κα

1 + α

) 3
2 ( g∗

100

)− 1
3
vw

(f/fturb)3 (1 + f/fturb)−
11
3

[1 + 8πfa0/(a∗H∗)]
, (3.17)

where ε is an efficiency factor for vorticity to develop in the plasma after bubble percolation,
which is estimated to be ε ≈ 0.05 (see e.g. [38]). We note that the above formula for the
GW spectrum from turbulence is a subject of ongoing debate (see [51–53]). Nevertheless, we
continue using it as an estimate.

We also stress that the shortening of the sound wave period in the specific BSM models
discussed here would probably be accompanied by an enhancement of the GW spectrum from
turbulence, through an increase in the efficiency factor ε. While this would tend to reduce
the hierarchy between the GW contributions from sound waves and turbulence, we expect
the overall effect to still be a significant reduction of the GW amplitude as compared to the
current predictions for BSM scenarios, as we discuss in the following Section.

4 Supercooled electroweak phase transitions in specific models

We turn now to the application of the formalism developed in the previous Sections to specific
BSM scenarios that yield a first-order electroweak phase transition.

4.1 Standard Model with an |H|6/Λ2 interaction

We start with a simple example, namely the SM supplemented by a single non-renormalisable
dimension-6 operator |H|6/Λ2 (see e.g. [28–30, 86, 87]), to show the impact of taking vacuum
domination correctly into account. Thus, we consider the following potential

V (H) = −m2|H|2 + λ|H|4 +
1

Λ2
|H|6 , (4.1)

with HT = (χ1 + iχ2, ϕ+ iχ3) /
√

2. As usual, only the real part of the neutral component
obtains a vev: ϕ = h + v. We identify h as the physical Higgs boson, which leads to the
tree-level potential

V (h)tree = −m
2

2
h2 +

λ

4
h4 +

1

8

h6

Λ2
. (4.2)

We use the observed mass of the Higgs boson mh = 125 GeV, and the measured Higgs vev
v = 246 GeV in the renormalisation conditions

V ′(h = v) = 0, V ′′(h = v) = m2
h , (4.3)

9The amplitude of the GW signal will probably be reduced by a factor ∼ HR∗/Ūf in this case. However,
dedicated numerical lattice simulations would be needed to test this simple intuition.
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to express the parameters in the potential (4.2) as

m2 =
m2
h

2
− 3v4

4Λ2
, λ =

m2
h

2v2
− 3v2

2Λ2
. (4.4)

We also include one-loop corrections to the zero-temperature potential and thermal correc-
tions as described in Appendix A.

Figure 4. The nucleation temperature Tn (orange solid line), the percolation temperature Tp (purple
solid line) and the temperature TV (green solid line) below which vacuum energy dominates the expan-
sion of the Universe. The temperature TRD

p (red dashed line) and TVD
p (blue dash-dot line) respectively

show the percolation temperature obtained neglecting the vacuum energy contribution to the expansion,
and using the approximation (2.9). The dark grey area is excluded by our percolation criterion (2.26),
while in the light gray area percolation is questionable, as the criterion is only satisfied below Tp.
Vertical lines show the projected reach of various detection methods: The green lines indicate values
of Λ to which the HL-LHC will be sensitive at the 3- (solid) and 2-σ (dashed) level respectively, and
the blue lines show the reach of LISA from sound waves (dashed line) and turbulence (solid line).

In Figure 4 we show the relevant temperatures discussed in Section 2 as functions of Λ,
the only free parameter in the |H|6 model. The dark grey shaded area given by Λ < 545 GeV is
excluded by the absence of percolation, while in the light gray area percolation is questionable,
as our percolation criterion (2.26) is only fulfilled at temperatures below Tp. The lowest
possible percolation temperature is Tp ≥ 26.13 GeV, with the corresponding lower limit on the
model parameter being Λ = 545 GeV. The lines in Figure 4 show the nucleation temperature
Tn (2.2), the temperature TV below which vacuum energy dominates the expansion, and the
percolation temperature Tp at which I = 0.34 in (2.8). The dashed-red and dot-dashed-blue
lines show approximations to the percolation temperature obtained, respectively, neglecting
the vacuum energy contribution to the expansion, TRD

p , and using the simple approximation
of switching to vacuum domination below TV as in (2.9)).

