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In this paper we explore the entanglement of two relativistic spin-1/2 particles with continuous momenta.
The spin state is described by the Bell state and the momenta are given by Gaussian distributions of product
form. Transformations of the spins are systematically investigated in different boost scenarios by calculating
the orbits and concurrence of the spin degree of freedom. By visualizing the behavior of the spin state we get
further insight into how and why the entanglement changes in different boost situations.

I. INTRODUCTION

Entanglement is the key notion that distinguishes between
the quantum and classical world. It has also proven extremely
useful for applications in the context of quantum information
theory. While most of the theory of entanglement is non-
relativistic, the ultimate description of reality is given by the
relativistic theory, thus a complete account of entanglement
demands that we understand how entanglement behaves in rel-
ativity.

The field of relativistic quantum information, where the first
studies appeared a little more than a decade ago, is an at-
tempt to provide such an account [1–17]. The overall conclu-
sion emerging from this work is that relativistic entanglement
in both inertial and accelerated frames is observer dependent
[18]. The issue has been in the spotlight since early on. It was
found in [2] that the entanglement of a Bell state generally de-
creases under Lorentz boosts. Almost simultaneously, it was
reported in [4] that although boosted particles undergo Wigner
rotations, the entanglement fidelity of a Bell state remains in-
variant. This resulted in a number of followup papers, see
e.g. [19–23], some of which confirm the invariance of entan-
glement while others claim that entanglement depends on the
boost in question. On closer inspection one notices that the
(sometimes seemingly contradictory) results in the literature
rely on different momentum states and boost angles, or ge-
ometries, involved. That geometry plays an instrumental role
in determining the behavior of entanglement under Lorentz
boosts is also suggested by a study of the simplest system,
the single particle [17]. Likewise the literature on the Wigner
rotation is quite clear about the fact that its nature is highly ge-
ometric, yet barring a few cases [24], there is almost no work
in relativistic quantum information that systematically takes
this into account.

In this paper, we aim to fill the lacuna by exploring a num-
ber of boost situations with different momenta as well as ge-
ometries. The focus is on massive two particle spin-1/2 sys-
tems whose momentum states are given by continuous distri-
butions of product form [25]. We assume that the spin degree
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of freedom is described by a maximally entangled Bell state.
We visualize the spin state in a 3D manner in order to gain a
better understanding of how and why entanglement changes
under boosts. The aim of the paper is to provide a simple
model that helps explain the various results obtained so far for
systems with continuous momenta. Another is to contribute to
a survey of different momentum states and geometries in order
to have a better view of the landscape of systems that might
be of interest for relativistic quantum information theory.

The paper is organized as follows. We begin by outlin-
ing how a generic two particle state transforms under Lorentz
boosts. The properties of Wigner rotation will then be re-
viewed, followed by a specification of the models we will
study below. Sections VII and VIII give a detailed charac-
terization of the momentum and spin states of the models, re-
spectively. The second half of the paper from section X on-
wards examines how spin entanglement changes in two par-
ticle systems that contain various forms of product momenta.
We summarize the results in section XIV.

II. GENERAL SETTING

In this paper, we will study a system consisting of two mas-
sive spin-1/2 particles and ask how the entanglement of spins
changes when viewed from a different inertial frame. This
question is uninteresting in the non-relativistic setting because
boosts do not change the spin state. However, in the rela-
tivistic world the situation is non-trivial. The spin seen by an
observer in any other frame generally depends on the momen-
tum of the particle and the state of the observer. This entails
that spin entanglement in general changes non-trivially too.
We begin the discussion by fixing the state space and calcu-
lating the generic transformation of a two particle state under
Lorentz transformations.

Free spin-1/2 particles can be described in two different
theories, the unitary irreducible representation of the Poincaré
group or in the Dirac theory of bispinors [26]. Throughout
we will work in the Wigner representation (also called the
Wigner-Bargmann or the spin basis [27]) and use basis vec-
tors of the form |p, λ〉 ≡ |p〉 |λ〉 ≡ |p〉⊗ |λ〉, where p labels
the single particle momentum and λ = ± 1

2 is the spin (see
Appendix A for constructions used in the paper). A generic
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pure two particle state |Ψ〉 ∈ H⊗H can be written as follows,

|Ψ〉 =
∑
λη

∫
dµ(p, q)ψλη(p,q) |p, λ〉 |q, η〉, (1)

where dµ(p) = [2E(p)]
−1

dp is the Lorentz invariant inte-
gration measure, we have abbreviated dµ(p, q) = dµ(p)dµ(q)
andH = L2(R3)⊗C2 denotes the single particle states space.
The wave function satisfies the normalization condition∑

λη

∫
dµ(p, q)|ψλη(p,q)|2 = 1, (2)

and the (improper) spin and momentum eigenstates satisfy the
orthogonality condition

〈p′, λ′|p, λ〉 = 2E(p)δ3(p− p′)δλλ′ . (3)

An observer OΛ who is Lorentz boosted relative to O by Λ
describes the same system using a different wave function

ψΛ
κν(p,q) =

∑
λη

Dκλ

[
W (Λ,Λ−1p)

]
Dνη

[
W (Λ,Λ−1q)

]
× ψλη(Λ−1p,Λ−1q), (4)

where D [W (Λ,p)] ∈ SU(2) is the spin-1/2 representation
of the Wigner, or Thomas–Wigner rotation (TWR), W =
L−1(ΛLp)ΛLp [28]. This entails that for OΛ the spins are
rotated by D[W (Λ,p)] and the rotation depends on the ge-
ometry, i.e. the angle between two boosts as well as the the
momenta of the system and the observer. Note that since each
spin undergoes a momentum dependent rotation, the result is
a non-trivial transformation on the spin degree of freedom of
the total two particle state. This implies that properties like
entanglement which are defined in terms of spin will change
in general as well.

From the logical point of view, we can think of the two par-
ticle system as made up of two spin qubits, where each spin
qubit is controlled by a momentum system [2, 3]. The anal-
ogy is from quantum information theory where a controlled
unitary gate consists of two input qubits which are called the
control qubit and the target qubit. The action of the gate is to
transform the target qubit with a unitary transformation U de-
pending on the control qubit. One can conceive of the Lorentz
boost along the same lines [29]. If momentum takes the role
of a control system, then given that the boost angle and ra-
pidity are fixed, the transform on the spin state depends only
on the momentum state. While the idea will not enter cal-
culations, the notion of Lorentz boosts as controlled unitaries
will guide our investigation of the relativistic spin–momentum
systems in this paper. It prompts us to ask the question of
what are the maps that different momentum states generate on
the spin degree of freedom? This is a broad question and we
will not try address it in a single paper. We will approach the
topic step-by-step by exploring how a particular subset of in-
teresting momenta drives the spin entanglement. In this paper,
we will focus on momenta that are of product form and ask
what kind of transformations they induce on the maximally

entangled spin state of a two particle system [30]? Further,
while previous work has investigated systems with discrete
momenta [31], which represent idealized models, realistic sit-
uations are described by states whose momenta are given by
continuous distributions. To understand how the behavior of
entanglement is affected when the idealization is dropped we
will assume that momenta are given by entangled states that
consist of combinations of Gaussians.

III. SPIN OBSERVABLE

In contrast to the non-relativistic theory, treatment of spin
in relativity requires some care. This is due to the fact that
the commutation relation of two generators of rotationless
Lorentz boosts results in a rotation generator, [Ki, Nj ] =
−iεijkJk. The latter is the infinitesimal algebraic form of
the TWR. It means that two non-collinear rotationless Lorentz
boosts will generate a rotation. From the geometric point of
view it is interesting to note that the same phenomenon is re-
lated to the fact that the relativistic momentum space, the mass
shell hyperbola, is a curved space: a Riemannian space with
constant negative curvature [32].

While there is some controversy about what is the most ad-
equate spin operator in the relativistic quantum theory, one
candidate stands out. It is the so-called Newton-Wigner spin
observable, which has advantages over other spins because
it possesses a number of properties one naturally demands
of a good spin operator. We will give a brief summary of
the reasoning that leads to the Newton-Wigner spin. A good
overview along with the discussion of the various spin candi-
dates can be found in [27].

