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1 Introduction

The NA62 experiment at CERN is aimed at measuring the ultra rare decay K+ → π+νν̄

(BR∼10−10). The BR measurement with 10% precision will allow to probe New Physics at mass

scales up to O(100) TeV. The experimental setup is shown in figure 1 and described in detail in [1]. A

400 GeV/c proton beam from the CERN SPS impinging on a Beryllium target produces a 750 MHz

hadron beam of 75 GeV/c with ∼6% of K+ particles. Kaons are identified by the KTAG detector,

a differential Cherenkov counter. The momentum of beam particles is measured by the beam

tracker (GTK). The momentum of secondary particles is measured by a magnetic spectrometer

with Straw chambers (STRAW) operating in vacuum. The system of hodoscope counters (CHOD)

consisting of scintillator slabs and tiles measures the track crossing time and contributes to the L0

trigger, as well as the Ring Imaging CHerenkov detector (RICH). The iron/scintillator calorimeters

(MUV1,2) identify pions and muons, while the electron/positron identification (ID) is performed

by the electromagnetic calorimeter filled with Liquid Krypton (LKr). A fast muon veto (MUV3)

identifies muons and provides L0 trigger signals. The photon veto system covers the angular range

up to 50 mrad and includes four detectors: LAV, LKr, IRC and SAC. The CHANTI detector placed

after the third station of GTK identifies upstream inelastic interactions and muon halo. Additional

veto detectors MUV0 and HASC are used to detect pions from the K+ → π+π−π+ decay escaping

from the STRAW acceptance.
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Figure 1. NA62 experimental setup. The beam goes in the positive Z direction. The positive direction of

the Y axis is vertical.

2 RICH detector

One of the main backgrounds to the K+ → π+νν̄ decay comes from K+ → µ+νµ which

is suppressed by applying specific selection criteria on kinematic variables and making use of

the different stopping power of muons and pions in MUV1 and MUV2. The RICH detector is

needed to further reject the muon contamination in the pion sample by a factor of at least 100

in the momentum range between 15 and 35 GeV/c. The upper bound of this range is driven by

the kinematic suppression of the other principal background, the K+ → π+π0 (K2π) decay. To

distinguish between muons and pions at 35 GeV/c, the RICH should have a Cherenkov threshold

for pions around 12–13 GeV/c which means that the full efficiency of the RICH is achieved at

15 GeV/c. The choice of this lower bound is also favoured by studies of other backgrounds.

The RICH detector is shown in figure 2. The core part of the detector is the mirror system [2].

It consists of 18 hexagonal (350 mm side) and two semi-hexagonal mirrors which are placed in

Figure 2. RICH detector layout. The zoom is done for one of two photomultiplier disks. The mirror mosaic

is made visible on the right. The right part of mirrors (shown in dark pink) reflects light towards the zoomed

disk, while the other half of the mosaic (shown in light pink) is oriented towards the second disk (not seen).
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the central part and cut to accomodate the beam pipe. The focal length of all mirrors is f =17 m.

The mirror orientation is provided by two stabilizing aluminium ribbons connected to the mirror

at one end (at a distance of Rcon ∼250 mm from the barycentre) and to a piezo motor at the other

end via the transmission tool. A third anti-rotating ribbon prevents the mirror rotation around the

longitudinal axis. The ribbon arrangement is shown in figure 3. Piezo motors move ribbons with 1

nm step.

Figure 3. Arrangement of the mirror orientation system, view from the downstream part of the setup. The

anti-rotating ribbon is connected to the mirror at point 3. Two stabilizing ribbons are connected to piezo

motors L and R and to the mirror at points 1 and 2 respectively via the transmission tool. Rcon is the distance

between the barycentre O and the ribbon connection points.

L

R

1

2

3

1 2

3

O

Rcon Rcon

To avoid the loss of the reflected light interacting with the beam pipe, the mirrors are divided in

two groups referred to as Jura and Saleve with centres of curvature of mirror surface, respectively,

to the right and to the left of the beam pipe, as seen from the downstream part of the setup. Figure 4

illustrates the mirror numbering and Jura–Saleve orientation. The Jura group is shown in light pink,

the Saleve one is in dark pink, the same colors are used in figure 2.

Two photomultiplier (PM) disks are placed in the focal plane of each mirror orientation group

and are located at about 1.5 m to the left and to the right of the beam pipe, outside the area

illuminated by charged particles from kaon decays in the fiducial volume. Each disk contains 976

PMs. The PM disk diameter is ∼600 mm. To enhance light collection, Winston cones [3] with the

outer diameter dcone=18 mm are carved in the disks and covered with aluminized Mylar (one cone

per PM). The inner diameter of Winston cones is equal to the diameter of the PM sensitive area

dPM=7.5 mm.