Figure 5 shows instead various quantities used in calculating the percolation temperature
for Λ = 545 GeV (left panel), which is the strongest transition not excluded by our percolation
criterion (2.26), and Λ = 545.7 GeV (right panel), which is the strongest transition for which
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percolation is assured. We note that even for the most supercooled transition possible,
with Λ = 545 GeV, the quantity Γ/H4 exceeds one. While this is commonly used as a
criterion to approximate the nucleation temperature (2.2), in this case it would lead to a
value for Tn almost twice larger than the correct value, namely Tn ' 37 GeV. The number
density of bubbles N from (2.2) also exceeds one, so we have about one bubble per horizon on
average. The final percolation temperature defined by I(Tp) = 0.34 (see (2.8)) is significantly
lower than the nucleation temperature and given by Tp ' 23.09 GeV. For values Λ < 545
GeV, despite having nearly one bubble per horizon, the horizons without bubbles would
start inflating and the expansion of bubbles nucleated at higher temperatures would be too
slow ever to complete the transition. Our results also imply that the quantum tunnelling
contribution to the decay rate (2.1) is never relevant if percolation is to be achieved [9].

Figure 5. Values of Γ/H4 (green dashed line), the number N of bubbles per horizon (2.2) (red
dashed line) and I(T ) (see (2.4) and (2.8)), as a function of T for Λ = 545 GeV, corresponding
to the strongest transition where percolation can still be possible (left panel) and Λ = 545.7 GeV,
corresponding to the strongest transition for which percolation is assured (right panel). The vertical
lines show (from left to right) the temperatures Tp, TV and Tn.

We turn now to the discussion of the quantities relevant for obtaining the GW spectrum
from the phase transition. Figure 6 shows the values of α as a function of Λ obtained
from (3.1). We find that percolation is assured only if α < 1, i.e. when vacuum energy does
not yet dominate the expansion of the Universe. However, in scenarios where percolation is
not assured but could still be possible, this value goes up to a factor of a few, corresponding
to a brief period of vacuum domination. In Figure 7 we plot HR for the various scales R
relevant for GW generation: RMAX (solid blue), the size of the bubbles carrying the largest
fraction of energy on completion of the transition, and R∗ (dashed green), the mean bubble
separation. We also show the approximation to the latter assuming radiation domination
R∗R (3.4) (dashed red) and vacuum domination R∗V (3.7) (dash-dot yellow). We see that
the three first quantities agree very well in this model as long as the vacuum contribution
to the total energy density is negligible. When this is no longer the case (for Λ . 550 GeV)
the approximation R∗R fails (as expected) and has to be replaced with the full result. The
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approximation R∗V works when vacuum energy dominates the expansion, but the full result
R∗ is still needed to interpolate between this case and that of radiation domination. Finally,
we note that in this model the values of RMAX and R∗ are very similar, with only a very
mild mismatch for the strongest phase transitions.

Figure 6. Value of α as a function of Λ. The dark grey area is excluded by our percolation criterion
(2.26), while in the light grey area percolation is questionable as the criterion is only satisfied at a
temperature below Tp. Vertical lines show the projected reaches of various detection methods, as in
Figure 4.

We find that for values Λ < 580 GeV the expanding broken phase bubbles satisfy the
leading-order runaway criterion [68] (recall the discussion in Section 2.2), which can be ex-
pressed as [38, 74]

α > α∞ = 4.9× 10−3

(〈h〉p
Tp

)2

. (4.5)

Thus, for Λ < 580 GeV we expect ultrarelativistic bubble expansion velocities vw → 1. At the
same time, we note that for the maximum dilution of the plasma compatible with percolation,
corresponding to Tp ' 29 GeV the bubbles continue to reach a stationary state shortly after
nucleation [69] since there is just a mild hierarchy between Tc and Tp.

We then check the applicability of the sound wave GW lattice simulations leading
to (3.15), which we recall requires HR∗/Ūf > 1. In Figure 8 (top) we show the relation
between HR∗ and Ūf through the entire range of Λ predicting a first-order phase transi-
tion. For very strong transitions we expect vw → 1. Nevertheless we plot the results for
several different bubble wall velocities vw so as to check the applicability more thoroughly
and for weaker transitions. Our results show that the formula (3.15) for the GW amplitude
from sound waves cannot reliably be applied and will overestimate the GW signal 10 (we

10We note we can only conclude this for bubbles expanding as detonations (recall the discussion in 2.2), as
we have not analyzed the case of deflagrations. We note, however, that these occur for rather slow bubbles
(vw < cs), and thus will generally not be relevant for GW generation.
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note that the region that seemingly satisfies HR∗/Ūf > 1 does not guarantee percolation).
The bottom panel of Figure 8 shows the same result in terms of the more commonly used
variables α and β/H. The dotted part of the line indicates where the standard definition of
β/H as the transition timescale (3.3) ceases to be accurate, and a more thorough treatment
should be used. The blue regions at the bottom of the Figure indicate parameter values for
which the sound wave GW spectrum prediction should be robust, with the conclusion being
again clearly that the GW signal prediction from sound waves is not reliable anywhere in the
parameter space.