Relativistic quantum theory conceptualizes particles as
group representations. Elementary particles correspond to
the unitary irreducible representations of the Poincaré group,
which are characterized by two labels, mass m and spin s.
Mass is given by the square root of the eigenvalues of the
first Casimir invariant, the mass square operator P 2 = PµP

µ.
Spin is related to the eigevalues of the second Casimir invari-
ant, W 2 = WµW

µ, where

Wµ =
1

2
εναβµPνJαβ (5)

is the Pauli-Lubanski vector and Jαβ are the generators of the
Lorentz group. The components ofW = (W 0,W j) are given
by

W 0 = P jM j = P ·M,

W j = P 0M j − εjklP kN l = P 0M j − (P×N)j . (6)

One can then define the spin square operator as

S2 = − 1

m2
WµW

µ. (7)

This leads to the idea that the spin operator can be postulated
as a linear combination of the components of W given that
certain conditions are satisifed, conditions that one would rea-
sonably require of a spin observable. These are as follows,
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(i) the spin operator S should fulfill the usual commutation
relations,

[Si, Sj ] = iεijkS
k, (8)

(ii) it is a three dimensional vector, that is

[J i, Sj ] = iεijkS
k, (9)

and (iii) in any frame the vector S is a linear combination of
components of W with coefficients that depend only on the
four momentum Pµ. It can be shown that there is a unique
linear combination of operatorsWµ which satisfies these con-
ditions and it has the form [33],

SNW =
1

m

(
W − W0

m+ P 0
P

)
. (10)

The Newton-Wigner observable corresponds to the Pauli-
Lubanski vector which is boosted to the rest frame of the par-
ticle [34],

(SNW)
j

=
1

m

(
L−1
p W

)j
, (11)

where L−1
p is the boost that takes momentum p to the rest

system of the particle, L−1
p p = (m, 0, 0, 0). We will use the

Newton-Wigner spin observable SNW throughout the paper to
characterize the spin of the particles.

Since we are working in the Wigner representation, we need
to express SNW in that representation. The canonical form of
the infinitesimal generators Pµ, M and N is as follows [34],

Pµ = pµ,

M = −ip× ∂p + S, (12)

N = −ip0∂p −
p× S

m+ p0
,

where S = 1
2σ and σ = (σx, σy, σz) are the Pauli matrices.

Substituting the generators (12) into (6) and (10), we obtain
for the Newton-Wigner observable

SNW =
1

2
σ, (13)

meaning that in the Wigner representation SNW is given by
the standard Pauli matrices.

IV. SPIN ENTANGLEMENT

To find how the entanglement of the spin degree of free-
dom changes in various boost scenarios, we will calculate the
boosted spin state ρΛ

S . The two particle spin state can be writ-
ten in the operator basis

ρΛ
S =

1

4

1⊗ 1 + rσ ⊗ 1 + 1⊗ sσ +
∑
i,j

tijσi ⊗ σj

 ,

(14)

where the coefficients r = (rx, ry, rz), s = (sx, sy, sz) and
tij , i, j ∈ {x, y, z} are the expectation values of the spin ob-
servables σ⊗1, 1⊗σ and σi⊗σj . Since the total state of two
particles includes momentum as well, i.e. it lives in the space

H1
p ⊗H1

λ ⊗H2
p ⊗H2

λ, (15)

the expectation values of observables have the form

〈r〉 = Tr
(
ρΛ 11

p ⊗ S1
NW ⊗ 12

p ⊗ 12
σ

)
,

〈s〉 = Tr
(
ρΛ 11

p ⊗ 11
σ ⊗ 12

p ⊗ S2
NW

)
, (16)

〈tij〉 = Tr
(
ρΛ 11

p ⊗ S1
NW ⊗ 12

p ⊗ S2
NW

)
,

where the superscripts denote the first and the second particle,
respectively, and ρΛ =

∣∣ΨΛ
〉〈

ΨΛ
∣∣.

Entanglement will be quantified by using the concurrence
C(ρ). This is necessary since the final spin state ρΛ is gener-
ally mixed. Concurrence of a bipartite state ρ of two qubits is
defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (17)

where the λi are square roots of eigenvalues of a non-
Hermitian matrix ρρ̃ in decreasing order and

ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy) , (18)

with σy a Pauli matrix, is the spin-flipped state with the com-
plex conjugate ∗ taken in the standard basis [35].

V. THOMAS–WIGNER ROTATION

The TWR arises from the fact that the subset of Lorentz
boosts does not form a subgroup of the Lorentz group. Con-
sider three inertial observers O, O′ and O′′ where O′ has ve-
locity v1 relative to O and O′′ has v2 relative to O′. Then the
combination of two canonical boosts Λ(v1) and Λ(v2) that
relates O to O′′ is in general a boost and a rotation,

Λ(v2)Λ(v1) = R(ω)Λ(v3), (19)

where R(ω) is the TWR with angle ω. To an observer O, the
frame of O′′ appears to be rotated by ω. We will immediately
specialize to massive systems, then R(ω) ∈ SO(3) and ω is
given by [36, 37],

tan
ω

2
=

sin θ

cos θ +D
, (20)

where θ is the angle between two boosts or, equivalently, v1

and v2, and

D =

√(
γ1 + 1

γ1 − 1

)(
γ2 + 1

γ2 − 1

)
, (21)

with γ1,2 = (1 − v2
1,2)−1/2 and v1,2 = |v1,2|. We assume

natural units throughout, ~ = c = 1. The axis of rotation
specified by n = v2×v1/|v2×v1| is orthogonal to the plane
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Figure 1. (Color online.) TWR ω as a function of rapidity ξ and boost angle θ.

defined by v1 and v2. Using rapidity ξ1,2 = arctanh |v1,2| to
represent the magnitude of the boost and subsuming both un-
der a single parameter ξ = ξ1 = ξ2, we show the dependence
of the TWR on the boost angle θ and ξ in Fig. 1. Two in-
teresting characteristics are immediately noticeable. First, for
any two boosts at a fixed angle θ, the TWR angle ω increases
with ξ, approaching a maximum value as boosts approach the
speed of light. Second, the angle θ at which the maximum
TWR occurs depends on the magnitude of ξ. It is worth not-
ing that ω approaches the maximum value 180◦ when boosts
are almost opposite and approach the speed of light. At lower
boost magnitudes, maximum rotation occurs earlier.

VI. THE MODEL

In this section, we will give a broad characterization of the
models to be studied below. More detailed discussion of the
momentum and spin states will be given in the next two sec-
tions.

We will assume throughout that initially the spin and mo-
mentum degrees of freedom factorize,

|Ψ〉 =

∫
dµ(p, q)ψ(p,q) |p,q〉⊗ |S〉, (22)

where |S〉 is the spin state and momenta are taken to be com-
binations of Gaussian wave packets in product forms. We start
by considering product momenta of the simplest form

fPQ(p,q,p0,q0) = [N(σ)]
− 1

2 g(p,p0) g(q,q0) , (23)

where N(σ) is the normalization and g(p,p0) a Gaussian of

width σ centered at p0 = (px0, py0, pz0),

g(p,p0) =

[
exp

(
− (px − px0)

2

2σ2

)
exp

(
− (py − py0)

2

2σ2

)

× exp

(
− (pz − pz0)

2

2σ2

)] 1
2

. (24)

There are two slightly different implementations of fPQ that
have been discussed on a number of occasions. When q0 =
−p0 we get the familiar EPR–Bohm situation [38, 39] with
two particles moving in opposite directions,

fEPRB(p,q,p0,q0) = fPQ(p,q,p0,−p0). (25)

The other realization is described by

fC(p,q,p0,q0) = fPQ(p,q,pZ0,qZ0), (26)

which we will call axis centered momenta to signify that the
centers pZ0, qZ0 of Gaussians lie on a coordinate axis. With
no restriction of generality we take the coordinate axis to be
the z-axis.