3 Precise mirror alignment

3.1 Alignment procedure

The best performance of the RICH detector is achieved when the mirrors are aligned with the

highest possible precision. During the installation a preliminary laser alignment was performed

– 3 –
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Figure 4. RICH mirror numbering as seen from the downstream part of the setup. The axes direction is the

same as for the NA62 reference frame in figure 1. Jura and Saleve groups are separated by the dark blue line.

For the definition of Jura and Saleve, see section 2.

for each mirror with the accuracy of ∼500 µrad in terms of mirror orientation [2]. For a more

precise alignment using reconstructed tracks a dedicated procedure has been developed. For each

orientation group (Jura or Saleve, see figure 4) a reference mirror was chosen and all other mirrors

were aligned with respect to that mirror. A natural choice for the reference mirror is a semihexagonal

one, for which the remotely controlled rotation is limited to one degree of freedom, i.e. only one

ribbon can be moved using piezo motors.

The fine alignment procedure consists of three steps. It starts from the measurement of the

absolute misalignment (i.e. with respect to the nominal orientation) of all 20 mirrors. Events with

one track in the STRAW and one RICH ring candidate are selected for the analysis. The RICH

ring is required to be completely within the PM acceptance. A circle at the mirror plane centered

on the track impact point and having the same radius as the ring is required to be within a single

mirror (“single mirror “ condition). The absolute misalignment of a mirror is the mean value of

the difference between the real ring centre position from the ring fit and the expected position. The

latter corresponds to the nominal mirror orientation and is obtained by extrapolating the track to

the PM plane as if it were a photon with the direction of the track reflected by a mirror with the

nominal centre of curvature.

At the second step, the relative misalignment of each hexagonal mirror is calculated. The

relative misalignment is defined as the difference in the absolute misalignment between a mirror

and the reference mirror of a corresponding group. Using a simple model with the ideal ribbon

geometry [2], it is linearly translated to the piezo motor movement needed to compensate the relative

misalignment:

∆lL =
Rcon

2
√

2 f
(−Xrel + Yrel) ; ∆lR =

Rcon

2
√

2 f
(Xrel + Yrel). (3.1)

Here Xrel and Yrel are the relative misalignment values, ∆lL and ∆lR are the movements of piezo
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motors L and R needed to compensate this misalignment, Rcon is the distance between the ribbon

connection point to the mirror and the mirror barycentre (for the definition of L, R and Rcon see

figure 3), f is the mirror focal length. Each mirror is rotated by moving two piezo motors according

to the calculated values ∆lL and ∆lR . After the first movement the misalignment is measured again,

and the change in the relative misalignment is translated back to the effective movement of piezo

motors ∆lL,ef f and ∆lR,ef f (i.e. the piezo motor movement which would produce that change in

the misalignment in case of the ideal ribbon geometry). For each piezo motor a calibration constant

is calculated by comparing the effective and real movement: cL = ∆lL/∆lL,ef f for a left motor,

cR = ∆lR/∆lR,ef f for a right one. Further piezo movements are performed taking into account

these constants, i.e. ∆lL and ∆lR calculated from (3.1) are multiplied by cL and cR respectively.

The final step of the procedure is the calculation of global offsets and the residual misalign-

ment. A global offset is the average absolute misalignment of a group of mirrors with the same

centre of curvature (Jura or Saleve). To calculate a global offset, events with hits in a single PM

disk (and hence only one group of mirrors illuminated) are selected (“single mirror “ condition

is not applied), and the absolute misalignment is measured. The difference between the absolute

misalignment of a mirror and the global offset is referred to as the residual misalignment.

For rings with photons from a single group of mirrors the performance does not depend on

how the global offset of that group is defined, while for rings where mirrors of both groups are

illuminated such definition of global offsets provides the minimal average spread of hit coordinates

due to the residual misalignment and hence the best single hit resolution. A simpler alternative

could be to define a global offset as the absolute misalignment of the reference mirror (the residual

misalignment in this case would be equal to the relative one), but in this case the best performance

will be achieved only for rings with hits from reference semihexagonal mirrors, while for rings with

hits from hexagonal Jura and Saleve mirrors (for example, #13–14 or #12–20 in figure 4) a larger

relative misalignment will take place, that will result in a worse single hit resolution.

The procedure of piezo motor movement is repeated iteratively until the final accuracy is

achieved: ±1 mm in terms of the relative misalignment, or ∼30 µrad in terms of the mirror angular

orientation. The latter number comes from the relation ∆θ = ∆r/2 f , where ∆θ is the mirror

rotation, ∆r is the corresponding movement of the ring centre in the focal plane and f = 17 m is

the mirror focal length. At each iteration step the global offsets calculated at the previous step are

used as initial global offsets.