Figure 7. Relevant scales for GW generation: RMAX (solid blue), R∗ (dashed green) and two approx-
imations to the latter valid respectively in radiation domination, R∗R (3.4) (dashed red) and vacuum
domination, R∗V (3.7) (dash-dot yellow). Vertical lines show the projected reach of various detection
methods, as in Figure 4.

Bearing in mind that these yield an overestimate of the final GW amplitude from sound
waves (and a corresponding underestimate of the GW amplitude from turbulence), we com-
pute the GW signals using the formulae from Section 3, and show the results in Figure 9. The
upper panel corresponds to the sound wave GW spectrum, while the lower panel corresponds
to that from MHD turbulence. As also seen in Figure 9, the value of Λ in the |H|6 extension
of the Standard Model that could be probed by LISA is Λ < 580 GeV according to the sound
wave GW spectrum prediction, and Λ < 546.3 GeV for the GW spectrum from turbulence.
In the Figure we show explicitly the current and future sensitivities (see also [88]) of the
European Pulsar Timing Array (EPTA) [89] and LIGO [90–92], as well as the projected sen-
sitivities of LISA [93], the Einstein Telescope (ET) [94, 95], the Cosmic Explorer (CE) [96],
and the Square Kilometre Array (SKA) [97]. Finally, we also show the prospective sensitivi-
ties of the DECIGO [98] and Big Bang Observer (BBO) [99, 100] projects in the frequency
range between LISA and LIGO (another project aimed at probing a similar frequency range
is MAGIS-100 [101]). From the results shown in Figure 9 it is also clear that there exists
a lower bound on the GW peak frequency from successful percolation, which leads to the
conclusion that PTA experiments will not be sensitive to GWs from a first-order electroweak
phase transition, contrary to some earlier claims [41, 42].
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Figure 8. Top panel: Plasma RMS velocity Ūf (2.23) as a function of the relevant scale for GW
generation R∗ (normalized to H−1), for the range of Λ predicting a strong first-order electroweak
phase transition (only if HR∗/Ūf > 1 can (3.15) be used to reliably predict the GW spectrum from
sound waves). We show the results for several different bubble wall velocities vw as indicated in the
plot. Bottom panel: Same result in terms of the more commonly used variables α and β/H. (The
dotted part of the line indicates where the standard approximation (3.3) used to define β/H breaks
down.) Blue regions at the bottom of the Figure indicate parameter values for which the sound wave
GW spectrum prediction should be robust.
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23.09

44.63

66.16

Λ=580 GeV

87.69

109.2

23.09

Λ=546.3 GeV
44.63

66.16

87.69

109.2

Figure 9. The GW signal as a function of frequency for different values of the percolation tempera-
ture Tp. The upper panel shows the sound wave contribution to the GWs, which is questionable, and
the lower panel shows the contribution from turbulence, which we regard as a reliable baseline esti-
mate. Dashed lines correspond to situations where the percolation criterion (2.26) is satisfied only at
temperatures lower than Tp, and successful percolation is not assured. In the legends we also highlight
the temperature corresponding to the highest value of Λ observable by LISA.

Finally, we show in Figure 10 the corresponding GW spectra from the combination of
sound waves and turbulence (for a few selected scenarios from those shown in Figure 9),
showing in addition the possible effect of including a reduction in the GW amplitude from
sound waves by a factor HR∗/Ūf , taking into account the shortening of the sound wave
period as active GW source w.r.t. the naive long-lasting (active for more than a Hubble
time) estimate. This effect is in any case milder for stronger transitions, as Figure 10 shows.
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23.67

48.31

72.95

97.59

122.2

Figure 10. The combined GW signal (sound waves and turbulence) as a function of frequency for
different values of the percolation temperature Tp. The uncertainty bands correspond to the GW
amplitude range from including / not including a reduction factor in the sound wave GW amplitude
by a factor HR∗/Ūf (corresponding to the shortening of the sound wave period as active GW source
w.r.t. the long-lasting estimate).

Figure 11. The modification of the triple Higgs coupling with respect to the SM value induced by the
|φ|6 nonrenormalisable operator: ∆λ3 = (λ3−λSM3 )/λSM3 . The coloured areas correspond to the 1-, 2-
and 3-σ experimental reach of the HL-LHC, and the green vertical lines indicate values of Λ to which
HL-LHC will be sensitive at these significance levels.