Further forms are motivated by observations we made at
studying a single particle system, namely, that superposed mo-
menta give rise to maximal entanglement between spin and
momentum degrees of freedom. This suggests similar mo-
menta for two particles may give rise to interesting spin–spin
effects as well. We will consider a case involving two terms
per particle,

fΣ(p,q,p0,q0) = [N(σ)]
− 1

2 [g(p,p0) + g(p,−p0)]

× [g(q,q0) + g(q,−q0)] (27)
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and a more elaborate one with four terms,

f×(p,q,p0,q0) = [N(σ)]
− 1

2 [g(p,p0) + g(p,−p0)

+g(p,p⊥0 ) + g(p,−p⊥0 )
]

[g(q,q0)

+g(q,−q0) + g(q,q⊥0 ) + g(q,−q⊥0 )
]
,

(28)

where p⊥0 is a momentum vector of the same magnitude but
orthogonal direction to p0 and similarly for q⊥0 and q0.

Boosts are always assumed to be in the z-direction, Λ ≡
Λz(ξ),

Λ =

cosh ξ 0 0 sinh ξ
0 1 0 0
0 0 1 0

sinh ξ 0 0 cosh ξ

 . (29)

This implies that the unitary representation of the TWR acting
on the one particle subsystem takes the form [37]

D[W (Λ,p)] =

(
α β(px − ipy)

−β(px + ipy) α

)
, (30)

where we have denoted

α =

√
E +m

EΛ +m

(
cosh

ξ

2
+

pz
E +m

sinh
ξ

2

)
,

β =
1√

(E +m)(EΛ +m)
sinh

ξ

2
, (31)

with ξ being the rapidity of the boost in the z-direction, and

EΛ = E cosh ξ + pz sinh ξ. (32)

Because the expression of the boosted spin state in is too com-
plex to be tackled by analytic methods, we will resort to nu-
merical treatment in determining the concurrence and the or-
bits of states. No numerical approximations are involved ex-
cept for the discretization of the momentum space.

VII. MOMENTA AND SPIN ROTATIONS

Although we have now specified the generic forms that mo-
menta will take, the particular geometry they might realize is
still undetermined. For instance, the geometric momenta p0

and q0 that specify the centers of Gaussians in fΣ, Eq. (27),
may lie along the same momentum axis, or they may lie along
orthogonal axes. They will, correspondingly, generate differ-
ent types of rotations on the spins. In this section, we will
focus on how the generic Gaussian states can be implemented
by particular momenta and relate them to different types of
rotations generated on spins. To make the discussion perspic-
uous, we will use discrete momentum states, denoted by |M〉,
that have the same form and subscripts as the continuous ones.

Momenta of both particles may be aligned along the same
axes, for instance two particles can be in a superposition of
momenta along the x-axis, yielding the state,∣∣MXX

Σ

〉
=

1

2
(|px〉+ |−px〉) (|qx〉+ |−qx〉) . (33)

Or momenta of both particles may be aligned along different
axes, for instance the first particle might be in a superposi-
tion of momenta along the x-axis and the second particle in a
superposition along the y-axis,∣∣MXY

Σ

〉
=

1

2
(|px〉+ |−px〉) (|qy〉+ |−qy〉) . (34)

Following the assumption (22) above that initially spin and
momentum factorize,

|Ψ〉 = |M〉⊗ |S〉, (35)

and substituting momentum
∣∣MXX

Σ

〉
into (4) we obtain the

boosted state∣∣ΨΛ
〉

=
1

2

{
|Λzpx,Λzqx〉 D[W (Λz,px)]⊗D[W (Λz,qx)]

+ |Λzpx,−Λzqx〉 D[W (Λz,px)]⊗D[W (Λz,−qx)]

+ |−Λzpx,Λzqx〉 D[W (Λz,−px)]⊗D[W (Λz,qx)]

+ |−Λzpx,−Λzqx〉 D[W (Λz,−px)]

⊗D[W (Λz,−qx)]

}
|S〉, (36)

where for the sake of concreteness we have taken the boost to
be in the z-direction. Now the operators D[W (Λ,p)] for the
unitary representation of the Wigner rotation in this expres-
sion are given in terms of the momenta, the direction of boost
and rapidity, that is, variables which specify the configuration
of the boost in the physical three space. Formally they are
SU(2) operators parameterized by the latter three quantities.
However, as long as our main interest lies in clarifying what
kind of rotations boosts induce on spins we can simplify the
notation and writeRY (ω) instead ofD[W (Λz,px)], meaning
that the spin is rotated around the y-axis by angle ω. Using
this, Eq. (36) can be written as∣∣ΨΛ

〉
=

1

2

[
|Λzpx,Λzqx〉 RY (ω)⊗RY (χ)

+ |Λzpx,−Λzqx〉 RY (ω)⊗RY (−χ)

+ |−Λzpx,Λzqx〉 RY (−ω)⊗RY (χ)

+ |−Λzpx,−Λzqx〉 RY (−ω)⊗RY (−χ)
]
|S〉 .

(37)

Thus we see that the momenta
∣∣MXX

Σ

〉
generate rotations of

the form

RY (±ω)⊗RY (±χ), RY (±ω)⊗RY (∓χ) (38)

on the spin state. In the same vein, if the momenta are given
by
∣∣MXY

Σ

〉
the z-boosted state will have terms that generate

rotations

RY (±ω)⊗RX(±χ), RY (±ω)⊗RX(∓χ) (39)
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on the spin state. Following considerations along these lines
we see that by taking momenta along different combinations
of axes for product momenta, one obtains three different types
of rotations that can occur on the spin state,

(i) Ri ⊗ 1,

(ii) Ri ⊗Ri, (40)
(iii) Ri ⊗Rj , i 6= j,

where i, j ∈ {X,Y, Z} and each type of rotation can be re-
alized by some set of suitably chosen momenta, see Fig. 2.
For instance, we saw that Ri⊗Ri is instantiated by RY ⊗RY
when the momenta are given by the product state

∣∣MXX
Σ

〉
and

the boost is in the z-direction. Another implementation of the
same type isRX⊗RX when the momenta are again a product
but located along the y-axis,

∣∣MY Y
Σ

〉
, and the boost is in the

z-direction.
We will next give a few examples of momenta and boost ge-

ometries that implement the different types of rotations listed
in (40).

a. Type Ri ⊗ 1. In this scenario, only the first particle
undergoes rotation. The momentum of the second particle is
chosen so that it leaves the spin alone. Denoting such a mo-
mentum by |0〉, the following pairs of boosts and momenta
listed on the left hand side generate rotations given on the right
hand side,

Λz , |py, 0〉 7−→ RX ⊗ 1,

Λz , |px, 0〉 7−→ RY ⊗ 1, (41)
Λy , |px, 0〉 7−→ RZ ⊗ 1.

b. Type Ri ⊗ Ri. For scenarios in which both particles
are rotated around the same axis but not necessarily in the
same direction, we obtain the following boosts and momenta,

Λz , |py,qy〉 7−→ RX ⊗RX ,
Λz , |px,qx〉 7−→ RY ⊗RY , (42)
Λy , |px,qx〉 7−→ RZ ⊗RZ .

c. Type Ri ⊗ Rj , i 6= j. Scenarios where particles un-
dergo rotations around different axes can be realized by

Λy , |pz,qx〉 7−→ RX ⊗RZ ,
Λz , |py,qx〉 7−→ RX ⊗RY , (43)
Λx , |pz,qy〉 7−→ RY ⊗RZ .

These scenarios admit an obvious generalization. By
choosing momenta and boosts appropriately, one can con-
sider single particle rotations around an arbitrary axis n =
(nx, ny, nz). This leads to combinations of generic rotations
Rn1
⊗ Rn2

for two particle systems, opening up a wide av-
enue of research. However, when surveying the landscape for
the first time, we would like to keep the situation tractable by
confining attention to the cases listed above and leave a more
general approach for another occasion.

VIII. SPIN STATE AND ITS VISUALIZATION

We will next characterize the spin state of the system. Most
previous work has focussed on the Bell states,

|Φ±〉 =
1√
2

(|00〉± |11〉) , |Ψ±〉 =
1√
2

(|01〉± |10〉) ,
(44)

the maximally entangled bipartite states of two level sys-
tems. Understanding their behavior in relativity is important
for quantum information and we will follow suit in this paper
[40]. As regards the geometric configuration, we will assume
throughout that the spins are aligned with the z-axis irrespec-
tive of the direction of the boost. We adopt the convention that
|0〉 signifies the ‘up’ spin and |1〉 the ‘down’ spin.