Global offsets and residual misalignment values are stored in a metadata file and used in

the analysis chain. At the RICH reconstruction level (when only the RICH hits are used, no track

information is available) global offsets are subtracted from hit coordinates before the standalone ring

fit is performed. At the analysis level the ring fit can be improved by using the track information. In

this case the absolute misalignment (i.e. the sum of the global offset and the residual misalignment)

of the track-pointed mirror is subtracted from the hit coordinates before the track-seeded ring fit.

Such offset subtraction is driven by the fact that the main part of photons is reflected by the mirror

where the track points. This can be easily obtained from geometrical considerations assuming a

uniform spatial density of photons in the mirror plane. Moreover, due to the properties of the

Cherenkov radiation (dN/dz=const and hence dN/dr=const, where r is the radial coordinate with

respect to the track impact point of a photon emitted at z) this density is proportional to 1/r, which

leads to even higher photon concentration around the impact point.
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3.2 Alignment in 2016

In 2016 the alignment procedure was fully accomplished for the first time. A typical mea-

surement of the absolute misalignment is shown in figure 5. The accuracy of the misalignment

measurement is estimated to be 0.1 mm, the main contribution coming from the fitting procedure.

Two contributions determine the width of the ∆X and ∆Y distribution: the uncertainty of ring centre

and spectrometer resolution. The latter is small and can be estimated by multiplying the mirror focal

length by the STRAW angular resolution σθx or σθy . In the assumption that σθx ≈ σθy = σθ/
√

2,

where the value σθ is taken from [1], the spectrometer contribution to the widths does not exceed

0.6 mm.
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Figure 5. Alignment of mirror #5 (first step of the procedure, see 3.1). ∆X and∆Y are the differences between

the measured and expected ring centre coordinate. Initial global offsets are subtracted. The distributions

are fitted with a gaussian. The absolute misalignment is the sum of the initial global offset and the gaussian

mean value. The gaussian width is σ ∼2.7 mm.

The global offsets (Xglobal , Yglobal) at the end of the alignment procedure were equal to

(20.0, 20.1) mm for Jura and (20.1, 9.5) mm for Saleve. The final results of the residual misalignment

measurement are shown in figure 6. The precision of the overall procedure is ∼1 mm and is limited

by hysteresis effects in the ribbon-mirror system: for small movements there is no longer linearity

between piezo motor and ring centre movement, so the iterative procedure does not necessarily

converge. The values of the residual misalignment are given in appendix (table 2).

In 2017 the mirror alignment was monitored on a monthly basis and remained stable during

the data taking period.

4 Basic performance in 2016

The RICH detector was designed to provide the muon suppression at the level of O(100) in

the pion sample and measure the downstream time with O(100) ps precision. The corresponding

performance characteristics (i.e. pion ID efficiency, muon mis-ID probability, event time resolution)

depend on the event selection and their measurement is beyond the scope of this paper. The

preliminary results are reported in [1]. Apart from the event selection, these characteristics are

determined by more fundamental performance parameters like single hit resolution and the average

– 6 –
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Figure 6. Final results of the RICH mirror alignment. Residual misalignment values X and Y are shown for

Jura (left) and Saleve (right) mirror groups. Each point corresponds to one mirror. For the definition of Jura

and Saleve, see section 2.

number of hits per event which are traditionally evaluated for electron/positron tracks in order to

avoid the momentum dependence.

In this section the measurement of the basic performance of the RICH detector is described

which has been performed on rings fully contained in the detector acceptance (to avoid edge effects)

and includes the following parameters: ring radius resolution, ring centre resolution, single hit

resolution and mean number of hits per ring.

4.1 Event selection

The positron sample has been collected by the tight selection of the K+ → e+νeπ
0 (Ke3) decay

events. The selection criteria can be grouped into four categories: one track selection, particle ID,

kinematics and RICH selection.

The one track selection requires one track events with a track including hits from all chambers

and lying in the acceptance of each STRAW station, LKr, CHOD and MUV3. Other track require-

ments are: time within ±10 ns from the trigger time, χ2 less than 20, momentum between 12 and

40 GeV/c.

The positron ID is based on the information from calorimeters and contains the following

requirements: track is associated with LKr with E/p between 0.96 and 1.03, there are no hits in

MUV3 associated with the track.