The |H|6/Λ2 extension of the Standard Model can also be probed indirectly at colliders
through the modification of the Higgs self-coupling induced by the |H|6/Λ2 term

λ3 =
1

6

∂3V

∂h3

∣∣∣∣
h=v

=
m2
h

2v
+
v3

Λ2
= λSM

3 +
v3

Λ2
. (4.6)
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Currently there is no significant experimental constraint on λ3, but the HL-LHC will be able
to constrain this coupling to within about 40% of the SM result at 68% C.L. [102–104]. Fig-
ure 11 shows the modification with respect to the SM value induced by the non-renormalisable
operator ∆λ3 = (λ3− λSM

3 )/λSM
3 = (2 v4)/(m2

h Λ2). The coloured areas correspond to the 1-,
2- and 3-σ experimental reach of the HL-LHC, and the thin vertical lines indicate values of
Λ to which HL-LHC will be sensitive at these significance levels The modification diminishes
as the cutoff scale grows, but HL-LHC would still observe a 2-σ deviation up to Λ ≈ 766 GeV
and 3-σ up to Λ ≈ 625 GeV, covering a significant part of the parameter space of interest.

4.2 Singlet scalar extension of the Standard Model

We now consider the addition to the SM of a real singlet scalar field s, assuming that the scalar
potential is invariant under a Z2 symmetry, which is arguably the simplest renormalisable
extension of the SM. The tree-level scalar potential reads

V tree(H, s) = −µ2
h |H|

2 + λh |H|4 +
µ2
s

2
s2 +

λs
4
s4 +

λhs
2
|H|2 s2 , (4.7)

with the mass of the scalar singlet after electroweak symmetry breaking (and assuming that
the Z2 symmetry remains unbroken) given by m2

s = µ2
s + λhs v

2/2.
The real singlet scalar extension of the SM has long been recognized as a scenario

which can yield a strongly first-order electroweak phase transition (see e.g. [105–109]), with
the presence of the singlet field direction rendering possible very strong phase transitions
resulting from tree-level potential barriers between vacua. In order to illustrate this, we first
consider the tree-level potential (4.7) with the addition of the leading thermal corrections,
corresponding to terms scaling as φ2T 2 (with φ = h, s) in a high-temperature expansion of
the 1-loop thermal potential (see Appendix A from [25] for details). Such corrections read

∆VT (h, s) = Dh T
2 h2 +Ds T

2 s2 (4.8)

with Dh and Ds given by (see e.g. [109, 110])

Dh =
1

96

(
24λh + 9g2 + 3g′2 + 12y2

t + 2λhs
)

, Ds =
1

24
(2λhs + 3λs) . (4.9)

The resulting scalar potential is simply given by

V (h, s) = V tree(h, s) + ∆VT (h, s)

=

(
−
µ2
h

2
+Dh T

2

)
h2 +

λh
4
h4 +

(
µ2
s

2
+Ds T

2

)
s2 +

λs
4
s4 +

λhs
4
s2h2 . (4.10)

The potential (4.10) can give rise to a two-step phase transition process, which may then
result in a very strong electroweak phase transition, as follows: for µ2

s < 0 in (4.7), the singlet
field direction is destabilized from the origin (h, s) = (0, 0) at T = 0. In the early Universe,
the singlet field would then be destabilized from the origin before the Higgs doublet field if

Ts ≡

√
−µ2

s

2Ds
> Th ≡

√
µ2
h

2Dh
, (4.11)

with Ts and Th being the respective temperatures below which the point (h, s) = (0, 0)
becomes unstable along the singlet and doublet field directions. If (4.11) holds, the singlet
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Figure 12. Parameter space region in the (ms, λhs) plane yielding a viable two-step phase transition
(satisfying both (4.11) and (4.12)) in the real singlet scalar extension of the SM with a Z2 symmetry,
for λs = 0.1 (green region), λs = 1 (red region) and λs = 4π/3 (blue region). The grey region
corresponding to mh < 63 GeV is excluded by the present LHC constraint on the Higgs invisible decay
width. Also shown are the future 95% C.L. sensitivities from multi-jet + Emiss

T searches via VBF
at HL-LHC (dashed brown) and FCC-hh (dashed blue), measurements of the Higgs self-coupling λ3
at the HL-LHC (solid brown) and FCC-hh (solid blue), and measurements of the Higgs associated
production cross section σZh at FCC-ee (solid red), see text for details.

field develops a vev x0 in the early Universe prior to electroweak symmetry breaking. The
subsequent electroweak phase transition (0, x0) → (v, 0) is then in general strongly first-
order, as the two minima will be separated by a tree-level potential barrier for some range of
temperatures below Ts [109].