In order to gain a better understanding of the state change
of a single qubit, one commonly uses visualization in terms
of the Bloch sphere. Visualization of two qubits, however,
is in general impossible since one needs 15 real parameters
to characterize the density matrix. However, some cases still
allow for a representation in three space, for instance when the
state is restricted to evolve in a subspace of few dimensions.
Fortunately this turns out to be the case for our system.

It is useful to work in the Hilbert-Schmidt space of oper-
ators B(H), defined on the Hilbert space H with dim = N
[41]. B(H) becomes a Hilbert space of N2 complex di-
mensions when equipped with a scalar product defined as
〈A|B〉 = Tr(A†B), with A,B ∈ B(H), where the squared
norm is ‖A‖2 = Tr(A†A). The vector space of Hermitian
operators is an N2 real-dimensional subspace of Hilbert-
Schmidt space which can be coordinatized using a basis that
consists of identity operator and the generators of SU(N). For
a qubit N = 2 and we obtain the familiar Bloch ball. For a bi-
partite qubit systemN = 4,B(H) = B(HA)⊗B(HB) where
Hi is the single particle space, and we can use a basis whose
elements are the tensor products {1⊗1,1⊗σ,σ⊗1,σ⊗σ},
where σ = (σx, σy, σz) is the vector of Pauli operators. The
density operator for a 2×2 dimensional system can be written
in the general form,

ρ =
1

4

1⊗ 1 + rσ ⊗ 1 + 1⊗ sσ +
∑
i,j

tijσi ⊗ σj

 ,

(45)

where the coefficients r = (rx, ry, rz), s = (sx, sy, sz) and
tij , i, j ∈ {x, y, z} are the expectation values of the operators
σ ⊗ 1, 1⊗ σ and σi ⊗ σj .

For the projectors on the Bell states si = ri = 0 and the
matrix tij is diagonal. This implies we only need to consider
the values of diagonal components tii which constitute a vec-
tor in 3-dimensional space, allowing us to represent the states
in Euclidean three space [42]. The Bell states correspond to
vectors,

tΦ+
= (1,−1, 1) , tΦ− = (−1, 1, 1) ,

tΨ+
= (1, 1,−1) , tΨ− = (−1,−1,−1) , (46)
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(a) (b) (c)

Figure 2. (Color online.) Schematic illustration. Examples of geometric configurations of Gaussian momenta (green circles) for realizations of different types
of rotations on spins, with (a) Ri ⊗ 1, (b) Ri ⊗Ri, (c) Ri ⊗Rj , i 6= j. The z-projection of the spin field is indicated by an arrow at the Gaussian.

which, in turn, correspond to the vertices of a tetrahedron T in
Fig. 3. By taking convex combinations of these, one obtains
further diagonal states; the set of all such states is called Bell-
diagonal and is represented by the (yellow) tetrahedron T in
Fig. 3. The set of separable states forms a double pyramid, an

-1.0
-0.5 0.0 0.5 1.0

tXX
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-0.5

0.0
0.5

1.0

tYY

-1.0

-0.5

0.0

0.5

1.0

tZZ

Figure 3. (Color online.) The geometry of Bell diagonal states. The vertices
of the tetrahedron T (thin yellow lines) correspond to the four Bell states
|Φ+〉, |Φ−〉, |Ψ+〉, and |Ψ−〉. Convex combinations of projectors on the
Bell states, the Bell diagonal states, lie on or in the tetrahedron (thick black

lines). A Bell diagonal state is separable iff it lies in the double pyramid
formed by the intersection of the tetrahedron T and its reflection through the

origin −T .

octahedron, in the tetrahedron. The octahedron is given by the
intersection of T with its reflection through the origin, −T .
The maximally mixed state 1

414 has coordinates (0, 0, 0) and
it lies at the origin. The entangled states are located outside
the octahedron in the cones of the tetrahedron, see Fig. 3.

We can now visualize the behavior of spin by calculating
the coefficients tii under a given rotation as a function of ra-
pidity ξ,

t(ξ) = (txx, tyy, tzz) , (47)

where

tii = Tr
[
ρΛ
S(ξ)σi ⊗ σi

]
, i ∈ {x, y, z}, (48)

and ρΛ
S(ξ) is the boosted spin state. The resulting set of three

vectors

Γ
[
ρΛ
S(ξ)

]
= {t(ξ) | ξ ∈ [0, ξmax]} (49)

we call an orbit of a given initial state. It can be represented
as a curve in three space in the manner described above.

IX. PRODUCT MOMENTA fEPRB

We begin by considering product momenta of the simplest
form

fEPRB(p,q,p0,q0) = [N(σ)]
− 1

2 g(p,p0) g(q,−p0) ,
(50)

which represent the EPR–Bohm scenario where two particles
move in opposite directions p0 and −p0. Early discussion
focussed on momentum delta states and concluded that spin
entanglement of a Bell state was left invariant Lorentz boosts
[4, 19]. We reproduce the case of delta momentum by ap-
proximating it with a narrow Gaussian of width σ/m = 1. In
order to study wavepackets of larger widths, we also calculate
σ/m = 2, 4. The concurrence for all three cases is shown in
Fig. 4. Unfortunately, the spin orbit cannot be visualized since
it is not Bell diagonal.

The narrow momenta σ/m = 1 which approximate the
delta state confirm the results obtained by [4, 19], namely, that
boosts leave the entanglement of a maximally entangled Bell
state invariant. Larger widths, however, show a decrease of
entanglement, which grows with the width and magnitude of
the boost.

To analyze the behavior, we will resort to the simple dis-
crete model used above when discussing the relation between
momenta and rotations. We can approximate the narrow mo-
menta σ/m = 1 by a single momentum term and write the
total state of the boosted particle in discrete form as in (36),∣∣ΨΛ

〉
= |Λzp0,−Λzp0〉 D[W (Λz,p0)]

⊗D[W (Λz,−p0)] |Φ+〉 . (51)
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Figure 4. (Color online.) Spin concurrence for Gaussian momenta fEPRB

with σ/m = 1, 2, 4 and centers of Gaussians lying on the x-axis at
±pX0 = (±17.13, 0, 0). Data for σ/m = 1 is shown with the solid red

line, σ/m = 2 green dotted line and σ/m = 4 blue dot-dashed line.

This shows that the boost generates a local unitary transform
of the form D1 ⊗ D2 on the spin state |Φ+〉. Since the de-
gree of entanglement of any Bell state is left invariant by such
a transform, Lorentz boosts do not change the entanglement
between spins in this case.

Systems with widths σ/m = 2, 4, however, display loss of
spin entanglement. This is because they cannot be modeled
using a single momentum term. A larger width means that,
in analogy with Eq. (36), the discrete model now consists of
several momenta and the boosted state involves many rotation
operators acting on the spin state. Calculating the boosted spin
state, we obtain

ρΛ
Φ+ =

∑
p,q

|fEPRB(p,q)|2D[W (Λ,p,q)] ρΦ+D
†[W (Λ,p,q)] ,

(52)

where fEPRB is centered at p0 and −p0, respectively, ρΦ+ =
|Φ+〉〈Φ+|, and we have abbreviated D[W (Λ,p,q)] ≡
D[W (Λ,p)]⊗D[W (Λ,q)]. The final spin state ρΛ

Φ+ is in gen-
eral a mixed state whose entanglement has changed as a result
of the boost. Based on the discrete model, one would expect
that larger widths lead to bigger changes when rapidity in-
creases because, roughly, the rotations generated by different
momenta diverge more than in the case of narrow momenta.
Indeed, the plots of σ/m = 2, 4 in Fig. 4, which have been
obtained using numerical methods, confirm this intuition.