The kinematics of the Ke3 decay is used to further clean the sample. The kaon is identified by

a KTAG candidate close in time with the trigger: |tKTAG − ttrack | < 1 ns. Each kaon is assigned the

average momentum obtained from a sample of fully reconstructed K+ → π+π−π+ decays, instead

of the value measured by the GTK, since the GTK performance was not optimal in 2016. The

kaon and positron tracks are required to form a vertex with 110 < z < 180 m and dmin < 25 mm,

where dmin is the minimal distance between the tracks. The neutral pion is reconstructed from
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two clusters in LKr not associated with the track, with no signal in photon veto detectors (LAV,

IRC, SAC). The missing mass squared, assuming the positron hypothesis for the track, is requested

to be close to 0: |PK − Pe − Pπ0 |2 < 0.01 GeV2/c4. To reject the residual background from the

K2π decay, the missing mass squared, assuming the pion hypothesis, is required to be outside the

interval (0, 0.04) GeV2/c4.

Finally, the RICH selection is performed to have a sample of single ring events. The number of

hits per ring is requested to be greater than three. The ring is required to lie within PM acceptance.

A corresponding circle at the mirror plane, constructed as explained in section 3.1, is requested

to be within the mirror acceptance. Also, to avoid possible light loss, the selection contains the

requirement for Cherenkov cones not to have intersection with the beam pipe (the latter condition

is checked for the largest cone corresponding to the most upstream light emission point).

To precisely measure the ring parameters and correctly calculate the number of hits, a standalone

iterative single ring fit algorithm has been developed. At each step a standard single ring fit is

performed: the sum
∑

i

(ri − R)2/σ2
hit

is minimized, where ri is the distance between the i-th

hit position and the ring centre, R is the ring radius, σhit=4.7 mm is the single hit resolution

(see section 4.4). After the ring fit, a special χ2(iter) is calculated for each hit: χ2(iter) =
(ri −R)2/σ2

hit
+ (ti − t̄)2/σ2

t . Here ti is the i-th hit time, t̄ = 1
n

∑

i

ti is the average hit time, σt=0.28 ns

is the hit time resolution. The hit with the largest χ2(iter) is removed and the ring fit is repeated

unless one of the following conditions is satisfied:

• χ2(iter) < 16 for each hit;

• Niter >5;

• Nhits=4.

The iterative procedure allows to effectively remove noise hits that are far from the main bulk

of hits in space and/or time. On average, 0.8 hits per event are rejected.

4.2 Ring radius resolution

The ring radius distribution is shown in figure 7. The ring resolution is obtained from the

gaussian width of the distribution.

4.3 Ring centre resolution

To estimate the ring centre resolution, the difference between the measured and expected ring

centre position (in X and Y) is plotted and fitted by a gaussian, see figure 8. The uncertainty of the

expected ring centre position is determined by the STRAW angular resolution (see 3.2) and is much

smaller than the measured widths σx ≃ σy ≃ 3 mm, hence σx and σy are used to estimate the ring

centre resolution.

4.4 Single hit resolution

The single hit resolution σhit is estimated from the gaussian width of the pull distribution. The

pull is defined as follows: Pull = (R - Rexp)
√

Nhits − 3. Here R is the ring radius, Rexp is the radius

– 8 –
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Figure 7. Positron ring radius. A gaussian fit is performed: <R>=189.6 mm, σR=1.47 mm.

Dx [mm]
-20 -15 -10 -5 0 5 10 15 20

ev
en

ts
 / 

m
m

  

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

Dy [mm]
-20 -15 -10 -5 0 5 10 15 20

ev
en

ts
 / 

m
m

  

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

Figure 8. Difference between the measured and expected positron ring centre position. A gaussian fit gives

σx=2.96 mm (left) and σy=2.92 mm (right).

calculated from the momentum assuming the positron mass, (Nhits-3) is the number of degrees of

freedom of the single ring fit, where 3 is the number of fit parameters (ring radius and two ring

centre coordinates). The pull distribution is shown in figure 9; the obtained value is σhit=4.66 mm.

The main contribution to the single hit resolution comes from the geometry, i.e. from the size of

outer and inner Winston cone diameter. In case of the full light collection by the cone the geometry

contribution is equal to σgeom, max = dcone/4 = 4.5 mm. In the opposite case (absorbing cone

surface) it is determined by the diameter of the sensitive region of PMs: σgeom, min = dPM/4 =
1.9 mm. The mean cone reflectivity is estimated by averaging the Mylar reflectivity over the real

photon spectrum. This spectrum is obtained taking into account all possible effects: the emission

spectrum of Cherenkov photons, mirror reflectivity, transmission of quartz windows located between

cones and PMs, PM quantum efficiency. A simple simulation of the hit coordinate spread, taking into

account the calculated mean reflectivity and assuming not more than one reflection per photon on

the cone with the nominal diameter dcone , gives the following estimate: σhit, ideal geom ≃4.45 mm.
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The second contribution comes from the mirror misalignment and is calculated from the

quadratic difference between the single hit resolution measured on a standard and “single mirror “

selection (see section 4.6): σhit, mirror=2.1 mm.