The requirement (4.11), together with −µ2
s = λhs v

2/2−m2
s > 0, yields a lower bound

on λhs as a function of ms and λs for a two-step phase transition to be possible. At the same
time, we must require the electroweak minimum to be the absolute minimum of the potential
at T = 0. The condition V (v, 0, T = 0) < V (0, x0, T = 0) translates into

√
λs λh v

2 >
λhs v

2

2
−m2

s (4.12)

yielding a corresponding upper bound on λhs as a function of ms and λs. In Figure 12 we
show the region of parameter space in the (ms, λhs) plane satisfying (4.11) and (4.12) for
λs = 0.1, 1, 4π/3 (the latter being the maximum allowed value by unitarity [111]). Figure 12
highlights that the two-step phase transition parameter region is very small for small λs,
becoming larger as λs increases. We also note a particular value of λhs for which the extremum
(h, s) = (0, s0) at T = 0 turns from a saddle point (unstable along the h direction) to a
minimum. In the former case, a potential barrier is present when T > 0 but disappears at
T = 0, and the phase transition is guaranteed to complete, while in the latter a barrier exists
at T = 0 and the transition may not complete. The corresponding condition on λhs reads

∂2V

∂ h2

∣∣∣∣
(h,s)=(0,x0)

= 0 −→ λhs
2λs

(
λhs v

2

2
−m2

s

)
− λh v2 = 0 . (4.13)

Above this value of λhs, the transition (if possible at all) is expected to be very strong.
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Having illustrated the qualitative behaviour of the model, we now turn to a precise
description of the electroweak phase transition in the singlet scenario including both one-loop
corrections to the zero-temperature potential and thermal corrections (the specific details of
the potential we use can be found in Appendix A of [25]). We first show in Figure 13
the relevant temperatures discussed in Section 2 for λs = 1 and ms = 100 GeV (left) and
ms = 200 GeV (right). The amount of supercooling for ms = 100 GeV is significant, with
both Tp and Tn dropping below TV for the largest allowed values of λhs. The grey region
signals the range of λhs for which the percolation criterion (2.26) is not satisfied at any
temperature. We note that, as opposed to the |H|6 scenario analyzed in Section 4.1, in
the present scenario it is not possible for the percolation criterion to fail at T = Tp but be
satisfied at some lower temperature.

Figure 13. Nucleation temperature Tn (orange dashed), percolation temperature Tp (blue solid) and
temperature TV (green dashed) as functions of λhs for λs = 1 and ms = 100 GeV (left panel),
ms = 200 GeV (right panel). The dark grey area is excluded by our percolation criterion (2.26).
Vertical lines show the projected reach of LISA for a GW signal from sound waves (dashed blue line)
and turbulence (solid blue line).

Figure 14. Values of α as a function of λhs for λs = 1 and ms = 100 GeV (left panel), ms = 200
GeV (right panel). The dark grey area is excluded by our percolation criterion (2.26). Vertical lines
show the projected reach of LISA for a GW signal from sound waves (dashed blue vertical line) and
turbulence (solid blue vertical line).

In Figure 14 we show the corresponding values of α for λs = 1 and ms = 100 GeV (left)
and ms = 200 GeV (right). We note in particular that α & 1 is possible for ms = 100 GeV
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and λhs close to its maximal allowed value, yielding a brief period of vacuum domination
prior to the successful completion of the phase transition. Then, in Figure 15 we plot HR
for both RMAX (solid green) and R∗ (dashed orange), which are shown to be very similar in
this case.

Figure 15. Relevant scales for GW generation: RMAX (solid green) and R∗ (dashed red) as a function
of λhs for λs = 1 and ms = 100 GeV (left panel), ms = 200 GeV (right panel). Vertical lines show the
projected reach of LISA for a GW signal from sound waves (dashed blue line) and turbulence (solid
blue line).

26.37

49.08

71.79

94.5

117.2

139.9

74.62

87.72

100.8

113.9

127.

140.1

Figure 16. Plasma RMS velocity Ūf (2.23) as a function of the relevant scale for GW generation R∗
(normalized to H−1) for λs = 1 and ms = 100 GeV (left panel), ms = 200 GeV (right panel). Only
if HR∗/Ūf > 1 can (3.15) be used to reliably predict the GW spectrum from sound waves. We show
the results for several different bubble wall velocities vw as indicated in the plot.

We can now check the applicability of the sound wave GW result (3.15), requiring
HR∗/Ūf > 1. The relation between HR∗ and Ūf is then shown in Figure 16 for λs = 1
and ms = 100 GeV (left) and ms = 200 GeV (right). We generically expect for this model
vw → 1, but we show the results for several different bubble wall velocities vw so as to provide
a more thorough check. Similarly to the |H|6 scenario (see Figure 8), our results indicate that
the sound wave GW amplitude (3.15) will significantly overestimate the overall amplitude
of the GW signal in the present scenario. This is also shown in Figure 17 in terms of the
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117.2

139.9

64.33

79.48
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109.8

125.