X. PRODUCT MOMENTA fΣ

In this section we will focus on spin rotations generated
by product momenta of the form fΣ. In order to study the
maximum range of phenomena that Lorentz boosts can ex-
hibit we will choose boost scenarios with large boost angles
and momenta so that the spins undergo large TWR when
boosts approach the speed of light. To this end, we will

assume that the centers of the Gaussians are given by geo-
metric vectors ±pX0 = (±17.13, 0,−98.5) and ±pY 0 =
(0,±17.13,−98.5), see Fig. 5. This corresponds to the maxi-

Figure 5. (Color online.) Schematic illustration of a boost at a large angle θ.
Gaussian momenta (shown as blue circles) are located at (±px0, 0,−pz0).

Boost Λ is in the positive z-direction.

mum TWR of 163◦ at large boosts ξ = 6.5.

A. Case Ri ⊗ 1

It is not easy to implement rotations of type Ri ⊗ 1 in the
continuous regime as long as we are concerned with the phys-
ical situation where the observer moves relative to both par-
ticles. The problem lies in realizing the identity map. Even
if we find a scenario where boosts leave alone a momentum
given by a delta state, the non-zero width of the wave packet
guarantees that this will not apply to the whole wave packet.
Some parts of the wave packet will necessarily induce non-
trivial transformations on the spin state as we learned in study-
ing the continuous momentum models of a single particle in
[17]. We will thus adopt the strategy of constructing a model
that approximates the identity map to as high a degree as pos-
sible by minimizing the effect of boost on the spin of the sec-
ond particle.

Above we fixed the boost to be always in the z-direction.
In order to realize the Ri ⊗ 1 rotations, we will take the
momentum of the first particle to lie in the zx-plane with
±p0 = ±pX0, while the momentum of the second particle
is located at the origin of the xy-plane with the z-component
equal to that of the first particle, q0 = (0, 0,−98.5). Since the
momentum of the second particle is aligned with the direction
of the boost, the resulting rotation of the spin field approxi-
mates the identity map.

We plot the orbit of the spin state along with its concur-
rence in Fig. 6. It is evident that visualization of the orbit
provides valuable insight into the behavior of the state, as
well as explaining the behavior of entanglement. Let us be-
gin by considering the case σ/m = 1, shown red in Fig. 6a.
Initially the state is at rest, represented by the state |Φ+〉 at
the vertex (1,−1, 1). When boosts begin to increase, the
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Figure 6. (Color online.) Spin (a) orbit and (b) concurrence under Ri ⊗ 1 for Gaussian momenta fΣ with σ/m = 1, 2, 4. Data for σ/m = 1 is shown with
(a) the red “+” and (b) the red solid line, σ/m = 2 with (a) the green “×” and (b) the green dotted line, σ/m = 4 with (a) the blue “©” and (b) the blue

dot-dashed line. (a) Initial state |Φ+〉 corresponds to vertex (1,−1, 1).
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state moves towards the center of the face, reaching a sepa-
rable state (0,−1, 0) at about ξ = 2.7. Correspondingly, the
concurrence initially takes value 1, decreasing monotonically
with the increase of boosts. It vanishes at about ξ = 2.7 when
the state hits the separable region.

When boosts become larger than 2.7, the spin of the first
particle is rotated even further, and the system becomes
again entangled, with the orbit moving towards the vertex
(−1,−1,−1) which represents the Bell state |Ψ−〉. However,
the revival of entanglement stops short of reaching the value
0.64 for concurrence. Concurrence starts to decrease when ξ
becomes larger than 4.16.

While the states with σ/m = 2 and σ/m = 4 display
similar qualitative behavior, their orbits lie increasingly more
in the region of separable states as σ/m becomes larger, see
Fig. 6a. As a consequence, the revival of concurrence be-
comes less pronounced, recovering only briefly for σ/m = 4
in the interval ξ ∈ [2.9, 3.9] and vanishing thereafter as the
state enters the octahedron of separable states.

B. Case Ri ⊗Ri

To implement the type of rotation where both particles un-
dergo rotation around the same axis, the momenta p0 and q0

need to lie in the same boost plane. Since the boost is in the
z-direction, we will assume that the Gaussians are centered
at the geometric vectors ±q0 = ±p0 = ±pX0, realizing the
rotation RY ⊗RY . Plots of the orbits and concurrence are
shown in Fig. 7.

Let us first consider σ/m = 1. At first, the effect of boosts
is quite similar to the previous case. When rapidity is smaller
than 2.6, the state is mapped into a mixture of itself and the
projector onto |Ψ−〉, moving along an orbit that connects the
two states. At about ξ = 2.6, the boosted observer sees a
separable state. However, for larger boosts the orbit differs
from the previous case as the state moves back along the same
path towards the rest frame state. The concurrence mimics
this pattern by first decreasing monotonically until ξ = 2.6,
and then increasing to almost maximal entanglement for large
boosts ξ > 6.

The orbits for σ/m = 2 and σ/m = 4 diverge from this
behavior, with the disagreement growing larger as the width
increases. This is to be expected since larger Gaussians con-
tain spins some of which undergo less and others more rota-
tion than spins at the centre of the wave packet, thereby caus-
ing the spin state to be a mixed state. Larger values of σ/m
lead in general to a higher degree of mixedness of the boosted
state, and the effect becomes more pronounced at extremely
large boosts: at ξ = 6.5, the boosted state with σ/m = 4
is closer to the centre of the octahedron than the states with
lower σ/m.

C. Case Ri ⊗Rj

In order to realize scenarios where particles undergo rota-
tions around different axis, the centers of Gaussians need to lie

in different boost planes. With the boost in the z-direction, we
will choose ±p0 = ±pY 0 and ±q0 = ±pX0, which means
that the spin state is rotated by RX ⊗ RY . The orbits and
concurrence are shown in Fig. 8.

Spin behavior under mixed rotations is quite different from
the two previous ones. Let us begin by considering σ/m = 1.
The state follows an orbit that has the shape of a curve starting
at vertex (1,−1, 1) and evolving towards the origin, reaching
it at about ξ = 2.7. The second half of the orbit displays a
symmetric shape. The state moves along a curve towards the
vertex (−1, 1, 1) which represents the Bell state |Φ−〉, almost
reaching it when ξ = 6.5.

It is interesting that the spins become briefly separable in
the interval ξ ∈ [2.2, 3.2]. While this might look puzzling if
one only had access to the behavior of concurrence, the plot
of orbits gives us deeper insight into what is happening. The
spin state evolves in the plane that intersects the octahedron
of separable states, entering the octahedron when ξ = 2.2 and
moving along a path towards the maximally mixed state 1

414

represented by (0, 0, 0). At ξ = 2.73 the moving observer
sees a maximally mixed state. When the boosts become even
larger, the entanglement revives again, becoming non-zero for
rapidities greater than ξ = 3.2, which corresponds to the point
where the state leaves the octahedron.

As above, we observe the generic feature that states with
larger widths deviate from this behavior at higher values of
rapidity and the difference grows with σ/m. While the or-
bits are fairly similar up to the maximally mixed state, they
start to diverge soon thereafter, with the momenta σ/m = 4
showing least gain in concurrence. Correspondingly, the latter
state follows an orbit in the set of states with lower degree of
entanglement.

XI. AXIS CENTERED GAUSSIANS

One of the first studies of two particle entanglement in rel-
ativity was carried through in the seminal paper [2], which fo-
cussed on systems whose momenta were given by Gaussians
centered at the origin. In this section, we will study scenarios
which are more general, involving momenta that are centered
on the z-axis. In particular, in the first scenario the Gaussian
momenta are shifted in the positive direction, p0 = (0, 0, 4),
in the second in the negative direction, p0 = (0, 0,−4), and
in the third we reproduce the origin centered momenta of [2],
see Fig. 9. Fourthly, we will consider Gaussians that are far
away from the origin, p0 = (0, 0,−98.5), and thus likely to
induce large rotations on the spins.

Plots for σ/m = 1 and σ/m = 4 with the first three mo-
menta are shown in Fig. 10 and 11. The results of [2] cor-
respond to the Gaussian momenta which have σ/m = 1 and
σ/m = 4 and where the momenta are centered at (0, 0, 0).