The contribution due to the neon dispersion [4] can be calculated from the standard deviation

∆n of (n-1): σhit, ∆n ≃ f∆θn ≃ f∆n/θ, where θ is the Cherenkov angle, θ ≃ R/ f . The value of

∆n =
√

< (n − 1)2 > − < (n − 1) >2 is obtained by averaging (n-1) and (n-1)2 over the real photon

spectrum. With ∆n ≃ 0.4× 10−6, this results in σhit, ∆n ≃0.6 mm which is small compared to other

contributions.

By quadratically subtracting σhit, mirror and σhit, ∆n from the measured value σhit , the

real geometry contribution can be extracted: σhit, real geom ≃4.14 mm which is smaller than

σhit, ideal geom. It could be due to light losses in multiple reflections of photons that are incident

on the cone periphery, as described in [3].

4.5 Number of hits per ring and figure of merit

The distribution of the number of hits per ring is shown in figure 10. From the average value

of <Nhits> one can calculate the figure of merit N0 used to evaluate the performance of RICH

detectors: N0 =< Nhits > /(L sin2θ), where L is the vessel length and θ is the Cherenkov angle.

The obtained value is N0 ∼65 cm−1.

4.6 Contribution of the residual mirror misalignment to the performance

To estimate the contribution of the residual misalignment to the resolutions of ring parameters,

the parameter calculation is repeated for the events where all the light comes from a single mirror.

The contribution due to the mirror misalignment is given by the quadratic difference between the

initial and ”single mirror” value.

Table 1 summarizes the performance measurements and the contributions due to the residual

mirror misalignment.

A higher <Nhits> value for ”single mirror” events is due to the fact that in this case the mirror

edges with worse reflectivity are not illuminated.
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Figure 10. Number of hits per ring distribution. A poissonian fit is performed: <Nhits>=13.8.

Parameter all events ”single mirror” events misalignment contribution

<R>, mm 189.6 189.1 –

σR, mm 1.47 1.31 0.7

σx, mm 2.96 2.82 –

σy, mm 2.92 2.83 –

σhit , mm 4.66 4.18 2.1

<Nhits> 13.8 14.1 –

Table 1. Performance summary.

5 Conclusion

The procedure of the precise RICH mirror alignment has been developed and successfully

accomplished in 2016. The achieved residual misalignment is ∼1 mm in terms of the ring centre

position (∼30 µrad in terms of the mirror angular orientation).

The basic performance parameters have been measured for positron tracks. The ring radius

resolution is 1.5 mm, the ring centre resolution is 3.0 (2.9) mm for X (Y) coordinate, the single hit

resolution is 4.7 mm, the average number of hits per ring is 13.8. The contribution of the residual

mirror misalignment to the single hit resolution is 2.1 mm and less than 1 mm to the ring radius

resolution.
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A Residual misalignment of all mirrors

In this appendix the residual misalignment of all mirrors at the end of the alignment procedure is

summarized in a table.

Mirror Group X, mm δX, mm Y, mm δY, mm

1 Jura -0.9 0.3 0.5 0.1

3 Jura 0.2 0.1 0.9 0.1

4 Jura 0.1 0.1 0.0 0.1

5 Saleve 0.6 0.1 -0.8 0.1

6 Saleve -0.4 0.1 -1.0 0.1

8 Saleve 0.0 0.1 -0.1 0.1

9 Saleve -0.4 0.1 -0.1 0.1

10 Saleve -0.3 0.1 -0.2 0.1

11 Saleve 0.0 0.1 0.1 0.1

12 Jura 0.2 0.1 0.0 0.1

13 Jura -0.1 0.1 0.3 0.1

14 Saleve 0.6 0.1 0.5 0.1

15 Jura 0.2 0.1 0.3 0.1

16 Jura 0.3 0.1 0.2 0.1

17 Saleve -0.4 0.1 0.2 0.1

20 Saleve 0.2 0.1 -0.1 0.1

21 Jura -0.1 0.1 -0.7 0.1

22 Jura 0.0 0.1 0.1 0.1

23 Jura -0.1 0.1 0.4 0.1

24 Saleve 0.6 0.3 0.9 0.2

Table 2. Residual mirror misalignment. X and Y are the residual misalignment values, δX and δY are

misalignment errors.
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