140.1

Figure 17. Same result as shown in Figure 16 in terms of the more commonly used variables α and
β/H. Blue regions at the bottom of the figure indicate parameter values for which the sound wave
GW spectrum prediction should be robust.

more commonly used variables α and β/H, with the blue regions at the bottom of the figure
indicating parameter values for which the sound wave GW spectrum prediction should be
robust, which are however never reached within this model.

22.43

34.93

47.43

59.93

72.43

Figure 18. Combined GW signal from sound waves and turbulence as a function of frequency for
different values of the percolation temperature Tp (being a function of λhs), for λs = 1 and ms = 100
GeV. The uncertainty bands correspond to the GW amplitude range from including / not includ-
ing a reduction factor in the sound wave GW amplitude by a factor HR∗/Ūf (corresponding to the
shortening of the sound wave period as active GW source w.r.t. the long-lasting estimate).

We then compute the combined GW signal from sound waves and turbulence using the
formulae from Section 3, and show the results in Figures 18 and 19 respectively for ms = 100
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GeV and ms = 200 GeV (for λs = 1 in both cases). In each case, we also show the effect of
including a reduction in the GW amplitude from sound waves by a factor HR∗/Ūf , which
accounts for the shortening of the sound wave period as active GW source w.r.t. the naive
long-lasting estimate. Figures 18 and 19 also show the sensitivities of various present and
planned GW observatories, namely LISA, LIGO, ET, DECIGO and BBO, as well as the
PTA sensitivities for EPTA and SKA (see the discussion in Section 4.1 for further details).
As depicted in Figures 13, 14, 15, the value of λhs that could be probed by LISA from the
sound wave (turbulence) GW spectrum prediction is λhs > 0.899 (λhs > 0.945) for ms = 100
GeV and λhs > 1.756 (λhs > 1.789) for ms = 200 GeV, which again highlights that sound
waves are in general expected to yield the dominant contribution to GW in this scenario.
Figures 18 and 19 also indicate clearly that there exists in this scenario a lower bound on the
GW peak frequency from successful percolation, corresponding to f ∼ 10−4 Hz.

63.02

71.36

79.71

88.05

96.39

Figure 19. Same as Figure 18, but for ms = 200 GeV.

Before concluding our analysis of the scalar singlet extension of the SM with a Z2

symmetry, let us remark that this scenario is very challenging to probe at colliders for ms >
mh/2 ' 63 GeV [112] 11. The possibility of exploring this scenario in multi-jet + Emiss

T

signatures at the HL-LHC and a future 100 TeV hadron collider (FCC-hh), through singlet
pair-production in association with jets via the vector boson fusion (VBF) process pp→ jjss,
has been discussed in [112, 115], with the expected 95% C.L. sensitivities for an integrated
luminosity of 3 ab−1 in each case (taken from [115]) shown in Figure 12. In addition, there
are various indirect probes of this scenario: (i) The precise measurement of the Higgs boson
self-coupling λ3 - the coupling λhs induces a modification at 1-loop w.r.t. the SM value

λ3 = λSM
3 +

1

16π2

λ3
hs v

3

12m2
s

−→ ∆λ3 =
1

96π2

λ3
hs v

4

m2
sm

2
h

. (4.14)

11For ms < mh/2 the constraints on the Higgs invisible decay width from ATLAS/CMS searches [113, 114]
completely exclude the region of parameter space compatible with a first-order phase transition (see Figure 12).
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The 95% C.L. sensitivities achievable by HL-LHC (corresponding to ∆λ3 ∼ 0.8 [102–104])
and by FCC-hh (corresponding to ∆λ3 ∼ 0.2 [116]) are shown in Figure 12. (ii) The very
precise measurement of the Higgs production cross section in association with a Z boson σZh
at a future circular e+ e− collider (FCC-ee), through the deviation w.r.t. the SM prediction
induced by the coupling λhs [20, 112]

δσZh =

∣∣∣∣ λ2
hs v

2

64π2m2
h

[1− F (τ)]

∣∣∣∣ , (4.15)

with τ = m2
h/(4m

2
s) and F (τ) given by

F (τ) =
Arcsin(

√
τ)√

τ(1− τ)
. (4.16)

The projected 95% C.L. precision of FCC-ee on the Higgs associated production cross section
is δσZh ∼ 0.4% [117, 118], and the corresponding sensitivity to the parameter space of the
singlet scalar extension of the SM is shown on Figure 12. Altogether, these results highlight
the challenge of probing the electroweak phase transition with colliders in such a scenario,
and emphasize the role of LISA as a complementary avenue to explore the electroweak epoch.