Let us consider first σ/m = 1. Note that we have changed
tack a little. Whereas in the previous sections we kept the cen-
ter of the Gaussian momentum fixed, here we keep its width
fixed and change the coordinate of the center. The differences
between the three scenarios in Fig. 10 are quite dramatic.
While p0 = (0, 0, 4) shows relatively little decrease of entan-
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Figure 7. (Color online.) Spin (a) orbit and (b) concurrence under Ri ⊗Ri for Gaussian momenta with σ/m = 1, 2, 4. Product momenta are given by fΣ.
Data for σ/m = 1 is shown with (a) the red “+” and (b) the red solid line, σ/m = 2 with (a) the green “×” and (b) the green dotted line, σ/m = 4 with (a)

the blue “©” and (b) the blue dot-dashed line. (a) Initial state |Φ+〉 corresponds to vertex (1,−1, 1).
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Figure 8. (Color online.) Spin (a) orbit and (b) concurrence under Ri ⊗Rj , i 6= j for Gaussian momenta with σ/m = 1, 2, 4. Product momenta are given by
fΣ. Data for σ/m = 1 is shown with (a) the red “+” and (b) the red solid line, σ/m = 2 with (a) the green “×” and (b) the green dotted line, σ/m = 4 with

(a) the blue “©” and (b) the blue dot-dashed line. (a) Initial state |Φ+〉 corresponds to vertex (1,−1, 1).
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Figure 9. (Color online.) Schematic illustration of axis centered Gaussians
shifted in the positive (top red circle) and negative (bottom blue circle)

direction, and centered at the origin (middle green circle). Boost Λ is in the
positive z-direction.

glement with the concurrence saturating at 0.9 for large boosts
ξ = 6.5, the system with p0 = (0, 0, 0) loses more than half
of the entanglement and saturates at 0.45. The third one with
momentum at p0 = (0, 0,−4) displays a steep decrease of
concurrence, with the entanglement vanishing altogether for
rapidities ξ > 3.75. Momenta with σ/m = 4 exhibit similar
features, albeit with much steeper decreases of concurrence.
Even for p0 = (0, 0, 4), the boosted state has only about 0.3
of the original degree of entanglement at large boosts, and
p0 = (0, 0,−4) vanishes already at ξ = 2.2. The correspond-
ing orbits follow a trajectory which evolve towards the base of
the upper pyramid of separable states, see Figs. 10a and 11a.
All the orbits follow the same path, the only difference lying
in that some stop sooner than others. The latter is determined
by the location and width of the Gaussian. Momenta whose
centers are shifted farther in the negative direction and have
larger widths correspond to the final states closer to the cen-
ter of the octahedron and exhibit, consequently, a quicker and
steeper decline of the concurrence.

A. Comparison with single particle

It is instructive to discuss how these results relate to a single
particle system with axis centered momenta [17]. At first sight
it might seem that the single and two particle systems are not
directly comparable because the entanglements in question
are between different degrees of freedom: spin–momentum
entanglement in case of the single particle versus spin–spin in
case of two particles. Correspondingly, the structure of maps
that change entanglement in each case as well as the initial
states of systems are different too. However, despite this a
number of analogies are manifest and we will argue that this
is no coincidence. Both systems show features which can be
explained using the properties of TWR.

Firstly, the two particle scenario with p0 = (0, 0, 4), which

involves momenta in the direction of boost, displays less pro-
nounced changes of entanglement than the one with a Gaus-
sian centered at p0 = (0, 0,−4), which has momenta oppo-
site to the direction of boost. As discussed in [17], this orig-
inates in the sensitivity of TWR to the angle between boosts.
Smaller boost angles lead to smaller TWR, which in turn re-
sult in smaller changes of entanglement. Secondly, in analogy
with the single particle, Gaussians with larger widths show
in general more rapid changes of concurrence. This can be
traced back to the dependence of TWR on the magnitude of
the boost. A Gaussian with a larger width is equivalent to
a system undergoing a larger boost, which in turn causes a
larger TWR angle. Thirdly, both single and two particle sys-
tems exhibit saturation, which comes from the fact that the
TWR achieves a maximum value, which for a given boost an-
gle is determined by the smaller boost.

B. Large momenta

Let us next turn to the case of large momenta
p0 = (0, 0,−98.5). Plots for σ/m = 1, 2, 4, 8 are shown in
Fig. 12. Interestingly, and contrary to what one might ex-
pect based on the findings so far, entanglement declines more
slowly than in the previous scenarios. For instance, states with
σ/m = 1 remain nearly maximally entangled for rapidities up
to about 2 and decohere thereafter, but this occurs later than
with the momenta p0 = (0, 0,−4), which on the face of it
generate smaller rotation angles than the extreme momenta
p0 = (0, 0,−98.5). However, on closer examination such
puzzling behavior can be again explained using the proper-
ties of TWR. Instead of a Gaussian, let us think of a rough,
simple model consisting of discrete momenta in the xz-plane
as depicted in Fig. 13. We know that larger momenta gen-
erate larger rotation angles, but their amplitude is smaller, so
for the sake of argument, let us assume that the Gaussian is
represented by two momenta at the distance of 0.75 its width.
We will next argue that concurrence changes more rapidly for
the Gaussian centered at or close to the origin than for the
one centered at the very large momentum (0, 0,−98.5). The
key is to realize that the boost angle θ is π/2 for the origin
centered Gaussian, while it is larger, about 170◦ or 2.97 rad,
for the Gaussian at (0, 0,−98.5). In Fig. 1, which describes
the dependence of TWR angle on boost angle and rapidity,
these states lie, respectively, in the middle and almost at the
right end of the horizontal axis. Boosting the system means
we keep θ fixed and move towards the back of the surface
representing the TWR angle for the given θ and ξ. Now for
θ = π/2, the rotation grows initially faster than for θ = 2.85,
meaning that the concurrence of the origin centered Gaussian
changes sooner than the one at the extremely large momen-
tum. However, as rapidity grows even larger, the rotation in-
creases rapidly for θ = 2.85, leading to the decrease of con-
currence as seen in Fig. 12. The decrease becomes steeper as
width increases, as is to be expected since larger width means
we move towards slightly lower values of θ in Fig. 1 which
cause faster rotations and hence quicker drop of concurrence.
Along the same lines, for Gaussians at (0, 0,−4) which are
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Figure 10. (Color online.) Spin (a) orbit and (b) concurrence for origin centered Gaussian momenta with σ/m = 1. Data for (0, 0,−4) is shown with (a) the
red “+” and (b) the red solid line, (0, 0, 0) with (a) the green “×” and (b) the green dotted line, (0, 0, 4) with (a) the blue “©” and (b) the blue dot-dashed line.

(a) Initial state |Φ+〉 corresponds to vertex (1,−1, 1).
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Figure 11. (Color online.) Spin (a) orbit and (b) concurrence for origin centered Gaussian momenta with σ/m = 4. Data for (0, 0,−4) is shown with (a) the
red “+” and (b) the red solid line, (0, 0, 0) with (a) the green “×” and (b) the green dotted line, (0, 0, 4) with (a) the blue “©” and (b) the blue dot-dashed line.

(a) Initial state |Φ+〉 corresponds to vertex (1,−1, 1).
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Figure 12. (Color online.) Spin (a) orbit and (b) concurrence for axis centered Gaussian momenta fC with σ/m = 1, 2, 4, 8 and p0 = (0, 0,−98.5). Data for
σ/m = 1 is shown with (a) the red “+” and (b) the red solid line, σ/m = 2 with (a) the green “×” and (b) the green dotted line, σ/m = 4 with (a) the blue
“©” and (b) the blue dot-dashed line, σ/m = 8 with (a) the yellow “�” and (b) the yellow dotted leftmost line. (a) Initial state |Φ+〉 corresponds to vertex

(1,−1, 1).
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Figure 13. Schematic representation of an origin centered Gaussian spin
field.

relatively close to the origin in comparison to (0, 0,−98.5), θ
is slightly but not significantly larger than π/2, still leading to
faster initial increase than for the extremely large momenta.

To substantiate these qualitative considerations with a
rough numerical model, we plot the dependence of TWR on
rapidity for four delta momenta in Fig. 14. The first one at

0

π/4

π/2

3π/4

π
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T
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R
ω
(r
ad

)

Rapidity ξ

(3, 0, 0)
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(3, 0,−98)

(8, 0,−98)

Figure 14. (Color online.) TWR for axis centered Gaussians in different
geometries.

(3, 0, 0) corresponds to the origin centered Gaussian and the
second (3, 0,−4) to the one close to the origin. The third
(3, 0,−98) represents a distribution with the same width at the
extreme momentum and the fourth (8, 0,−98) corresponds to
a Gaussian with larger width at the extreme momentum. The
qualitative behavior of TWR and hence of concurrence fol-
lows the pattern we have just outlined. Quantitatively, how-
ever, our discrete considerations in the 2D setting cannot ac-
curately represent the more complex workings of realistic 3D
Gaussian wave packets. The model in Fig. 14 does not repro-
duce the precise numerical values for concurrence in Figs. 10,
11 and 12.

To summarize, the claim we make is that the behavior of a
Gaussian system can be understood qualitatively, and to some
extent even quantitatively, using a rather simple model involv-
ing a small sample of discrete (or very narrow Gaussian) mo-
menta.

XII. PRODUCT MOMENTA f×

We will next study product momenta of the form f×. Above
we introduced them as a generalization of fΣ. In this sec-
tion, however, we will show that they serve another purpose
as well: in many cases, they can be used to model the axis cen-
tered Gaussians of the previous section. This has mainly the
conceptual importance of providing a rough and ready expla-
nation of how the axis centered systems behave. The practical
use of this exercise is somewhat limited since we will not pro-
vide systematic methods for finding the exact parameters that
characterize such models.

We start by noting that the state f× admits only two types
of rotations: Ri ⊗ 1 and a mixture of Ri ⊗ Ri and Ri ⊗
Rj . We will forgo the former type since it is not interesting
from the point of view of comparison with the axis centered
systems. To discuss the latter type, we will first consider the
case where the geometric vectors of f× are described by the
large momenta

±p0 = ±q0 = ±pY 0, ±p⊥0 = ±q⊥0 = ±pX0,

which guarantee that spins undergo almost maximum TWRs.
Plots of the spin orbits and concurrence for σ/m = 1, 2, 4 are
shown in Fig. 15.

The orbits exhibit interesting behavior, initially showing a
pattern that is analogous to the state fΣ for the case Ri ⊗Rj ,
see Fig. 8. However, after arriving the octahedron, we see dif-
ferent behavior: the orbit changes course and evolves towards
the top of the upper pyramid. When the spins reach maximal
rotation, the state becomes close to an equal mixture of pro-
jectors onto |Φ+〉 and |Φ−〉, never leaving the octahedron of
separable states. This explains why concurrence vanishes for
all ξ > 2.3.

Let us next consider the correspondence between the z-axis
centered momenta and the f× model. When analyzing the
curious behavior of the z-axis Gaussians in the previous sec-
tion, we resorted to a naive 2D model in the xz-plane. Realis-
tic Gaussians however involve a third dimension as well, and
generalizing the 2D model to three dimensions naturally leads
to the state which is given by f×. This explains why there is
a close match between the orbits of the z-axis centered states
with the large momenta (0, 0,−98.5) and those of f× above.
This raises the question of whether the z-axis centered states
shown in Fig. 11 can be modeled using the f× states with
suitably chosen momenta. Proceeding in the same naive way
as for the 2D model, let us approximate the states in Fig. 11
using f× and assuming that the momenta are described by

±p0 = ±q0 = (0,±3, pz), ±p⊥0 = ±q⊥0 = (±3, 0, pz),

where pz takes the values −4, 0 and 4. We plot the orbits
and concurrence for σ/m = 0.25 in Fig. 16, where we have
chosen σ to be smaller than above in order to minimize width
related effects.

While the agreement with Fig. 11 is not perfect, one can
easily recognize the features present in the original z-axis
case. The concurrence of the f× model exhibits roughly the
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Figure 15. (Color online.) Spin (a) orbit and (b) concurrence for Gaussian momenta with σ/m = 1, 2, 4. Product momenta are given by f× with
±p0 = ±pX0 and ±p⊥0 = ±pY 0. Data for σ/m = 1 is shown with (a) the red “+” and (b) the red solid line, σ/m = 2 with (a) the green “×” and (b) the

green dotted line, σ/m = 4 with (a) the blue “©” and (b) the blue dot-dashed line. (a) Initial state |Φ+〉 corresponds to vertex (1,−1, 1).
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Figure 16. (Color online.) Spin (a) orbit and (b) concurrence for Gaussian momenta with σ/m = 0.25. Product momenta are given by f×. Data for (3, 3,−4)
is shown with (a) the red “+” and (b) the red solid line, (3, 3, 0) with (a) the green “×” and (b) the green dotted line, (3, 3, 4) with (a) the blue “©” and (b) the

blue dot-dashed line. (a) Initial state |Φ+〉 corresponds to vertex (1,−1, 1).
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same kind of dependence on the boost angle as the z-axis cen-
tered states. Although the momenta with pz = 4 diverge con-
siderably from those with (0, 0, 4) in Fig. 11, the fit is rela-
tively good for pz = −4 and pz = 0 considering this is a
simple model. The orbits follow the same pattern, with the
one for pz = 4 deviating more, and those for pz = 0 and
pz = −4 relatively little from the z-axis centered states.

To summarize, all along we have been using the notion that
systems involving continuous momenta, and specifically those
of Gaussian form, can be understood in terms of discrete mod-
els, possibly containing many momentum eigenstates. The
foregoing discussion bolsters this claim by showing that in
some cases Gaussian momenta admit very simple models. In
particular the momenta centered at the axis parallel to the
direction of boost can be modeled by sampling four narrow
Gaussians.

XIII. CORRESPONDENCE TO DISCRETE SYSTEMS

We would like to comment on the relation between continu-
ous and discrete systems which is implicit in all the cases dis-
cussed above: when the width of the Gaussian becomes small
enough, we observe a good match with discrete systems. In
many cases, the behavior of the latter can be calculated ana-
lytically [31].

By way of example, consider rotations of typeRi⊗Ri gen-
erated by product momenta fΣ. Comparison with the plots of
the discrete model, see Fig. 5 in [31], shows that for σ/m = 1
the behavior of the continuous and the discrete model coincide
to quite a high degree of accuracy. The orbit of the continu-
ous system follows the same path as the discrete one, almost
reaching the rest frame state |Φ+〉. The reason it stops short
of |Φ+〉 is that while in the discrete model we assume that the
system reaches the maximum TWR of 180◦, the maximum
rotation implemented by the continuous model at ξ = 6.5 is
ωm ≈ 163◦ or 2.81 rad. Substituting ωm into the expres-
sion that describes the discrete orbit, Eq. (63) in [31], yields
tY⊗Y (ωm) = (0.9,−1, 0.9), which is in good agreement with
the numerically calculated value (0.89,−0.99, 0.90) repre-
senting the final state for σ/m = 1 in Fig. 7a. Likewise, the
concurrence of the discrete model, Eq. (62) with λ = 1 in
[31], evaluates to C(ωm) = 0.89, showing again good fit with
the continuous model.

This pattern is generic in that a similar analysis can be run
for each type of rotation. Although it might seem that the case
Ri ⊗ 1 in section X A provides a counterexample, this is not
true. The reason it deviates from the discrete behavior is that
the identity map can not be implemented accurately enough.
Realistic systems that are characterized by wave packets of
finite width always contain momenta which induce some ro-
tation on the spin field, thereby diverging from idealized be-
havior.

XIV. DISCUSSION AND SUMMARY

In this paper we have studied spin entanglement of two par-
ticles with continuous momenta. We have surveyed a number
of boost scenarios involving momenta in product states. At-
tention was confined to pure spins, which were assumed to be
in the maximally entangled Bell state |Φ+〉.

Our results confirm the general conclusion that Lorentz
boosts cause non-trivial behavior of spin entanglement of a
two particle system. The details of the behavior, however,
are strongly determined by the boost situation at hand, that is,
the momentum state and geometry involved. While there are
states and geometries that leave entanglement invariant, most
scenarios we have studied lead to significant changes of con-
currence. An example of the former was given by the product
momenta fEPRB with σ/m = 1 in the EPRB situation which
leaves the entanglement of the Bell state invariant. The rest
of the momenta causes changes of spin entanglement between
the maximal value and zero.