4.3 The case of conformal (dilaton-like) potentials

The conclusions from the analysis of Sections 4.1 and 4.2 may in principle be generalizable to
other theories beyond the SM, with the notable exception of models with an approximate con-
formal symmetry, which include scenarios with a pseudo-Nambu-Goldstone boson associated
with a spontaneously-broken approximate conformal symmetry [54–58] (see also [35, 36, 59–
61]) (dilaton-like) as well as models which feature classical scale invariance [14, 62]. Focusing
on the former (though the following discussion does also apply to the latter scenarios), the
effective potential then contains a scale-invariant term multiplied by a function that varies
weakly with the scale [119]:

V (σ) = σ4 × P (σε) , (4.17)

where ε� 1. In such potentials it is possible to obtain a large false vacuum decay probability
at very low temperatures, and even a period of inflation ending with the phase transition [58].

However, within an EFT context, the lack of deviations from the SM [120] already pushes
the possible energy scale of the composite Higgs models, that these dilaton-like scenarios can
be recast into (see e.g. [35]), towards the TeV scale. This means that, generally, even though
the primordial plasma could be very strongly supercooled before the phase transition, the
vacuum energy released during the transition would reheat the universe to temperatures of
the order or above the electroweak scale, up to the TeV. Since the peak frequency of the GW
signal today is directly linked to the reheating temperature through redshifting, we expect
the generic bound on the peak frequency of GW waves from the electroweak phase transition
f & 10−4 Hz to also hold in this case.

There is however a crucial phenomenological difference between the scenarios with an
approximate conformal symmetry and those discussed in Sections 4.1 and 4.2, coming from
the fact that dilaton-like potentials may allow for a (generally brief) period of inflation before
the phase transition. As discussed in Sections 4.1 and 4.2, bubble percolation in models with
polynomial potentials allows at most for a very brief period of vacuum domination, which does
not decrease the temperature of the primordial plasma significantly. In contrast, the possible
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inflationary period in models with dilaton-like potentials would still be compatible with
successful percolation. This suggests that dilaton-like scenarios with sufficient supercooling
could be the only ones in which the GW signal from the electroweak phase transition could be
sourced primarily by bubble collisions (instead of by sound waves and plasma turbulence). If
the plasma is severely diluted by the inflationary period, the friction exerted by the plasma
on the bubble wall might not prevent the bubble from accelerating before the end of the
transition. The required amount of supercooling can be obtained approximately by balancing
the NLO “runaway” friction [69] (see Section 2.2) and the pressure difference ∆PNLO =
γ g2 ∆mT 3 ∼ (TeV)4 with ∆m ∼ TeV and γ ∼ Mpl/∆m. This yields T . 10 MeV, below
which most of the energy of the phase transition can be used to accelerate the bubble walls
until the end of the phase transition 12, as would be the case in a transition in pure vacuum,
with the GW signal being produced via bubble collisions. These substantial differences in
the calculation of the GW signal in models with dilaton-like potentials warrant a detailed
discussion, which we leave for future work.

5 Conclusions

We have re-examined in this paper the maximum possible strength of a first-order electroweak
phase transition and the corresponding GW signal that it could generate. We have focused
our discussion on two key issues: (i) the constraint on the duration of near-exponential
expansion of the Universe while dominated by vacuum energy in the supercooled phase
that is imposed by the requirement of successful percolation and completion of the phase
transition. (ii) the conditions under which the current estimates for the amplitude of the
GW spectrum generated from plasma sound waves and MHD turbulence at the end of the
transition can be reliably applied to specific scenarios. We find that these aspects result in a
reduction of the possible strength of the GW signal compared to previous estimates.

Concerning the first issue, it is known that the GW signal from a first-order electroweak
phase transition could be enhanced by a period of strong supercooling. However, it has
also been known since the demise of ‘old inflation’ that most of the Universe might remain
trapped in the exponentially-expanding false vacuum, with bubbles of the true vacuum never
percolating to complete the transition, the ‘graceful-exit’ problem [43]. We have provided
a general treatment of bubble nucleation, growth and percolation, specifically discussing in
Section 2.3 the constraint on the amount of supercooling imposed by successful percolation
and completion of the electroweak phase transition for scenarios with polynomial potentials.
This was then followed in Section 3 by a discussion of the implications of the percolation
constraint for the possible strength of the GW signal, as well as the possible range for its
peak frequency.