Although the analysis was numerical throughout, the lack
of analytic models was to some extent compensated by model-
ing continuous momenta in terms of discrete ones. In this pic-
ture, systems involving continuous momenta can be thought
of as fields comprising spins at a large number of discrete
momenta, where boosting means that each spin undergoes a
different, momentum dependent rotation for a given value of
rapidity. The difference between the behaviors of the EPRB
momenta and the rest of the systems can then be explained in
terms of the rotations that the discrete models generate on the
spin degree of freedom.

It is also worthwhile highlighting the different roles that
momentum states and geometries play in a boost scenario.
Fixing a momentum state is equivalent to choosing a partic-
ular class of spin orbits from the set of all possible orbits. The
boost geometry, on the other hand, gives a handle that enables
one to tune the magnitude of the rotation that the spins are
subjected to. In other words, specifying a geometry means
picking a particular spin orbit from the class of spin orbits as-
sociated with a certain momentum state. As an illustration,
consider Fig. 16 which shows the same momentum state f×
with three different boost angles. By specifying that the mo-
menta are given by f× we determine that the spin orbit is the
one associated with the momentum f× as opposed to, for in-
stance, fΣ. Further, by fixing the boost angle one determines
the upper bound of the TWR for spins, thereby choosing a
particular orbit from the class associated with f×. The reason
for choosing extremely large momenta and large boost angles
was that we wanted to obtain the longest orbit in the particu-
lar class. Scenarios with smaller boost angles are subsumed
in the sense that they are given by shorter orbits in the same
class: orbits whose endpoint corresponds to a smaller maxi-
mum TWR.

We would also like to comment on the role of the initial
states. While we assumed from the start that the focus is ex-
clusively on systems whose spin and momentum degrees of
freedom factorize, the spin–momentum entangled states have
been, to some extent, implicit in the investigation too. This is
because all inertial frames are equivalent and Lorentz boosts
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are group elements, meaning that we are guaranteed to have
inverse elements and the scenarios can be read in the reverse
direction. One can regard the final state, which typically con-
tains spin–momentum entanglement, as the rest frame state,
and take the inverse boost to obtain the initial state. For in-
stance, consider the boosted state 1

414 at ξ = 2.2, which is
represented by (0, 0, 0) in Fig. 8. Applying the inverse boost
gives back the original maximally entangled Bell state |Φ+〉.
All plots can be interpreted this way.

This points to an important asymmetry between spin–
momentum product versus entangled states. Whereas the lat-
ter can lead to an increase of spin–spin entanglement, it has
been shown that the former can never cause such behavior [2].

Finally, we would like to emphasize the usefulness of vi-
sualization of spin orbits, which provided further insight into
the behavior of entanglement. We gained a more detailed un-
derstanding of how varying the initial states, their widths and
momenta, changed the spin concurrence. The hope is that the
results obtained in this paper contribute to a better understand-
ing of entanglement in relativity and could lead to future ap-
plications which might be of interest in relativistic quantum
information.
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Appendix A: particles in the Wigner representation

1. Conventions

We will use natural units where ~ = c = 1. Spacetime
metric is diag(+−−−). Latin indices i, j, k etc. take values in
three tuples (x, y, z) or (1, 2, 3) while Greek indices µ, ν etc.
run over (t, x, y, z) or (0, 1, 2, 3). Three vectors use boldface
whereas four vectors are given in ordinary type. For instance,
the four momentum is pµ = (p0,p) with the norm pµpµ =
(p0)2 − p2 = m2.

2. Particles

In this section, we summarize the background for the rel-
ativistic quantum mechanical constructions used in the pa-
per. Throughout we work in the Wigner representation which
can be found in references [32, 33]. The single particle
states are given by a unitary irreducible representation of the
Poincaré group where a representation is labelled by mass
m > 0 and the intrinsic spin s which takes integral or half-
integral values. The representation can be realized in the space⊕2s+1

L2(Γ+
m) of square integrable functions on the forward

mass hyperboloid Γ+
m = {p ∈M : p2 = m2, p0 > 0} where

the scalar product is defined as

〈φ|ψ〉 =
∑
σ

∫
dµ(p)φ∗σ(p)ψσ(p), (A1)

with dµ(p) = [2E(p)]−1d3p being the Lorentz invariant in-
tegration measure. In this paper we specialize on spin-1/2
systems, then the state space is given by

H = L2(R3)⊕ L2(R3) = L2(R3,C2) = L2(R3)⊗ C2.
(A2)

In order to define basis vectors, we start by specifying the
rest frame states in terms of four momentum Pµ, square of
total angular momentum J2 and the z-component of angular
momentum Jz ,

Pµ |0, λ〉 = pµ0 |0, λ〉,
J2 |0, λ〉 = s(s+ 1) |0, λ〉, (A3)
Jz |0, λ〉 = λ |0, λ〉,

where 0 denotes p = 0 with pµ0 = (m,0), and we have ab-
breviated |p, λ〉 = |p〉⊗ |λ〉. Because the particle is at rest,
s and λ refer to the spin and the z-component of the particle.
We next generate a complete basis, which consists of the gen-
eral eigenvectors of Pµ, by acting on the rest frame state with
a pure, rotation free Lorentz boost,

|p, λ〉 = U [L(p)] |0, λ〉, (A4)

where U [L(p)] is a unitary representation of boost L(p) that
takes the rest momentum (m,0) = p0 to an arbitrary momen-
tum,

L(p) (m,0) = (E(p),p), (A5)

with E(p) =
√

p2 +m2. The basis vectors |p, λ〉 span the
single particle state space H and we can write a generic state
as

|Ψ〉 =
∑
σ

∫
dµ(p)ψσ(p) |p, σ〉, (A6)

The basis states are normalized as follows,

〈p′, σ′|p, σ〉 = 2E(p)δ3(p− p′)δσσ′ . (A7)

The action of a generic Lorentz transformation Λ on an ele-
ment of basis is given by

U(Λ) |p, σ〉 =
∑
λ

|Λp, λ〉Dλσ[W (Λ,p)], (A8)

where W (Λ,p) is the Wigner rotation

W (Λ,p) ≡ L−1(Λp)ΛL(p) (A9)

that leaves p0 invariant, p0 = Wp0. For massive particles,
W ∈ SO(3) is a rotation and D[W (Λ,p)] is its representa-
tion. For spin-1/2 particles, the latter is an element of SU(2),
whose concrete form in terms of momenta and rapidities can
be found in [37].
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3. Lorentz transformations on particles

One can now calculate the transformation on the wave func-
tion. In the Lorentz boosted frame, the state is

∣∣ΨΛ
〉

=
U(Λ) |Ψ〉, so we have∣∣ΨΛ

〉
=
∑
σ

∫
dµ(p)ψσ(p)

∑
λ

|Λp, λ〉Dλσ[W (Λ,p)]

=
∑
λ

∫
dµ(p′)

∑
σ

Dλσ[W (Λ,Λ−1p′)]ψσ(Λ−1p′) |p′, λ〉

=
∑
λ

∫
dµ(p)ψΛ

λ (p) |p, λ〉, (A10)

where p′ = Λp and we used the fact that the integration mea-
sure is Lorentz covariant, dµ(p) = dµ(Λp), with a relabelling

of dummy variables in the last line, p′ → p. Hence we have,

ψΛ
λ (p) =

∑
σ

Dλσ[W (Λ,Λ−1p)]ψσ(Λ−1p). (A11)

The state of a two particle system belongs to
H2 = H1 ⊗H1 where H1 is the one particle Hilbert
space described above. A Lorentz boost Λ acts on the
two particle state by U(Λ) ⊗ U(Λ) and in analogy to the
single particle case we calculate that the corresponding
transformation of the wave function is given by

ψΛ
λκ(p,q) =

∑
σ,ξ

Dλσ

[
W (Λ,Λ−1p)

]
Dκξ

[
W (Λ,Λ−1q)

]
× ψσξ(Λ−1p,Λ−1q). (A12)
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