We have applied our treatment to specific models that could yield a strongly first-order
electroweak phase transition, namely the SM with a supplementary |H|6/Λ2 interaction and
the SM extended by a real singlet scalar field s. These models capture well the general features
expected for a phase transition driven by polynomial potentials. In the first model we find
that the percolation criterion is satisfied only for a cut-off scale Λ > 545 GeV, with LISA

12In some of these scenarios, e.g., for holographic duals à la Randall-Sundrum, it is expected that many
degrees of freedom become massive during the phase transition, and as such the LO “runaway” friction reads
∆PLO ∼ N∆m2 T 2 with N � 1. Nevertheless, for the extreme supercooling considered above (T . 10− 100
MeV) we expect the plasma to be sufficiently diluted for the effect of N � 1 not to be important. However,
we issue a word of caution until this is further investigated.
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at most being able to probe scales Λ . 580 GeV. While current LHC data do not constrain
the value of Λ, future measurements with the HL-LHC should be sensitive to Λ ' 766 GeV
at the 2-σ level via measurements of the Higgs self-coupling. This would probe well into the
range where this model might yield a GW signal detectable by LISA. In contrast, for the
scenario where the SM is extended by a singlet scalar field s, the prospects for detection at
the LHC or future colliders are poor [112], with LISA providing a complementary avenue
to probe this scenario. We emphasize that in both scenarios the requirement of successful
percolation yields a lower bound on the value of the GW spectrum peak frequency f & 10−4

Hz, strongly suggesting that detecting a GW signal from a supercooled electroweak phase
transition with PTA is not possible in these scenarios.

When discussing specific scenarios for a strongly first-order electroweak phase transition
giving rise to a GW signal, we have found that the condition HR∗/Ūf > 1 for sound waves
to be a “long-lasting” source (active approximately for a Hubble time) of GW is generally
not satisfied. This implies the period of GW generation via plasma sound waves would
be cut short, probably resulting in a reduction of the GW amplitude from sound waves
by approximately a factor HR∗/Ūf (depending on the transition properties, we can have
HR∗/Ūf � 1) compared to current estimates in the literature. Such shortening would
probably be accompanied by an enhancement of the GW spectrum from turbulence, but we
expect the overall effect to still be a reduction of the GW amplitude as compared to the
current predictions for BSM scenarios.

Finally, as briefly discussed in Section 4.3, models with dilaton-like potentials would
exhibit different features from the two models we have studied in detail [35, 36, 55–58],
including the possibility of a longer, inflationary period of vacuum enegry domination, and
the possibility that bubble collisions could dominate GW production.
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A Effective potential for SM with |H|6/Λ2

We include one-loop corrections to the zero-temperature potential in the on-shell scheme [87,
112],

V1−loop(h) =
∑

i=h,χ,W,Z,t

ni
64π2

[
m4
i

(
log

m2
i

m2
0i

− 3

2

)
+ 2m2

im
2
0i

]
, (A.1)
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where n{h,χ,W,Z,t} = {1, 3, 6, 3,−12}, the field-dependent masses read

m2
h = −m2 + 3λh2 +

15

4

h4

Λ2
, m2

χ = −m2 + λh2 +
3

4

h4

Λ2
,

m2
W =

g2

4
h2, m2

Z =
g2 + g′2

4
h2, m2

t =
y2
t

2
h2.

(A.2)

and the m0 in (A.1) are masses calculated with h = v.
Finally, we also include the finite-temperature corrections given by

VT (h, T ) =
∑

i=h,χ,W,Z,γ

niT
4

2π2
Jb

(
m2
i

T 2

)
+
∑
i=t

niT
4

2π2
Jf

(
m2
i

T 2

)
, (A.3)

where

Jb/f

(
m2
i

T 2

)
=

∫ ∞
0

dk k2 log

[
1∓ exp

(
−
√
k2 +m2

i

T 2

)]
. (A.4)

It is important to include in this contribution a correction coming from resumming the
multi-loop contributions of longitudinal polarisations of bosons [121, 122]. We achieve this
by shifting the masses of the longitudinal polarisations of the gauge bosons and scalars by
their thermal corrections such that m2

i → m2
i + Πi. In our model, these shifts read [87, 122]

Πh,χi
(T ) =

T 2

4v2

(
m2
h + 2m2

W +m2
Z + 2m2

t

)
− 3

4
T 2 v

2

Λ2
,

ΠW (T ) =
22

3

m2
W

v2
T 2 ,

(A.5)

while the shifted masses of Z and γ (m2
Z/γ + ΠZ/γ(T )) are eigenvalues of the following mass

matrix (
1
4g

2φ2 + 11
6 g

2T 2 −1
4g
′2g2φ2

−1
4g
′2g2φ2 1

4g
′2φ2 + 11

6 g
′2T 2

)
. (A.6)

We can then write the final form of the potential in the form

V (h, T ) = V (h)tree(h) + V1−loop(h) + VT (h, T ) , (A.7)

with the three contributions given in Eq. (4.2), Eq. (A.1) and Eq. (A.3).
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